
1 dse1 Guide

The functions in this package are made available with

> library("dse1")

As of R-2.1.0 the code from the vignette that generates this guide can be
loaded into an editor with edit(vignette(”dse1”)). This uses the default editor,
which can be changed using options(). Also, it should be possible to view the
pdf version of the guide for this package with print(vignette(”dse1”)) and the
guide for the dse bundle with print(vignette(”dse-guide”)).

Several data sets are included with DSE and will be used in examples in this
guide. The names of the data sets can be listed with

data(package=”dse1”)
They are made available by

> data(eg1.DSE.data, package = "dse1")

> data(egJofF.1dec93.data, package = "dse1")

1.1 Defining a TSdata Structure

This section describes how to construct a TSdata structure if you have other
data you would like to use. Section 10 discusses adding new kinds of TSdata
classes. Some installations may have an online database and it may be possible
to connect directly to this data. See the padi and dsepadi packages as on one
possibility for doing this.

For many people the situation will be that the data is in some ASCII file.
This can be loaded into session variables with a number of standard R functions,
the most useful of which are probably scan() and read.table(). Following is an
example which reads data from an ASCII file called ”eg1.dat” and puts it in the
variable called eg1.DSE.data (which is also one of the available data sets). The
file is in the dse1 package directory otherdata. It file has five columns of numbers
and 364 rows. The first column just enumerates the rows and is discarded.

> fileName <- system.file("otherdata", "eg1.dat", package = "dse1")

> eg1.DSE.data <- t(matrix(scan(fileName), 5, 364))[,

2:5]

This matrix can be used to form a TSdata object by

> eg1.DSE.data <- TSdata(input = eg1.DSE.data[, 1,

drop = F], output = eg1.DSE.data[, 2:4, drop = F])

The matrix and the resulting TSdata object do not have a good time scale
associated with points. A better time scale can be added by

> eg1.DSE.data <- tframed(eg1.DSE.data, list(start = c(1961,

3), frequency = 12))

1

There are several different possibilities for representing time in R objects.
The most common is the ts matrix object, which is used in the above default
tframed method. (ts is a class in R. In S it is not a class of object, but the default
representation of time series which existed before classes were introduced.) The
above tframed method and ts can also be used directly on the matrix before the
TSdata object is formed. However, [,] in Splus results in the time scale being
lost, so it would need to be reassigned to the input and output matrices of the
TSdata object. The methods from the tframe package are used extensively in the
DSE packages because they extend to other time representations in addition to
ts, and provide a mechanism for extending methods to other objects like TSdata
and TSmodels.

Names can be given to the series with

> seriesNamesInput(eg1.DSE.data) <- "R90"

> seriesNamesOutput(eg1.DSE.data) <- c("M1", "GDPl2",

"CPI")

Setting the series names is not necessary but many functions can use the
names if they are available. (This overlaps somewhat with dimnames, but is
the preferred method in DSE as it extends to data which is not a matrix.)
The TSdata object with elements input and output is the structure which the
functions in DSE expect. More details on this structure are available in the
help for TSdata. The input and output elements can be defined in a number of
different ways and new representations can be fairly easily added. For example,
when the data is on a remote database as used by TSPADI, the R object is just
a description of where to get the data, rather than the data itself. In this case
the freeze() function is used automatically by many functions in DSE to get a
copy of the data when calculations are to be performed.

Once data is available a model can be estimated:

> model1 <- estVARXls(eg1.DSE.data)

> model2 <- estSSMittnik(eg1.DSE.data, n = 4)

(Note: these models are not the same as those reported in Gilbert,1993.
In that paper a variant of estVARXar was used.) The scale of the series in
eg1.DSE.data are very different, with the result that the covariance matrix of
the residuals from the estimation is nearly singular. This is detected during
the calculation of residual statistics. Statistics are then calculated using only
the non-degenerate subspace and a warning message is printed. A better model
might be obtained if the data were scaled differently.

Information about the estimated models can be displayed, for example:

> summary(model1)

> summary(model2)

> model1

> model2

> stability(model1)

2

> stability(model2)

> informationTests(model1, model2)

Typing the name of an object in R results in the object being printed. To
display plots use:

> tfplot(model1)

> tfplot(model2)

> tfplot(eg1.DSE.data)

> checkResiduals(model1)

> checkResiduals(model2)

The function tfplot produces separate graphs for each series. The first tfplot
command produces this graphic

1960 1965 1970 1975 1980 1985 1990

0
20

00
0

M
1

One step ahead predictions (dotted) and actual data (solid)

1960 1965 1970 1975 1980 1985 1990

0e
+

00
3e

+
05

G
D

P
l2

1960 1965 1970 1975 1980 1985 1990

0
40

80

C
P

I

Note that initial conditions have been set to zero, but the effect of this dies
out quickly. (Also note that the graph labels may be slightly different depending
on which version DSE and of R you are using.)

