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The user of this software has the right to use, reproduce and distribute it.
The Bank of Canada makes no warranties with respect to the software or its
fitness for any particular purpose. The software is distributed by the Bank of
Canada solely on an ”as is” basis. By using the software, user agrees to accept
the entire risk of using this software.

The software documented in this guide is available on the the Comprehensive
R Archive Network (CRAN) <http://cran.r-project.org> or at <http://www.bank-
banque-canada.ca/pgilbert>. Please check for new versions.

Parts of this Guide are generated automatically using the R Sweave utilities
(see F. Leisch, R News v2/3, Dec. 2002, p 28-31), so the examples should all
work, but the formatting of examples may have resulted in some line trunca-
tion. For each package, the text and examples in this guide are included in the
distributed package subdirectory inst/doc/*.Stex. Please check that file if there
is any doubt about the example text. Also, screen graphics are different (often
with better sized fonts) than those generated in the text. This is a problem that
I hope to fix sometime.

I regularly use the code with R on Linux and sometimes on Solaris. There
is an extensive set of tests which is run on all R test platforms for packages
distributed on CRAN. Please report any errors you find. In the past, the code
has also worked with Splus 3.3 on Solaris, but I no longer check this. There are
known problems with Splus 5.

Caveat: This software is the by-product of ongoing research. It is not a
commercial product. Limited effort is put into maintaining the documentation
(but the R tools do automatically check that all functions and their arguments
are documented in the help system, and all examples work). This guide may
have references to functions which do not yet work and/or have not been dis-
tributed, and the documentation may not correspond to the current capabilities
of the functions (but please report these problems if you find them). While the
software does many standard time-series things, it is really intended for doing
some non-standard things. The main difference between DSE and most widely
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available software is that DSE is designed for working with multivariate time
series and for studying estimation techniques and forecasting models.

Constructive suggestions and comments are welcomed. I can be reached at
<pgilbert @ bank-banque-canada. ca> or by phone at (613) 782-7346.

The Users Guide is divided into sections corresponding to the pack-
ages in the dse and dseplus bundles. A copy of the section for each
package is also included with the package.
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Preamble

1 Introduction to DSE

DSE was originally designed with linear, time-invariant auto-regressive moving-
average (ARMA) models and state-space (SS) models in mind. These remain
the most well developed models and provide the basis for most of the examples
in this guide. However, DSE uses object oriented methods for studying new
estimation techniques and other kinds of time series models. Methods are im-
plemented for studying Troll (Intex Solutions, Inc.) models (currently broken)
and some neural net architectures are being explored. These provide examples
for implementing new model objects and estimation methods. Users are encour-
aged to consider specific representations used in this guide as examples in the
context of DSE’s broader objectives.

In order to provide examples, implemented estimation techniques and meth-
ods for converting among various representations of time series models are used.
Many functions for the usual diagnostics which are preformed with time series
data and models are included as well. Additional information on specific func-
tions is available through the help facility. For details of some of the underlying
theory of ARMA and SS model equivalence and examples of some of the ca-
pabilities of the DSE packages see Gilbert (1993). For examples where DSE is
used to evaluate estimation methods see Gilbert (1995). Examples of the use
of several functions are illustrated in the files in the demo subdirectories. (In R
see demo() )

2 Getting Started

These packages works with recent versions of the R language (Ihaka and Gen-
tleman, 1996) <http://cran.r-project.org> and once worked with S, but that is
no longer tested. Remaining references to S and Splus in this document may no
longer be accurate. Italics will be used to indicate functions and objects, and
() is frequently be added to function names to help distinguish them as such.
Anything entered after a # is a comment in R. Most examples in this guide
show only the user input, not the computer output.

Earlier versions of this guide explained certain aspects of R/S in order to
make DSE accessible to users unfamiliar with the language. Knowledge of the
S or R language is extremely useful, but there are now a large number of easily
available documents for beginners, and most users are already familiar with R,
so that material is largely eliminated from this guide.

