
WhatIf: Software for Evaluating Counterfactuals1

Heather Stoll2 Gary King3 Langche Zeng4

Version 1.4-6
August 17, 2006

1Available from http://GKing.Harvard.Edu/whatif.
2Assistant Professor of Political Science, University of California, Santa Barbara (3713 Ellison Hall,

University of California, Santa Barbara, CA 93106; http://www.polsci.ucsb.edu/faculty/hstoll/,
hstoll@polsci.ucsb.edu).

3David Florence Professor of Government, Harvard University (Institute for Quantitative Social
Science, 34 Kirkland Street, Harvard University, Cambridge MA 02138; http://GKing.Harvard.Edu,
King@Harvard.Edu, (617) 495-2027).

4Professor of Political Science, University of California-San Diego (Department of Political Science,
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0521, zeng@ucsd.edu).

Contents

1 Introduction 2

2 Installation 2
2.1 Windows . 2
2.2 Linux/Unix . 3

3 Examples 4
3.1 Counterfactuals about U.N. Peacekeeping . 4
3.2 Identifying Common Support in Causal Inference 8

3.2.1 U.N. Peacekeeping . 8
3.2.2 Hypothetical Data . 9

3.3 Using WhatIf with Zelig . 9
3.4 Using WhatIf with Other R Model Output Objects 10
3.5 Demos and Data Sets . 10

4 Technical Details 11

5 R Function Reference 11
5.1 Function whatif() . 11

5.1.1 Usage . 12
5.1.2 Inputs . 12
5.1.3 Value . 13

5.2 Function plot.whatif() . 14
5.2.1 Usage . 14
5.2.2 Inputs . 14
5.2.3 Value . 15

5.3 Function print.whatif() . 15
5.3.1 Usage . 15
5.3.2 Inputs . 15
5.3.3 Value . 15

5.4 Function print.summary.whatif() . 15
5.4.1 Usage . 15
5.4.2 Inputs . 15
5.4.3 Value . 15

5.5 Function summary.whatif() . 15
5.5.1 Usage . 15
5.5.2 Inputs . 16
5.5.3 Value . 16

1

1 Introduction

WhatIf implements the methods for evaluating counterfactuals introduced in King and Zeng
(2006a) and King and Zeng (2006b):

Gary King and Langche Zeng. 2006a. “The Dangers of Extreme Counterfactuals,” Po-
litical Analysis 14 (2), forthcoming. http://GKing.Harvard.Edu/files/abs/counterft-abs.
shtml.

and

Gary King and Langche Zeng. 2006b. “When Can History Be Our Guide? The Pitfalls
of Counterfactual Inference,” International Studies Quarterly, forthcoming. http://
GKing.Harvard.Edu/files/abs/counterf-abs.shtml.

The two papers overlap, with the first containing all the proofs and technical material and the
second having more pedagogical material and examples.

Inferences about counterfactuals are essential for prediction, answering “what if” questions, and
estimating causal effects. However, when the counterfactuals posed are too far from the data at
hand, conclusions drawn from well-specified statistical analyses become based largely on speculation
hidden in convenient modeling assumptions that few would be willing to defend. Unfortunately,
standard statistical approaches assume the veracity of the model rather than revealing the degree
of model dependence, which makes this problem hard to detect.

WhatIf offers easy-to-apply methods to evaluate counterfactuals that do not require sensitivity
testing over specified classes of models. If an analysis fails the tests offered here, then we know
that substantive inferences will be sensitive to at least some modeling choices that are not based on
empirical evidence, no matter what method of inference one chooses to use. Specifically, WhatIf
will indicate whether a given counterfactual is an extrapolation (and therefore risking more model
dependence) or a (safer) interpolation. Using an algorithm developed in King and Zeng (2006a)
to identify whether counterfactual points are within the convex hull of the observed data, this is
feasible even for large numbers of explanatory variables. It will also compute either the Gower or
Euclidian distances from the counterfactuals to each observed data point. The convex hull test can
additionally be used to approximate the common support of the treatment and control groups in
causal inference. Numerical and graphic summaries are offered.

WhatIf has been incorporated in MatchIt, and also works easily with Zelig output (Ho et al.,
2005; Imai, King and Lau, 2006).

2 Installation

WhatIf requires R version 2.3.1 or later, available from CRAN (http://cran.r-project.org/),
and the package lpSolve, also available from CRAN. Installation of WhatIf differs slightly by
operating system.