1.2 ARMA and State Space TSmodels

Specifying ARMA and SS models is described below, but first their definition
is outlined. The linear time-invariant ARMA representation is

A(L)yt = B(L)et + C(L)ut (1)

3

where yt is a p dimensional vector of observed output variables, ut is an m
dimensional vector of input variables, et is a p dimensional unobserved distur-
bance vector process and A, B and C are matrices of the appropriate dimension
in the lag (back shift) operator L. VAR models can be thought of as a special
case of ARMA models with B(L)=I. ARIMA models are also a special case of
ARMA models.

Note that the time convention here implies that the input variable ut can
influence the output variable yt in the same time period. This convention is not
always used in time-series models but is important for economics data, especially
at annual frequencies.

A linear time-invariant state space representation in innovations form is given
by

zt = Fzt−1 + Gut + Ket−1

yt = Hzt + et

where zt is the unobserved underlying n dimensional state vector, F is the
state transition matrix, G, the input matrix, H, the output matrix, and K, the
Kalman gain. DSE also has some limited capabilities to work with the more
general non-innovations form

zt = Fzt−1 + Gut + Qnt

yt = Hzt + Ret

where nt is the system noise, Q, the system noise matrix, and R the output
(measurement) noise matrix.

Models are specified by setting up the arrays that define the model and
grouping them into a TSmodel object. Here is an example ARMA model with
two series, a second order AR polynomial, a first order MA polynomial and no
exogenous variable:

> AR <- array(c(1, 0.5, 0.3, 0, 0.2, 0.1, 0, 0.2, 0.05, 1, 0.5, 0.3), c(3, 2,

2))

> MA <- array(c(1, 0.2, 0, 0.1, 0, 0, 1, 0.3), c(2, 2, 2))

> arma <- ARMA(A = AR, B = MA, C = NULL)

> rm(AR, MA)

> arma

> stability(arma)

> data.arma.sim <- simulate(arma)

> arma <- l(arma, data.arma.sim)

> summary(arma)

> tfplot(data.arma.sim)

> tfplot(arma)

4

Note that arrays are filled in the order of their dimensions, which may not
be what you expect. The internal representation of TSmodels may be described
in the help for the specific model constructors, but in general it should be
considered ”opaque” and an understanding of the internal data structure should
not be necessary to use the models. The function l() evaluates the model with
the simulated data. Functions generally use default values for some arguments.
For example, the length of the simulation and the covariance of the noise can be
specified. The above example uses the default values. See the help on simulate
for more details. In the example above, arma is initially assigned an object of
class TSmodel, but it is then re-assigned the value returned by l(), which is an
object of class TSestModel. Also, many functions work with different classes of
objects, and do different things depending on the class of the argument. The
function tfplot() works with objects of class TSdata and TSestModel.

Here is an example of a state space model:

> f <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))

> h <- array(c(1, 0, 0, 1), c(2, 2))

> k <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))

> ss <- SS(F = f, H = h, K = k)

> print(ss)

> stability(ss)

> data.ss.sim <- simulate(ss)

> ss <- l(ss, data.ss.sim)

> summary(ss)

> tfplot(ss)

Data which has been generated with simulate is a TSdata object and can be
used with estimation routines. This provides a convenient way to generate data
for estimation algorithms, but remember that estimation will not necessarily get
back to the model you start with, since there are equivalent representations (see
Gilbert, 1993). However, a good estimate will get close to the likelihood and
predictions of the original model.

Here is an example of changing between state space and ARMA representa-
tions using the models defined in the previous example:

> ss.from.arma <- l(toSS(arma), data.arma.sim)

> arma.from.ss <- l(toARMA(ss), data.ss.sim)

> summary(ss.from.arma)

> summary(arma)

> summary(arma.from.ss)

> summary(ss)

> stability(arma)

> stability(ss.from.arma)

The function roots() is used by stability() and can be used by itself to re-
turn the roots but not evaluate their magnitude 1. When their arguments are

1By default the roots of an ARMA model are calculated by converting the model to state

5

TSmodels the functions toSS() and toARMA() return objects of class TSmodel
which are not assigned to a variable in the above example, but used in the eval-
uation of l(). The models are returned as part of the TSestModel returned by
l().

For state space models there is often interest in the underlying state series.
These can be extracted from an estimated model with the function state.

> tfplot(state(ss))

For an innovations form model the state is defined as an expectation given
past information, so the Kalman filter estimates the state exactly. For an non-
innovations form model the filter and smoother give slightly different estimates.
(These are often called one-sided and two-sided filters in the economics liter-
ature.) An innovations form model would usually be specified based on some
additional information about the structure of the system, typically a physical
understanding of the system in engineering, or some theory in economics. In
the absence of this, an arbitary technique is to use a Cholesky decomposition
to convert an innovations form model to an non-innovations form model.

The filter values are automatically returned by l() but, because of the addi-
tional time and space requirements, the smoother values are not. The smoother
is run separately by the function smoother().

> ssc <- toSSChol(ss)

> ssc <- smoother(ssc)

> tfplot(state(ssc, filter = TRUE))

> tfplot(state(ssc, smoother = TRUE))

These can be compared more easily with

> tfplot(state(ssc, smoother = TRUE), state(ssc, filter = TRUE))

The term state estimate is well established, but these should not be confused
with model parameter estimates. The error in the model parameter estimates
converges to zero as the length of the series increase to infinity (with good
estimators and assuming estimation assumptions are satisfied). State estimation
errors never converge to zero, and some authors prefer the term state prediction
because of this. The state tracking error can also be extracted from an non-
innovations form model.