If DSE is not installed on your system, please use the usual R package
installation procedures. Once R is started the DSE packages must be made
available.

library(”dse1”)
or
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library(”dse2”)
The dse2 package requires dse1 and it will be loaded automatically. On a

system with limited resources it may be better to load only dse1 when dse2
is not needed, but otherwise it is generally better to simply load dse2. Other
required packages will be automatically attached. Consider putting a line in
your .First function to automatically attach the packages each time you start
an R session.

Descriptions of functions and objects are available in the R help system once
the packages are installed.

3 General Outline of DSE Objects and Methods

DSE implements three main classes of objects: TSdata, TSmodel, and TSest-
Model. These are respectively, representations of data, models, and models with
data and estimation information.

TSdata is an object which contains a (multivariate) time series object called
output and optionally another called input. Methods for defining the general
version of this class of object are described in the next section and more details
are provided in the help for TSdata. Input and output correspond to what are
often labelled x and y in econometrics and time series discussions of ARMA mod-
els. These are sometimes called exogenous and endogenous variables, though
those terms are often not correct for these models. Statistically, output is the
variable which is modelled and input is the conditioning data. From a practical
and computational point of view, the model forecasts output data and input
data must always be supplied. In particular, to forecasts multiple periods into
the future requires supplying input data for the future so that the model can
calculate outputs. The terms input and output are commonly used in the en-
gineering literature, and often correspond to a control variable and the output
from a physical system. However, the causal interpretation in this context is not
always appropriate for other uses of time series models. In addition, even when
a causal direction is known or assumed, it is not always desirable to define the
exogenous variable as an input. If the model is to give forecasts into the future
then it may be better to define exogenous variables as outputs and let the model
forecast them, unless better forecasts of the exogenous variables are available
from other sources. One context in which an input variable is important is to
examine policy scenarios. In this context the policy variable is defined as the
input and forecasts are produced conditioned on different assumptions about
the policy.

TSmodel objects are models which are arranged to use TSdata. These ob-
jects always have another specific class indicating the type of model. The ARMA
and SS constructor methods for ARMA TSmodels and state-space TSmodels are
described in a section below. Other specific classes of TSmodels can be defined
and many of the methods in DSE will work with these new models, as long as
they use TSdata and have a few important methods implemented. More details
on defining other classes of models are given in another section of this guide.
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Details on the representation of models are provided in the help for TSmodel
and the help for specific model constructors.

TSestModel objects are objects which contain TSdata, a TSmodel, and some
statistical information generated by l(model, data). The l() method originally
meant likelihood, but the method returns the one-step-ahead predictions and
other information based on those predictions. Methods for studying one-step-
ahead model forecasts extract the predictions from these objects. Other methods
treat TSestModel objects as a simple way to group together a model and data.
For example, methods for studying multi-step forecasts need to generate the
forecasts, so they do not use the predictions in the TSestModel object. More
detail about TSestModel objects is available in the help system.

The default method for TSdata() constructs a TSdata object, as will be
described in the next section. The generic methods TSmodel() and TSdata()
can also be used to extract the TSmodel or TSdata object from another object
(such as a TSestModel).

The functions in DSE can be used by starting with data and estimating a
model, or by starting with a model and producing simulated data. The section
on TSdata starts with data, but it would be equally possible to start with models
as described in the sections on ARMA and State-Space TSmodels.

dse Bundle

4 tframe Functions

The functions in this package are made available with

> library("tframe")

As of R-2.1.0 the code from the vignette that generates this guide can be
loaded into an editor with edit(vignette(”tframe”)). This uses the default editor,
which can be changed using options(). Also, it should be possible to view the
pdf version of the guide for this package with print(vignette(”tframe”)) and the
guide for the dse bundle with print(vignette(”dse-guide”)).

The tframe functions are programming utilities used by other packages.
Some functions, such as tfplot, are called directly by users. These will be de-
scribed adequately in guides for the other packages. For information about using
the tframe functions for programming, see the help documention instead of this
User’s Guide.

5 dse1 Guide

The functions in this package are made available with

> library("dse1")
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As of R-2.1.0 the code from the vignette that generates this guide can be
loaded into an editor with edit(vignette(”dse1”)). This uses the default editor,
which can be changed using options(). Also, it should be possible to view the
pdf version of the guide for this package with print(vignette(”dse1”)) and the
guide for the dse bundle with print(vignette(”dse-guide”)).