2.1 Windows

Begin the installation process by launching R. To install the package WhatIf as well as the package
that it depends upon, lpSolve, type:

> install.packages("WhatIf", dependencies = TRUE)

at the R command prompt. This command installs the packages from the CRAN respository set
as part of your R options. You can see what its current value is by calling

> getOption("repos")

The default, ‘factory fresh’ setting will usually prompt you to select a CRAN mirror. One alter-
native for installing the package WhatIf is to use Gary King’s website as the repository. You can
do this by typing:

2

file:/files/abs/counterft-abs.shtml
http://GKing.Harvard.Edu/files/abs/counterft-abs.shtml
http://GKing.Harvard.Edu/files/abs/counterft-abs.shtml
file:/files/abs/counterf-abs.shtml
file:/files/abs/counterf-abs.shtml
http://GKing.Harvard.Edu/files/abs/counterf-abs.shtml
http://GKing.Harvard.Edu/files/abs/counterf-abs.shtml
http://cran.r-project.org/

> install.packages("WhatIf", repos = "http://gking.harvard.edu")

You will then need to install the package lpSolve from CRAN by typing:

> install.packages("lpSolve")

A second alternative is to download the Windows bundle from http://GKing.Harvard.Edu/bin/
windows/contrib and use the R pull-down menu commands for installing a package from a zip
file. You again will then need to install lpSolve, which can be done either by typing the command
given above at the command prompt or by using the pull-down menus. Finally, you then only need
to type:

> library("WhatIf")

from within R to load the WhatIf package, after which you may begin working with it.

2.2 Linux/Unix

You initially need to create both local R and local R library directories if they do not already exist.
At the Linux/Unix command prompt in your home directory, do this by typing:

> mkdir ~/.R ~/.R/library

Then open the ‘.Renviron’ file that resides in your home directory, creating it if necessary, and
add the line:

R_LIBS = "~/.R/library"

using your preferred text editor. These steps only need to be performed once. To install the
package WhatIf as well as the package that it depends upon, lpSolve, type:

> install.packages("WhatIf", dependencies = TRUE)

at the R command prompt. This command installs the packages from the CRAN respository set
as part of your R options. You can see what its current value is by calling

> getOption("repos")

The default, ‘factory fresh’ setting will usually prompt you to select a CRAN mirror. One alter-
native for installing the package WhatIf is to use Gary King’s website as the repository. You can
do this by typing:

> install.packages("WhatIf", repos = "http://gking.harvard.edu")

A second alternative is to download the Linux/Unix bundle ‘WhatIf XX.tar.gz’, available from
http://gking.harvard.edu/R/CRAN/src/contrib/, and place it in your home directory. Note
that ‘XX’ is the current version number. Then, at the Linux/Unix command line from your home
directory, type

> R CMD INSTALL WhatIf_XX.tar.gz

to install the package. Finally, you then only need to type:

> library("WhatIf")

from within R to load the WhatIf package, after which you may begin working with it.

3

http://GKing.Harvard.Edu/bin/windows/contrib
http://GKing.Harvard.Edu/bin/windows/contrib
http://gking.harvard.edu/R/CRAN/src/contrib/

3 Examples

3.1 Counterfactuals about U.N. Peacekeeping

This section illustrates the workings of WhatIf with the empirical example in Section 2.4 of King
and Zeng (2006b), which evaluates counterfactuals about the causal impact of U.N. peacekeeping
operations on peacebuilding success.

The factual data set has 124 observations (including two with missing values) on ten covariates
as well as on the key causal variable, untype4, which is a dummy variable. The counterfactual
data set is the observed covariate data set with untype4 replaced with 1−untype4. We list-wise
delete the two counterfactuals that are not fully observed. We then save the two data sets, one
factual and the other counterfactual, as text files in our current working directory and name them
‘peacef.txt’ and ‘peacecf.txt’, respectively. The first five rows of ‘peacef.txt’ look like:

decade wartype logcost wardur factnum factnumsq trnsfcap untype4 treaty
1 5 1 14.917450 72 4 16 5.735545 0 0
2 4 0 15.671810 168 6 36 9.730863 0 0
3 5 1 6.907755 24 2 4 12.626030 0 0
4 5 1 12.971540 24 2 4 -112.000000 0 1
5 3 1 9.210340 216 2 4 4.275317 0 0

develop exp
1 132.8466 0.1217277
2 132.0000 0.1163292
3 1533.0000 0.0610000
4 2216.6080 0.1294513
5 1295.0000 0.1420000

Similarly, the first five rows of ‘peacecf.txt’ look like:

decade wartype logcost wardur factnum factnumsq trnsfcap 1-untype4
1 5 1 14.917450 72 4 16 5.735545 1
2 4 0 15.671810 168 6 36 9.730863 1
3 5 1 6.907755 24 2 4 12.626030 1
4 5 1 12.971540 24 2 4 -112.000000 1
5 3 1 9.210340 216 2 4 4.275317 1
treaty develop exp

1 0 132.8466 0.1217277
2 0 132.0000 0.1163292
3 0 1533.0000 0.0610000
4 1 2216.6080 0.1294513
5 0 1295.0000 0.1420000

The function whatif can be called in two alternative ways to analyze these counterfactuals.
First, typing:

> my.result <- whatif(data = "peacef.txt", cfact = "peacecf.txt")

tells whatif to load the datasets ‘peacef.txt’ and ‘peacecf.txt’ from our working directory.
Second, typing:

> my.result <- whatif(data = peacef, cfact = peacecf)

tells whatif to use the R objects peacef and peacecf loaded into memory prior to the function call.
These objects must be either non-character matrices or data frames containing the counterfactual
and observed covariate data, respectively; in this case, they are data frames. Alternatively, peacef
may be either a Zelig or other R model output object (e.g., a model output object returned by a
call to glm).