1.3 Model Estimation

The example data eg1.DSE.data and egJofF.1dec93.data are available with DSE
and are used in examples in this section.

To estimate an AR model with the default number of lags:

space form, for reasons explained in Gilbert (2000). By specifying by.poly=T the method can
be changed to use an expansion of the polynomial determinant.

6

> model.eg1.ls <- estVARXls(trimNA(eg1.DSE.data))

In this example trimNA removes NA padding from the ends of the data,
since the estimation method cannot handle missing values. This padding may
not be present, depending on how the data was retrieved. This data is highly
correlated and highly parameterized models result in a degenerate covariance
matrix. When this happens a warning is produced in this and other examples.

It is also possible to select a subsample of the data:

> subsample.data <- tfwindow(eg1.DSE.data, start = c(1972, 1), end = c(1992, 12),

warn = FALSE)

This creates a new variable with data starting in January 1972 and ending
in December 1992. The R function window also usually works, however the
function tfwindow is typically used in DSE and this guide because of some
programming advantages. The argument warn=FALSE prevents some warning
messages from being printed. For example, when the specified start or end date
corresponds to the start or end date of the data, then the default warn=TRUE
results in a warning that the sample has not been truncated.

Various functions can be applied to the estimation result

> summary(model.eg1.ls)

> print(model.eg1.ls)

> tfplot(model.eg1.ls)

> checkResiduals(model.eg1.ls)

Other estimation techniques are available

> model.eg1.ar <- estVARXar(trimNA(eg1.DSE.data))

> model.eg1.ss <- estSSfromVARX(trimNA(eg1.DSE.data))

> model.eg1.bft <- bft(trimNA(eg1.DSE.data))

> model.eg1.mle <- estMaxLik(estVARXls(trimNA(eg1.DSE.data), max.lag = 1))

tfplot can put multiple similar objects on a plot.

> tfplot(model.eg1.ls, model.eg1.ar)

> tfplot(model.eg1.ls, model.eg1.ar, start = c(1990, 1))

Most of the estimation techniques have several optional parameters which
control the estimation. Consult the help for the individual functions. estMax-
Lik extracts data from a TSestModel and uses the model structure and initial
parameter values for the estimation. (Note: Maximum likelihood estimation
can be very slow and may not converge in the default number of iterations. It
also tends to over fit unless used with care, so that out-of-sample performance
is not good. I do not generally recommend it, although it does offer possibilities
for constraining the structure in specific ways (e.g. fixing some model matrix
entries to zero or one). You might consider comparing mle to other estimation
techniques using functions discussed in the following sections.) In the above

7

estMaxLik example a smaller (one lag) model is used. Be prepared for the
estimation to take some time when models have a large number of parameters.

An important point to note is that the one-step-ahead predictions and related
statistics returned by these estimation techniques are calculated by evaluating
l(model, data) as the final step after the model has been estimated. This can
give different results than might be expected using the estimation residuals,
particularly with respect to initial condition effects. (For stable models initial
condition effects should not be too important. If they are an important factor
check the documentation for specific models regarding the specification of initial
conditions.)

Also remember when estimating a model that, if you want to predict future
values of a variable, it will need to be an output in the TSdata object.

For the next example a four variable subset of the data in egJofF.1dec93.data
will be used. This subset is extracted by

> eg4.DSE.data <- egJofF.1dec93.data

> outputData(eg4.DSE.data) <- outputData(eg4.DSE.data, series = c(1, 2, 6, 7))

which selects the 1st, 2nd, 6th, and 7th series of the output data. The
following uses the currently preferred automatic estimation procedure:

> model.eg4.bb <- estBlackBox(trimNA(eg4.DSE.data), max.lag = 3)

An optional argument verbose=F will make the function print much less
detail about the steps of the procedure. The optional argument, max.lag=3,
specifies the maximum lag which should be considered. The default max.lag=12
may take a very long time for models with several variables. estBlackBox cur-
rently uses estBlackBox4, also known as bft(..., standardize=T) which is called
the brute force technique in Gilbert (1995).

The traditional model information criteria tests can be performed to compare
models:

> informationTests(model.eg1.ar, model.eg1.ss)

An arbitrary number of models can be supplied. The generated table lists
several information criteria. For state space models the calculations are done
with both the number of parameters (the number of unfixed entries in the model
arrays) and the theoretical parameter space dimension. See Gilbert (1993, 1995)
for a more extensive discussion of this subject.

Note that converting among representations produces input-output equiv-
alent models, so that predictions, prediction errors, and any statistics calcu-
lated from these, will be the same for the models. However, different estima-
tion techniques produce different models with different predictions. So, est-
VARXls(data) and toSS(estVARXls(data)) will produce equivalent models and
estSSMittnik(data) and toARMA(estSSMittnik(data)) will produce equivalent
models, but the first two will not be equivalent to the second two.

8