Several data sets are included with DSE and will be used in examples in this
guide. The names of the data sets can be listed with

data(package=”dse1”)
They are made available by

> data(eg1.DSE.data, package = "dse1")

> data(egJofF.1dec93.data, package = "dse1")

5.1 Defining a TSdata Structure

This section describes how to construct a TSdata structure if you have other
data you would like to use. Section 10 discusses adding new kinds of TSdata
classes. Some installations may have an online database and it may be possible
to connect directly to this data. See the padi and dsepadi packages as on one
possibility for doing this.

For many people the situation will be that the data is in some ASCII file.
This can be loaded into session variables with a number of standard R functions,
the most useful of which are probably scan() and read.table(). Following is an
example which reads data from an ASCII file called ”eg1.dat” and puts it in the
variable called eg1.DSE.data (which is also one of the available data sets). The
file is in the dse1 package directory otherdata. It file has five columns of numbers
and 364 rows. The first column just enumerates the rows and is discarded.

> fileName <- system.file("otherdata", "eg1.dat", package = "dse1")

> eg1.DSE.data <- t(matrix(scan(fileName), 5, 364))[,

2:5]

This matrix can be used to form a TSdata object by

> eg1.DSE.data <- TSdata(input = eg1.DSE.data[, 1,

drop = F], output = eg1.DSE.data[, 2:4, drop = F])

The matrix and the resulting TSdata object do not have a good time scale
associated with points. A better time scale can be added by

> eg1.DSE.data <- tframed(eg1.DSE.data, list(start = c(1961,

3), frequency = 12))

There are several different possibilities for representing time in R objects.
The most common is the ts matrix object, which is used in the above default
tframed method. (ts is a class in R. In S it is not a class of object, but the default
representation of time series which existed before classes were introduced.) The
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above tframed method and ts can also be used directly on the matrix before the
TSdata object is formed. However, [ , ] in Splus results in the time scale being
lost, so it would need to be reassigned to the input and output matrices of the
TSdata object. The methods from the tframe package are used extensively in the
DSE packages because they extend to other time representations in addition to
ts, and provide a mechanism for extending methods to other objects like TSdata
and TSmodels.

Names can be given to the series with

> seriesNamesInput(eg1.DSE.data) <- "R90"

> seriesNamesOutput(eg1.DSE.data) <- c("M1", "GDPl2",

"CPI")

Setting the series names is not necessary but many functions can use the
names if they are available. (This overlaps somewhat with dimnames, but is
the preferred method in DSE as it extends to data which is not a matrix.)
The TSdata object with elements input and output is the structure which the
functions in DSE expect. More details on this structure are available in the
help for TSdata. The input and output elements can be defined in a number of
different ways and new representations can be fairly easily added. For example,
when the data is on a remote database as used by TSPADI, the R object is just
a description of where to get the data, rather than the data itself. In this case
the freeze() function is used automatically by many functions in DSE to get a
copy of the data when calculations are to be performed.

Once data is available a model can be estimated:

> model1 <- estVARXls(eg1.DSE.data)

> model2 <- estSSMittnik(eg1.DSE.data, n = 4)

(Note: these models are not the same as those reported in Gilbert,1993.
In that paper a variant of estVARXar was used.) The scale of the series in
eg1.DSE.data are very different, with the result that the covariance matrix of
the residuals from the estimation is nearly singular. This is detected during
the calculation of residual statistics. Statistics are then calculated using only
the non-degenerate subspace and a warning message is printed. A better model
might be obtained if the data were scaled differently.

Information about the estimated models can be displayed, for example:

> summary(model1)

> summary(model2)

> model1

> model2

> stability(model1)

> stability(model2)

> informationTests(model1, model2)

Typing the name of an object in R results in the object being printed. To
display plots use:
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> tfplot(model1)

> tfplot(model2)

> tfplot(eg1.DSE.data)

> checkResiduals(model1)

> checkResiduals(model2)

The function tfplot produces separate graphs for each series. The first tfplot
command produces this graphic
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Note that initial conditions have been set to zero, but the effect of this dies
out quickly. (Also note that the graph labels may be slightly different depending
on which version DSE and of R you are using.)