4

The resulting output object my.result is a six-element list, each element of which we now
describe. The first is simply the call. The second is a logical vector named in.hull, which contains
the results of the convex hull test. Each element can have a value of either FALSE, indicating that
the corresponding counterfactual is not in the convex hull of the observed data and thus requires
extrapolation, or TRUE, indicating the opposite. To see the values of in.hull, we type:

> my.result$in.hull

For this example, the values are all FALSE.
The third element of the output object, dist, is a matrix that by default contains the pairwise

Gower’s distance, G2, between each counterfactual (a row in the eleven-column ‘peacecf.txt’)
and data point (a row in the eleven-column ‘peacef.txt’). We can look at the distance between
the first counterfactual and each of the 122 data points, for example, by typing:

> my.result$dist[1,]

The output looks as follows:

1 2 3 4 5 6 7 8
0.0909091 0.2594048 0.2460820 0.2831935 0.2613205 0.4160213 0.4257783 0.2281632

9 10 11 12 13 14 15 16
0.2049433 0.1294424 0.2538982 0.2271395 0.1972723 0.2180227 0.3756740 0.4057977
...

121 122
0.2534278 0.1438965

We can alternatively calculate the pairwise Euclidian distance between each counterfactual and
data point by setting the parameter distance equal to "euclidian" as follows:

> my.result <- whatif(data = peacef, cfact = peacecf, distance = "euclidian")

However, this option is only appropriate for quantitative data; since some of our variables are
qualitative, we continue to use the Gower’s distance measure.

The fourth element of the output list, geom.var, is the geometric variability of the observed
data, which we retrieve by typing:

> my.result$geom.var

In this case, it is 0.110 when rounding to three significant digits. King and Zeng offer the geometric
variability as a rule of thumb threshold: counterfactuals with distances to the observed covariate
data less than this value are to some extent nearby the data.

The fifth element of the output object, sum.stat, is a numeric vector, each element of which
is the proportion of data points nearby the corresponding counterfactual. The values can be seen
by typing:

> my.result$sum.stat

The output looks like:

1 2 3 4 5 6
0.008196721 0.008196721 0.008196721 0.008196721 0.008196721 0.008196721

7 8 9 10 11 12
0.008196721 0.008196721 0.008196721 0.008196721 0.008196721 0.008196721
...

121 122
0.008196721 0.016393443

5

By default, ‘nearby’ is defined as having a distance to the counterfactual less than or equal to the
geometric variability of the observed data. The default can be changed by setting a value for the
parameter nearby. For example, to round the geometric variability up to 0.11 as in King and Zeng
(2006b), we type:

> my.result <- whatif(data = peacef, cfact = peacecf, nearby = 0.11)

The numerical summary reported on page 14 of King and Zeng (2006b) is the average of sum.stat
over all counterfactuals, which we can obtain using the command

> mean(my.result$sum.stat)

In this case, the average is 1.3 percent. This statistic is reported for your convenience by the
function summary.

The sixth element of the output object, cum.freq, stores information on the cumulative fre-
quency distribution of the distances between a counterfactual and the observed covariate data. To
access the cumulative frequency distribution for the default set of Gower distances (from 0 to 1 in
increments of 0.5) between the first counterfactual and the data points, for example, we type:

> my.result$cum.freq[1,]

This prints the distribution to the screen:

0 0.05 0.1 0.15 0.2 0.25
0.000000000 0.000000000 0.008196721 0.081967213 0.262295082 0.483606557

0.3 0.35 0.4 0.45 0.5 0.55
0.680327869 0.844262295 0.950819672 0.991803279 0.991803279 1.000000000

0.6 0.65 0.7 0.75 0.8 0.85
1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

0.9 0.95 1
1.000000000 1.000000000

Alternatively, we can change the default set of Gower distances by using the parameter freq. For
example, to calculate a cumulative frequency distribution solely for the Gower distances of 0, 0.5,
and 1.0, we type:

> my.result <- whatif(data = peacef, cfact = peacecf, freq = c(0, 0.5, 1.0))

Now the cumulative frequency distribution for the first counterfactual looks as follows:

> my.result$cum.freq[1,]
0 0.5 1

0.0000000 0.9918033 1.0000000

We now turn to the auxiliary functions included in the WhatIf package. The first is plot,
which produces figures that graph the cumulative frequency distribution of the distances similar
to Figure 3 in King and Zeng (2006a). This function takes as its input a whatif output object.
To plot the default cumulative frequency distributions for all counterfactuals to the screen, type:

> plot(my.result)

Plotting 122 distributions on the same graph will not be very helpful, however. A particular
frequency distribution or combination of frequency distributions can be plotted by setting the
parameter numcf to equal the desired values. For example, to plot only the cumulative frequency
distribution for the first counterfactual, we type:

6

> plot(my.result, numcf = 1)

We also have the option of smoothing the raw cumulative frequencies, which can be plotted either
on their own or in addition to the raw data. The parameter controlling this option is type. To
plot both the raw and LOWESS smoothed cumulative frequency distributions for the first two
counterfactuals, for example, we type:

> plot(my.result, numcf = c(1, 2), type = "b")

where "b" stands for ‘both’. Alternatively, assigning the value "l" to type would plot only the
smoothed frequencies. To save the graph as an encapsulated postscript file for later use instead of
printing it to the screen, we set the parameter eps equal to TRUE:

> plot(my.result, numcf = c(1, 2), type = "b", eps = TRUE)

The graph is saved to our working directory.
Not surprisingly, the function summary summarizes the most important information produced

by the function whatif. The output object, a list, contains this information, which may also be
printed to the screen. For example, typing:

> summary(my.result)

displays the total number of counterfactuals evaluated; the number of counterfactuals that are in the
convex hull of the observed covariate data; the percentage of data points nearb’ each counterfactual
averaged over all counterfactuals; and a table that contains both the results of the convex hull test
and the percentage of data points nearby the counterfactual for each counterfactual. Alternatively,
typing:

> my.result.sum <- summary(my.result)

saves the summary information as the object my.result.sum, which can be printed to the screen
by typing either:

> print(my.result.sum)

or:

> my.result.sum

at the command prompt.
Finally, the package WhatIf includes two print functions. To print the output object returned

by whatif to the screen, type either:

> print(my.result)

or the name of the output object at the command prompt. Not printed by these calls are the
matrices of distances and cumulative frequencies. These large objects can be printed by setting
the parameters print.dist and print.freq equal to TRUE, respectively. For example, to print
the entire output object except for the matrix of Gower distances to the screen, we type:

> print(my.result, print.freq = TRUE)

The other print function controls the printing of the output object from the function summary.

7

3.2 Identifying Common Support in Causal Inference

The same algorithm for identifying whether or not counterfactuals fall within the convex hull of
the observed covariate data can be used to assess common support. We illustrate here with two
examples.

3.2.1 U.N. Peacekeeping

In Section 2.4 of King and Zeng (2006b), the seven fully observed countries that experienced a U.N.
peacekeeping mission comprise the treatment group while the remaining 115 fully observed (and
117 non-fully observed) countries that lacked a U.N. peacekeeping mission constitute the control
group. Cases of the former type receive a coding of ‘1’ on the key causal variable, untype4, while
cases of the latter type are coded ‘0’.

When estimating the average treatment effect on the treated, we discard controls with observed
covariate data not within the convex hull of the data for the treated as follows:

> my.result.cntrl <- whatif(formula = ~ decade + wartype + logcost +
+ wardur + factnum + factnumsq + trnsfcap + treaty + develop + exp,
+ data = peacef[peacef$untype4 == 1,], cfact = peacef[peacef$untype4 == 0,])

This command feeds the seven treated countries to the parameter data and the 117 control countries
to the parameter cfact. This differs from the last section, where data contained all 124 observed
data points, whether treated or not. The parameter formula allows us to drop untype4 from the
two data frames, which we do by naming all of the variables that we want to keep. (We eliminate
this variable since our goal is to identify the convex hull of the observed pre-treatment covariates.)
Note that we do not specify a dependent variable in the formula. We then look at the results:

> my.result.cntrl$in.hull

The control group countries not on the support of the treated countries are those with FALSE
entries—in this case, all 115. Note that two warning messages are generated by this call. The first
informs us that whatif has deleted the two control group cases with missing values from the cfact
data set since counterfactuals must be fully observed. The second, “range of at least one variable
equals zero”, is generated because data contains a degenerate case: the variable treaty has no
variance (and hence a range of zero) in the observed covariate data set of the treated countries.
In order to calculate the Gower distances, whatif must make assumptions about the handling of
such variables. Specifically, it ignores their contribution unless the values of the data point and
counterfactual are identical, in which case the normalized difference is set to zero.

A different, but perhaps more reliably estimable quantity, may often be obtained by also drop-
ping observations in the treatment group whose observed covariate data falls outside of the convex
hull of the control group. Any countries remaining comprise the data set that lies on the common
support. Both the prior and this second step can be performed simultaneously using WhatIf as
originally described in Section 3.1 for evaluating counterfactuals. Accordingly, we type:

> peacef2cf <- peacef
> peacef2cf$untype4 <- 1 - peacef2cf$untype4
> my.result.comb <- whatif(data = peacef, cfact = peacef2cf)

Here, we initially create the counterfactual data set peacef2cf directly from the factual, replacing
untype4 with 1 - untype4. We could also have supplied the data set peacecf, originally constructed
in a similar manner. (The data sets would be identical if the two counterfactuals with missing data
were list-wise deleted from peacef2cf.) We now look at the results of the convex hull test as
before and see that none of the counterfactuals are in the convex hull. Hence, there is no data on
the common support of both the treatment and control groups.