5.2 ARMA and State Space TSmodels

Specifying ARMA and SS models is described below, but first their definition
is outlined. The linear time-invariant ARMA representation is

A(L)yt = B(L)et + C(L)ut (1)

where yt is a p dimensional vector of observed output variables, ut is an m
dimensional vector of input variables, et is a p dimensional unobserved distur-
bance vector process and A, B and C are matrices of the appropriate dimension
in the lag (back shift) operator L. VAR models can be thought of as a special
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case of ARMA models with B(L)=I. ARIMA models are also a special case of
ARMA models.

Note that the time convention here implies that the input variable ut can
influence the output variable yt in the same time period. This convention is not
always used in time-series models but is important for economics data, especially
at annual frequencies.

A linear time-invariant state space representation in innovations form is given
by

zt = Fzt−1 + Gut + Ket−1

yt = Hzt + et

where zt is the unobserved underlying n dimensional state vector, F is the
state transition matrix, G, the input matrix, H, the output matrix, and K, the
Kalman gain. DSE also has some limited capabilities to work with the more
general non-innovations form

zt = Fzt−1 + Gut + Qnt

yt = Hzt + Ret

where nt is the system noise, Q, the system noise matrix, and R the output
(measurement) noise matrix.

Models are specified by setting up the arrays that define the model and
grouping them into a TSmodel object. Here is an example ARMA model with
two series, a second order AR polynomial, a first order MA polynomial and no
exogenous variable:

> AR <- array(c(1, 0.5, 0.3, 0, 0.2, 0.1, 0, 0.2, 0.05, 1, 0.5, 0.3), c(3, 2,

2))

> MA <- array(c(1, 0.2, 0, 0.1, 0, 0, 1, 0.3), c(2, 2, 2))

> arma <- ARMA(A = AR, B = MA, C = NULL)

> rm(AR, MA)

> arma

> stability(arma)

> data.arma.sim <- simulate(arma)

> arma <- l(arma, data.arma.sim)

> summary(arma)

> tfplot(data.arma.sim)

> tfplot(arma)

Note that arrays are filled in the order of their dimensions, which may not
be what you expect. The internal representation of TSmodels may be described
in the help for the specific model constructors, but in general it should be
considered ”opaque” and an understanding of the internal data structure should
not be necessary to use the models. The function l() evaluates the model with
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the simulated data. Functions generally use default values for some arguments.
For example, the length of the simulation and the covariance of the noise can be
specified. The above example uses the default values. See the help on simulate
for more details. In the example above, arma is initially assigned an object of
class TSmodel, but it is then re-assigned the value returned by l(), which is an
object of class TSestModel. Also, many functions work with different classes of
objects, and do different things depending on the class of the argument. The
function tfplot() works with objects of class TSdata and TSestModel.

Here is an example of a state space model:

> f <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))

> h <- array(c(1, 0, 0, 1), c(2, 2))

> k <- array(c(0.5, 0.3, 0.2, 0.4), c(2, 2))

> ss <- SS(F = f, H = h, K = k)

> print(ss)

> stability(ss)

> data.ss.sim <- simulate(ss)

> ss <- l(ss, data.ss.sim)

> summary(ss)

> tfplot(ss)

Data which has been generated with simulate is a TSdata object and can be
used with estimation routines. This provides a convenient way to generate data
for estimation algorithms, but remember that estimation will not necessarily get
back to the model you start with, since there are equivalent representations (see
Gilbert, 1993). However, a good estimate will get close to the likelihood and
predictions of the original model.

Here is an example of changing between state space and ARMA representa-
tions using the models defined in the previous example:

> ss.from.arma <- l(toSS(arma), data.arma.sim)

> arma.from.ss <- l(toARMA(ss), data.ss.sim)

> summary(ss.from.arma)

> summary(arma)

> summary(arma.from.ss)

> summary(ss)

> stability(arma)

> stability(ss.from.arma)

The function roots() is used by stability() and can be used by itself to re-
turn the roots but not evaluate their magnitude 1. When their arguments are
TSmodels the functions toSS() and toARMA() return objects of class TSmodel
which are not assigned to a variable in the above example, but used in the eval-
uation of l(). The models are returned as part of the TSestModel returned by
l().