8

3.2.2 Hypothetical Data

To demonstrate that the latter approach really does combine the individual assessments of support
on the treatment and control groups, consider this hypothetical data set:

> sqdata <- data.frame(t = c(1, 1, 1, 1, 0, 0, 0, 0),
+ x = c(0, 0, 1, 1, .5, .5, 1.5, 1.5),
+ y = c(1, 0, 0, 1, .5, 1.5, .5, 1.5))

The variable ‘t’ is the treatment. The convex hull of the observed covariate data of the treatment
group is obviously a unit square with its lower left vertex at the origin. The convex hull of the
control group is also a unit square, but one with its lower left vertex at the point (0.5, 0.5) in the
Cartesian plane.

We first identify the control group units that are not on the support of the treated units (i.e.,
the control group units not in the convex hull of the covariate data of the treated group) as follows:

> summary(whatif(~ x + y, data = sqdata[sqdata$t == 1,], cfact =
+ sqdata[sqdata$t == 0,]))

which as before uses the parameter formula to eliminate the treatment variable, t, from the data
frames. Only the first unit from the control group, the point (0.5, 0.5) in the Cartesian plane, is in
the convex hull and hence on the support of the treated group. We next identify the treated group
units that are not on the support of the control units by typing:

> summary(whatif(~ x + y, data = sqdata[sqdata$t == 0,], cfact =
+ sqdata[sqdata$t == 1,]))

The treatment group unit represented by the point (1, 1) is the only one in the convex hull and
hence on the support of the control group. Accordingly, if we were to eliminate the units without
common support as identified by the two separate tests, we would eliminate all units save the
points (0.5, 0.5), the only control group unit on the support of the treated group, and (1, 1), the
only treated group unit on the support of the control group.

Alternatively, we can combine the two steps:

> summary(whatif(data = sqdata, cfact = cbind(1 - sqdata[, 1], sqdata[, 2:3])))

This time, two counterfactuals are in the convex hull of the data. These counterfactuals correspond
to the units with observed covariate data (0.5, 0.5) and (1, 1). Accordingly, we conclude that only
two units are on the common support, the same conclusion that we drew from the two separate
tests.

3.3 Using WhatIf with Zelig

We now illustrate how WhatIf can be easily used with Zelig. As an example, we first generate
Zelig output from a simple logistic model using the hypothetical data set created in the prior
example:

> z.out <- zelig(t ~ x + y, data = sqdata, model = "logit")

We next create a counterfactual using the Zelig command setx:

> x.out <- setx(z.out, x = 2, y = 3)

9

This is normally followed by a call to the Zelig command sim to compute quantities of inter-
est, such as predicted values given these values of the explanatory variables. See, for example,
http://gking.harvard.edu/zelig/docs/Quick Overview.html. WhatIf enables you to evaluate the
values to which you set the explanatory variables before simulating quantities of interest. We do
this by calling whatif as follows:

> summary(whatif(data = z.out, cfact = x.out))

The results indicate that this counterfactual is not in the convex hull of the data. In this situation,
you may want to rethink whether or not you should proceed on to the sim stage of analysis.
Note that if an intercept was fit as part of the original model, whatif automatically drops it
from both the observed covariate data set extracted from the zelig output object z.out and the
setx-generated counterfactual x.out.

3.4 Using WhatIf with Other R Model Output Objects

Suppose that instead of using Zelig, we use the function lm to fit a linear model to the same
hypothetical data by typing:

> lm.out <- lm(t ~ x + y, data = sqdata)

In this case, we could then use WhatIf to evaluate a counterfactual as follows:

> summary(whatif(data = lm.out, cfact = data.frame(x = 2, y = 3)))

As with zelig output objects, intercepts are dropped from the observed covariate data sets ex-
tracted in this manner. Unlike with Zelig, however, counterfactuals are not generated automati-
cally by lm; hence, the counterfactuals that you supply to whatif should not include an intercept.
The parameter formula can be used to drop, select, and transform the variables in data and cfact
when data is a R model or zelig output object in the same way that it can be used when data is
a matrix or data frame. For example, to drop the variable x, we type:

> summary(whatif(~ y, data = lm.out, cfact = data.frame(x = 2, y = 3)))

or more simply and equivalently:

> summary(whatif(~ y, data = lm.out, cfact = data.frame(y = 3)))

If instead we decide to run the test using the square of x, we type:

> summary(whatif(~ I(x^2) + y, data = lm.out, cfact = data.frame(x = 2, y = 3)))

following standard R conventions for formulas.

3.5 Demos and Data Sets

R will automatically walk you through the examples related to U.N. peacekeeping by running

> demo("peace")

The factual and counterfactual U.N. peacekeeping data sets used in the examples are included in
the WhatIf package. You may load them by calling:

> data("peacef")

and

> data("peacecf")

which stores them as R objects with the corresponding names.

10

file:/zelig/docs/Quick_Overview.html

4 Technical Details

The computational task of determining the convex hull membership is made feasible even for large
numbers of explanatory variables and observations by the solution proposed in King and Zeng
(2006a), which eliminates the most time-consuming part of the problem: the characterization of
the convex hull itself. In addition, they show that the remaining (implicit) point location problem
can be expressed as a linear programming exercise, making it possible to take advantage of existing
well-developed algorithms designed for other purposes to speed up the computation. Specifically,
a counterfactual x is in the convex hull of the explanatory variables X if there exists a feasible
solution to the following standard form linear programming problem:

min C ′η

s.t. A′η = B′ (1)
η ≥ 0

where C is a vector of zeros (so that there is no objective function to minimize); η is a vector of
coefficients; A′ is X ′ with an additional, final row of 1’s; and B′ is x′ with an additional, final
element equal to 1.

The default Gower distance (which is suitable for both quantitative and qualitative data) be-
tween a pair of K dimensional points xi and xj is defined simply as the average absolute distance
between the elements of the two points divided by the range of the data:

Gij =
1
K

K∑
k=1

|xik − xjk|
rk

(2)

where the range is rk = max(X.k)−min(X.k) and the min and max functions return the smallest
and largest elements respectively in the set including the kth element of the explanatory variables
X. The optional Euclidian distance (which is suitable only for quantitative data) between points xi

and xj is given by the familiar definition, i.e. the square root of the sum of the squared differences
between the elements of the two points:

Eij =

√√√√ K∑
k=1

(xik − xjk)2 . (3)

5 R Function Reference

5.1 Function whatif()

This function evaluates your counterfactuals. Specifically, it:

1. Determines if your counterfactuals are in the convex hull of the observed covariate data and
are therefore interpolations or if they instead lie outside of it and are therefore extrapolations.

2. Computes the distance from your counterfactuals to each of the n observed data points. The
default distance function used is Gower’s non-parametric measure.

3. Computes a summary statistic for each counterfactual based on the distances in 2: the fraction
of observed covariate data points with distances to your counterfactual less than a value you
supply. By default, this value is taken to be the geometric variability of the observed data.

4. Computes the cumulative frequency distribution of each counterfactual for the distances in 2
using values that you supply. By default, Gower distances from 0 to 1 in increments of 0.05
are used.

In other words, this function provides you with both qualitative and quantitative information
about your counterfactuals, including two numeric summaries. You can then feed the output of
this function either to plot to generate a graphical view or to summary to get a numerical summary
of the results.

11

5.1.1 Usage

whatif(formula = NULL, data, cfact, range = NULL, freq = NULL,
nearby = NULL, distance = "gower", miss = "list", choice = "both",
return.inputs = FALSE, ...)

5.1.2 Inputs

formula An optional formula without a dependent variable that is of class “formula” and that
follows standard R conventions for formulas, e.g. ~ x1 + x2. Allows you to transform or
otherwise re-specify combinations of the variables in both data and cfact. To use this
parameter, both data and cfact must be coercable to data frames; the variables of both
data and cfact must be labeled; and all variables appearing in formula must also appear
in both data and cfact. Otherwise, errors are returned. The intercept is automatically
dropped. Default is NULL.

data May take one of the following forms:

1. A R model output object, such as the output from calls to lm, glm, and zelig. Such
an output object must be a list. It must additionally have either a formula or terms
component and either a data or model component; if it does not, an error is returned.
Of the latter, whatif first looks for data, which should contain either the original data
set supplied as part of the model call (as in glm) or the name of this data set (as in
zelig), which is assumed to reside in the global environment. If data does not exist,
whatif then looks for model, which should contain the model frame (as in lm). The
intercept is automatically dropped from the extracted observed covariate data set if the
original model included one.

2. A n × k non-character (logical or numeric) matrix or data frame of observed covariate
data with n data points or units and k covariates. All desired variable transformations
and interaction terms should be included in this set of k covariates unless formula
is alternatively used to produce them. However, an intercept should not be. Such a
matrix may be obtained by passing model output (e.g., output from a call to lm) to
model.matrix and excluding the intercept from the resulting matrix if one was fit.
Note that whatif will attempt to coerce data frames to their internal numeric values.
Hence, data frames should only contain logical, numeric, and factor columns; character
columns will lead to an error being returned.

3. A string. Either the complete path (including file name) of the file containing the data or
the path relative to your working directory. This file should be a white space delimited
text file. If it contains a header, you must include a column of row names as discussed in
the help file for the R function read.table. The data in the file should be as otherwise
described in (2).

Missing data is allowed and will be dealt with via the argument missing. It should be flagged
using R’s standard representation for missing data, NA.

cfact A R object or a string. If a R object, a m × k non-character matrix or data frame of
counterfactuals with m counterfactuals and the same k covariates (in the same order) as in
data. However, if formula is used to select a subset of the k covariates, then cfact may
contain either only these j ≤ k covariates or the complete set of k covariates. An intercept
should not be included as one of the covariates. It will be automatically dropped from the
counterfactuals generated by Zelig if the original model contained one. Data frames will
again be coerced to their internal numeric values if possible. If a string, either the complete
path (including file name) of the file containing the counterfactuals or the path relative to your
working directory. This file should be a white space delimited text file. See the discussion
under data for instructions on dealing with a header. All counterfactuals should be fully
observed: if you supply counterfactuals with missing data, they will be list-wise deleted and
a warning message will be printed to the screen.