1By default the roots of an ARMA model are calculated by converting the model to state
space form, for reasons explained in Gilbert (2000). By specifying by.poly=T the method can
be changed to use an expansion of the polynomial determinant.
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For state space models there is often interest in the underlying state series.
These can be extracted from an estimated model with the function state.

> tfplot(state(ss))

For an innovations form model the state is defined as an expectation given
past information, so the Kalman filter estimates the state exactly. For an non-
innovations form model the filter and smoother give slightly different estimates.
(These are often called one-sided and two-sided filters in the economics liter-
ature.) An innovations form model would usually be specified based on some
additional information about the structure of the system, typically a physical
understanding of the system in engineering, or some theory in economics. In
the absence of this, an arbitary technique is to use a Cholesky decomposition
to convert an innovations form model to an non-innovations form model.

The filter values are automatically returned by l() but, because of the addi-
tional time and space requirements, the smoother values are not. The smoother
is run separately by the function smoother().

> ssc <- toSSChol(ss)

> ssc <- smoother(ssc)

> tfplot(state(ssc, filter = TRUE))

> tfplot(state(ssc, smoother = TRUE))

These can be compared more easily with

> tfplot(state(ssc, smoother = TRUE), state(ssc, filter = TRUE))

The term state estimate is well established, but these should not be confused
with model parameter estimates. The error in the model parameter estimates
converges to zero as the length of the series increase to infinity (with good
estimators and assuming estimation assumptions are satisfied). State estimation
errors never converge to zero, and some authors prefer the term state prediction
because of this. The state tracking error can also be extracted from an non-
innovations form model.

5.3 Model Estimation

The example data eg1.DSE.data and egJofF.1dec93.data are available with DSE
and are used in examples in this section.

To estimate an AR model with the default number of lags:

> model.eg1.ls <- estVARXls(trimNA(eg1.DSE.data))

In this example trimNA removes NA padding from the ends of the data,
since the estimation method cannot handle missing values. This padding may
not be present, depending on how the data was retrieved. This data is highly
correlated and highly parameterized models result in a degenerate covariance
matrix. When this happens a warning is produced in this and other examples.

It is also possible to select a subsample of the data:
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> subsample.data <- tfwindow(eg1.DSE.data, start = c(1972, 1), end = c(1992, 12),

warn = FALSE)

This creates a new variable with data starting in January 1972 and ending
in December 1992. The R function window also usually works, however the
function tfwindow is typically used in DSE and this guide because of some
programming advantages. The argument warn=FALSE prevents some warning
messages from being printed. For example, when the specified start or end date
corresponds to the start or end date of the data, then the default warn=TRUE
results in a warning that the sample has not been truncated.

Various functions can be applied to the estimation result

> summary(model.eg1.ls)

> print(model.eg1.ls)

> tfplot(model.eg1.ls)

> checkResiduals(model.eg1.ls)

Other estimation techniques are available

> model.eg1.ar <- estVARXar(trimNA(eg1.DSE.data))

> model.eg1.ss <- estSSfromVARX(trimNA(eg1.DSE.data))

> model.eg1.bft <- bft(trimNA(eg1.DSE.data))

> model.eg1.mle <- estMaxLik(estVARXls(trimNA(eg1.DSE.data), max.lag = 1))

tfplot can put multiple similar objects on a plot.

> tfplot(model.eg1.ls, model.eg1.ar)

> tfplot(model.eg1.ls, model.eg1.ar, start = c(1990, 1))

Most of the estimation techniques have several optional parameters which
control the estimation. Consult the help for the individual functions. estMax-
Lik extracts data from a TSestModel and uses the model structure and initial
parameter values for the estimation. (Note: Maximum likelihood estimation
can be very slow and may not converge in the default number of iterations. It
also tends to over fit unless used with care, so that out-of-sample performance
is not good. I do not generally recommend it, although it does offer possibilities
for constraining the structure in specific ways (e.g. fixing some model matrix
entries to zero or one). You might consider comparing mle to other estimation
techniques using functions discussed in the following sections.) In the above
estMaxLik example a smaller (one lag) model is used. Be prepared for the
estimation to take some time when models have a large number of parameters.

An important point to note is that the one-step-ahead predictions and related
statistics returned by these estimation techniques are calculated by evaluating
l(model, data) as the final step after the model has been estimated. This can
give different results than might be expected using the estimation residuals,
particularly with respect to initial condition effects. (For stable models initial
condition effects should not be too important. If they are an important factor
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check the documentation for specific models regarding the specification of initial
conditions.)

Also remember when estimating a model that, if you want to predict future
values of a variable, it will need to be an output in the TSdata object.

For the next example a four variable subset of the data in egJofF.1dec93.data
will be used. This subset is extracted by

> eg4.DSE.data <- egJofF.1dec93.data

> outputData(eg4.DSE.data) <- outputData(eg4.DSE.data, series = c(1, 2, 6, 7))

which selects the 1st, 2nd, 6th, and 7th series of the output data. The
following uses the currently preferred automatic estimation procedure:

> model.eg4.bb <- estBlackBox(trimNA(eg4.DSE.data), max.lag = 3)

An optional argument verbose=F will make the function print much less
detail about the steps of the procedure. The optional argument, max.lag=3,
specifies the maximum lag which should be considered. The default max.lag=12
may take a very long time for models with several variables. estBlackBox cur-
rently uses estBlackBox4, also known as bft(..., standardize=T) which is called
the brute force technique in Gilbert (1995).

The traditional model information criteria tests can be performed to compare
models:

> informationTests(model.eg1.ar, model.eg1.ss)

An arbitrary number of models can be supplied. The generated table lists
several information criteria. For state space models the calculations are done
with both the number of parameters (the number of unfixed entries in the model
arrays) and the theoretical parameter space dimension. See Gilbert (1993, 1995)
for a more extensive discussion of this subject.

Note that converting among representations produces input-output equiv-
alent models, so that predictions, prediction errors, and any statistics calcu-
lated from these, will be the same for the models. However, different estima-
tion techniques produce different models with different predictions. So, est-
VARXls(data) and toSS(estVARXls(data)) will produce equivalent models and
estSSMittnik(data) and toARMA(estSSMittnik(data)) will produce equivalent
models, but the first two will not be equivalent to the second two.

dse2 Guide

In R, the functions in this package are made available with

> library("dse2")
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As of R-2.1.0 the code from the vignette that generates this guide can be
loaded into an editor with edit(vignette(”dse2”)). This uses the default editor,
which can be changed using options(). Also, it should be possible to view the
pdf version of the guide for this package with print(vignette(”dse2”)) and the
guide for the dse bundle with print(vignette(”dse-guide”)).

The next code lines are here to initialize results from examples in dse1 that
are used in dse2 examples.

> data(egJofF.1dec93.data, package = "dse1")

> eg4.DSE.data <- egJofF.1dec93.data

> eg4.DSE.model <- estVARXls(eg4.DSE.data)

> outputData(eg4.DSE.data) <- outputData(eg4.DSE.data, series = c(1,

2, 6, 7))

> eg4.DSE.model <- estVARXls(eg4.DSE.data)

> new.data <- TSdata(input = ts(rbind(inputData(eg4.DSE.data),

matrix(0.1, 10, 1)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)),

output = ts(rbind(outputData(eg4.DSE.data), matrix(0.3, 5,

4)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)))

> if (require("padi") & require("dsepadi")) eg4.DSE.data.names <- TSPADIdata(input = "B14017",

input.transforms = "diff", input.names = "R90", output = c("P100000",

"V2036138", "V2062811", "v37426"), output.transforms = c("percentChange",

"percentChange", "percentChange", "percentChange"), output.names = c("CPI",

"GDP", "employment", "PFX"), server = "ets")