12

range An optional numeric vector of length k, where k is the number of covariates. Each element
represents the range of the corresponding covariate for use in calculating Gower distances.
Use this argument when covariate data do not represent the population of interest, such
as selection by stratification or experimental manipulation. By default, the range of each
covariate is calculated from the data (the difference of its maximum and minimum values
in the sample), which is appropriate when a simple random sampling design was used. To
supply your own range for the kth covariate, set the kth element of the vector equal to the
desired range and all other elements equal to NA. Default is NULL.

freq An optional numeric vector of any positive length, the elements of which comprise a set
of distances. Used in calculating cumulative frequency distributions for the distances of
the data points from each counterfactual. For each such distance and counterfactual, the
cumulative frequency is the fraction of observed covariate data points with distance to the
counterfactual less than or equal to the supplied distance value. The default varies with
the distance measure used. When the Gower distance measure is employed, frequencies are
calculated for the sequence of Gower distances from 0 to 1 in increments of 0.05. When
the Euclidian distance measure is employed, frequencies are calculated for the sequence of
Euclidian distances from the minimum to the maximum observed distances in twenty equal
increments, all rounded to two decimal places. Default is NULL.

nearby An optional scalar; the cutoff distance value indicating which observed data points are
considered to be nearby the counterfactuals. Used to calculate the summary statistic returned
by the function: the fraction of the observed data nearby each counterfactual. By default,
the geometric variability of the covariate data is used. For example, setting nearby to 0.11
will identify the proportion of data points within 0.11 of a counterfactual. Default is NULL.

distance An optional string indicating the distance measure to employ. The choices are either
"gower", Gower’s non-parametric distance measure (G2), which is suitable for both quali-
tative and quantitative data; or "euclidian", Euclidian distance, which is only suitable for
quantitative data. The default is the former, "gower".

miss An optional string indicating the strategy for dealing with missing data in the observed
covariate data set. whatif supports two possible missing data strategies: "list", list-wise
deletion of missing cases; and "case", ignoring missing data case-by-case. Note that if "case"
is selected, cases with missing values are deleted listwise for the convex hull test but simply
ignored in computing the distances. Default is "list".

choice An optional string indicating which analyses to undertake. The options are either "hull",
only perform the convex hull membership test; "distance", do not perform the convex hull
test but do everything else, such as calculating the distance between each counterfactual and
data point; or "both", undertake both the convex hull test and the distance calculations (i.e.,
do everything). Default is "both".

return.inputs A Boolean; should the processed observed covariate and counterfactual data ma-
trices on which all whatif computations are performed be returned? Processing refers to
internal whatif operations such as the subsetting of covariates via formula, the deletion of
cases with missing values, and the coercion of data frames to numeric matrices. Primarily
intended for diagnostic purposes. If TRUE, these matrices are returned as a list. Default is
FALSE.

5.1.3 Value

An object of class “whatif”, a list containing the following six or seven elements:

call The original call to whatif.

inputs A list with two elements, data and cfact. Only present if return.inputs was set equal to
TRUE in the call to whatif. The first element is the processed observed covariate data matrix
on which all whatif computations were performed. The second element is the processed
counterfactual data matrix.

13

in.hull A logical vector of length m, where m is the number of counterfactuals. Each element
of the vector is TRUE if the corresponding counterfactual is in the convex hull and FALSE
otherwise.

dist An m × n numeric matrix, where m is the number of counterfactuals and n is the number
of data points (units). The [i, j]th entry of the matrix contains the distance between the ith
counterfactual and the jth data point.

geom.var A scalar. The geometric variability of the observed covariate data.

sum.stat A numeric vector of length m, where m is the number of counterfactuals. The mth
element contains the summary statistic for the corresponding counterfactual. This summary
statistic is the fraction of data points with distances to the counterfactual less than the
argument nearby, which by default is the geometric variability of the covariates.

cum.freq A numeric matrix. By default, the matrix has dimension m×21, where m is the number
of counterfactuals; however, if you supplied your own frequencies via the argument freq, the
matrix has dimension m× f , where f is the length of freq. Each row of the matrix contains
the cumulative frequency distribution for the corresponding counterfactual calculated using
either the distance measure-specific default set of distance values or the set that you supplied
(see the discussion under the argument freq). Hence, the [i, j]th entry of the matrix is the
fraction of data points with distances to the ith counterfactual less than or equal to the value
represented by the jth column. The column names contain these values.

5.2 Function plot.whatif()

This function generates a cumulative frequency plot of distances, graphically summarizing the
distance of your counterfactuals from the data. It takes as its input an object returned by the
function whatif, which has class “whatif”. It is called by the generic function plot. The cumulative
frequencies appear on the vertical axis. They are the fraction of rows in the observed data set
with either Gower or Euclidian distances to the counterfactuals less than or equal to the given
value on the horizontal axis. Counterfactuals in the convex hull are plotted with a solid line and
counterfactuals outside of the convex hull with a dashed line.

5.2.1 Usage

plot(x, type = "f", numcf = NULL, eps = FALSE, ...)