6 Forecasting

The TSestModel object returned by estimation is a TSmodel with TSdata and
some estimation information. To use different data, the new data needs to be in
a variable which is a TSdata object. For example, suppose a model is estimated
by

> eg4.DSE.model <- estVARXls(eg4.DSE.data)

and suppose new data becomes available. If you have direct database access
this might be done with something like

> if (require("padi") && checkPADIserver("ets")) new.data <- freeze(eg4.DSE.data.names)

If database access is not available then, for example purposes, new.data can
be generated with

> new.data <- TSdata(input = ts(rbind(inputData(eg4.DSE.data),

matrix(0.1, 10, 1)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)),

output = ts(rbind(outputData(eg4.DSE.data), matrix(0.3, 5,

4)), start = start(eg4.DSE.data), frequency = frequency(eg4.DSE.data)))
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This simply appends ten observations of 0.1 onto the input and five obser-
vations of 0.3 onto the outputs. The function ts assigns time series attributes
which are taken from eg4.DSE.data. The model can be evaluated with the new
data by

> z <- l(TSmodel(eg4.DSE.model), trimNA(new.data))

Recall that TSmodel( ) extracts the TSmodel from the TSestModel. If database
access is available the above can be done in one step:

> if (require("padi") && checkPADIserver("ets")) z <- l(TSmodel(eg4.DSE.model),

trimNA(freeze(eg4.DSE.data.names)))

trimNA on a TSdata object removes NAs from the ends and truncates both
input and output to the same sub-sample. l() does not easily give forecasts
beyond the period where all data is available. (Optional arguments can be used
to achieve this, but the function forecast is more convenient.)

Forecasts are conditioned on input so it must be supplied for periods for
which forecasts are to be calculated. (That is, input is not forecast by the
model.) When more data is available for input than for output, as in new.data
generated above, then forecast() will use input data and produce a forecast of
output.

> z <- forecast(TSmodel(eg4.DSE.model), new.data)

The input data can also be specified as a separate argument. For example,
the same result will be achieved with

> z <- forecast(TSmodel(eg4.DSE.model), trimNA(new.data), conditioning.inputs = inputData(new.data))

The conditioning.inputs override input in the TSdata supplied in the second
argument to the function.

To see plots of the forecasts use

> tfplot(z, start = c(1990, 6))
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Sometimes a forecast for input data comes from another source, perhaps
another model. Rather than construct the conditioning.inputs as described
above, another way to combine this forecast with the historical input data is to
use the argument conditioning.inputs.forecasts:

> z <- forecast(eg4.DSE.model, conditioning.inputs.forecasts = matrix(0.5,

6, 1))

This would use the input data from eg4.DSE.model and append 6 periods of
0.5 to it.

> if (require("padi") && checkPADIserver("ets")) z <- forecast(TSmodel(eg4.DSE.model),

freeze(eg4.DSE.data.names), conditioning.inputs.forecasts = matrix(0.5,

6, 1))

retrieves new data and appends 6 periods of 0.5 to the input series
Some generic functions which work with the structure returned by forecast:

> summary(z)

> print(z)

> tfplot(z)

> tfplot(z, start = c(1990, 1))
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If you actually want the numbers from the forecast they can be extracted
with

> forecasts(z)[[1]]

The [[1]] indicates the first forecast (in this example there is only one, but
the same structures are used for other purposes discussed below. To see a subset
of the data use tfwindow :

> tfwindow(forecasts(z)[[1]], start = c(1994, 1), warn = FALSE)

This prints values starting in the first period of 1994.
The horizon for the forecast is determined by the available input data (condi-

tioning.inputs or conditioning.inputs.forecasts). If neither of these are supplied
then the argument horizon, which has a default value of 36, is used to repli-
cate the last period of data to the indicated horizon. For models with no input
variables the argument horizon controls the length of the forecast.