5.2.2 Inputs

x An object of class “whatif”, the output of the function whatif().

type A character string; the type of plot of the cumulative frequencies of the distances to be
produced, including: "f" for cumulative frequencies only; "l" for LOWESS smoothing of
cumulative frequencies only; "b" for both cumulative frequencies and LOWESS smoothing.
LOWESS scatterplot smoothing is plotted in blue and the unsmoothed frequencies in black.
Default is "f".

numcf A numeric vector; the specific counterfactuals to be plotted. Each element represents a
counterfactual, specifically its row number from the matrix or data frame of counterfactuals.
By default, all counterfactuals are plotted. Default is NULL.

eps A Boolean; should an encapsulated postscript file be generated? Setting the argument equal to
TRUE generates an .eps file, which is saved to your working directory with file name of form
‘graph ‘type’ ‘numcf’.eps’, where ‘type’ and ‘numcf’ are the values of the respective
arguments. Specifically, ‘numcf’ takes the value of the first element of the argument numcf
unless all counterfactuals were plotted, in which case all appears in the place of ‘numcf’.
Default is FALSE, which instead prints the graph to the screen.

14

5.2.3 Value

Either a graph printed to the screen or an encapsulated postscript file saved to your working
directory. In the latter case, the file name has form ‘graph ‘type’ ‘numcf’.eps’, where ‘type’
and ‘numcf’ are the values of the respective arguments.

5.3 Function print.whatif()

This function prints the information generated by a call to whatif to the screen. It takes as its
input an object returned by the function whatif, which has class “whatif”. It is called by the
generic function print.

5.3.1 Usage

print(x, print.dist = FALSE, print.freq = FALSE, ...)

5.3.2 Inputs

x An object of class “whatif”, the output of the function whatif.

print.dist A Boolean; should the matrix of pairwise distances between each counterfactual and
data point be printed to the screen? Default is FALSE.

print.freq A Boolean; should the matrix of cumulative frequencies of distances for each counter-
factual be printed to the screen? Default is FALSE.

5.3.3 Value

A printout to the screen of the information contained in the whatif output object.

5.4 Function print.summary.whatif()

This function prints the information generated from the whatif output object by a call to summary
to the screen. It takes as its input an object returned by the function summary.whatif, which has
class “summary.whatif”. It is called by the generic function print.

5.4.1 Usage

print(x, ...)

5.4.2 Inputs

x An object of class “summary.whatif”, the output of the function summary.whatif.

5.4.3 Value

A printout to the screen of the whatif information summarized in the summary.whatif output
object.

5.5 Function summary.whatif()

This function summarizes the information produced by whatif about your counterfactuals. It
takes as its input the object returned by the function whatif, which has class “whatif”. It is called
by the generic function summary. The summary generated is returned as well as printed to the
screen.

5.5.1 Usage

summary(object, ...)

15

5.5.2 Inputs

object An object of class “whatif”, the output of the function whatif.

5.5.3 Value

An object of class “summary.whatif”, a list containing the following five elements:

call The original call to whatif.

m A scalar. The total number of counterfactuals evaluated.

m.inhull A scalar. The number of counterfactuals evaluated that are in the convex hull of the
observed covariate data.

mean.near A scalar. The average percentage of data ‘nearby’ each counterfactual, where the
average is taken over all counterfactuals.

sum.df A data frame with three columns and m rows, where m is the number of counterfactuals.
The first column, cfact, indexes the counterfactuals. The second column, in.hull, contains
the results of the convex hull test. The third column, per.near, contains the percentage of
data points nearby each counterfactual.

This object is printed to the screen.

References

Ho, Daniel, Kosuke Imai, Gary King and Elizabeth Stuart. 2005. “Matching as Nonparametric
Preprocessing for Parametric Causal Inference.”. http://gking.harvard.edu/matchit/.

Imai, Kosuke, Gary King and Olivia Lau. 2006. “Zelig: Everyone’s Statistical Software.”.
http://gking.harvard.edu/zelig.

King, Gary and Langche Zeng. 2006a. “The Dangers of Extreme Counterfactuals.” Political Anal-
ysis . http://gking.harvard.edu/files/abs/counterft-abs.shtml.

King, Gary and Langche Zeng. 2006b. “When Can History Be Our Guide? The Pit-
falls of Counterfactual Inference.” International Studies Quarterly . forthcoming, copy at
http://gking.harvard.edu/files/abs/counterf-abs.shtml.

16

	Introduction
	Installation
	Windows
	Linux/Unix

	Examples
	Counterfactuals about U.N. Peacekeeping
	Identifying Common Support in Causal Inference
	U.N. Peacekeeping
	Hypothetical Data

	Using WhatIf with Zelig
	Using WhatIf with Other R Model Output Objects
	Demos and Data Sets

	Technical Details
	R Function Reference
	Function whatif()
	Usage
	Inputs
	Value

	Function plot.whatif()
	Usage
	Inputs
	Value

	Function print.whatif()
	Usage
	Inputs
	Value

	Function print.summary.whatif()
	Usage
	Inputs
	Value

	Function summary.whatif()
	Usage
	Inputs
	Value