7 Evaluating Forecasting Models

How well does the model do at forecasting? The first thing to check is that model
forecasts actually track the data more or less. The generic function tfplot()
works with results from the following functions. Recall that the function l()
applies a TSmodel to TSdata and returns a TSestModel which includes one-step
ahead forecasts. It can be used with any TSmodel and TSdata of corresponding
dimension. So

> z <- l(TSmodel(eg4.DSE.model), new.data)

applies the previously estimated model to the new data, and

> tfplot(z)

would plot the one-step ahead forecasts. The function forecast discussed in
the previous section calculates multi-step ahead forecasts from the end of the
data. For evaluating forecasting models it is more useful to calculate forecasts
within the sample of available data. This is for two reasons. First, the forecast
can be compared against the actual outcome. Second, if the model has an input
then the forecast is conditioned on it. If data is available then the actual input
data can be used. (But beware that this is not a true test of the model’s ability
to forecast if the whole sample has been used to estimate the model.) There
are two methods to calculate multi-step ahead forecasts within the data sample.
featherForecasts produces multiple period ahead forecasts beginning at specified
periods. The name comes from the fact that the graph sometimes looks like a
feather (although it will not if the forecasts are good).

> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data)

> tfplot(z)
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In the example above the forecasts begin by default every tenth period. In
the following example the forecasts begin at periods 20, 50, 60, 70 and 80 and
forecast for 150 periods.

> z <- featherForecasts(TSmodel(eg4.DSE.model), new.data, from.periods = c(20,

50, 60, 70, 80), horizon = 150)

The plot looks like this:

> tfplot(z)
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The second method, horizonForecasts, produces forecasts from every period
for specified horizons.

> z <- horizonForecasts(TSmodel(eg4.DSE.model), new.data, horizons = c(1,

3, 6))

produces forecasts 1, 3 and 6 steps ahead. The plot looks like this:

> tfplot(z)
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The result is aligned so that the forecast for a particular period is plotted
against the actual outcome for that period. Thus, in the last example, the plot
will show the data for each period along with the forecast produced from 1, 3,
and 6 periods prior. This plot is particularly useful for illustrating when models
do well and when they do not. A common experience with economic data is
that models do well during periods of expansion and contraction, but miss the
turning points. The forecast covariance, to be discussed next, averages over all
periods. It is quite possible that a model can indicate turning points well but
not do so well on average, and thus be overlooked if only forecast covariance is
considered. It is always useful to keep in mind the intended use of the model.

The numbers which generate the above plot can be extracted from the result
of horizonForecasts with forecasts(). This gives an array with the first dimen-
sion corresponding to the horizons and the time frame aligned to correspond to
the data. So forecasts(z)[2,30,] from the above example will be the prediction
made for the 30th period from 3 periods previous (the second element indicated
in horizons is 3) and forecasts(z)[3,30,] will be the prediction made for the 30th
period from 6 periods previous (horizons[3] is 6). Remember that these fore-
casts are conditioned on the supplied input data, which means that the output
variables here are forecast 1, 3 and 6 periods ahead, but true, not forecasted,
input data is used.
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If the forecasts look reasonable then examine the forecast errors more system-
atically. The following calculates the forecast covariances at different horizons.

> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data)

> tfplot(fc)

> tfplot(forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,

horizons = 1:4))

The last example calculates for horizons from 1 to 4 rather than the default
1 to 12. To see how the model forecasts relative to a zero forecast and a trend
forecast:

> fc <- forecastCov(TSmodel(eg4.DSE.model), data = eg4.DSE.data,

zero = T, trend = T)

> tfplot(fc)

This is a very useful check (and often very humbling).
You can also get out-of-sample forecast covariances. This will be discussed

in the next section.
There is not yet implemented in DSE any measure of forecast errors which

can be compared across models - inevitably the covariance of the error is smaller
for less variable series and is also affected by scaling of the series. This may just
mean that the series is easier to predict or has a different scale, not that the
forecast equation is more brilliant. MAPE may be implemented sometime.

8 Evaluating Estimation Methods

One way to test estimation techniques is to specify a ”true”model which is used
to produce simulated data and then examine how well an estimation technique
finds the true model. This is not as general as theoretical results, since it is
really only valid at the ”true” parameter values and for the sample size tested,
however, it can be illustrative and theoretical results for small samples are very
difficult to obtain. It also provides a very good cross check of the simulation and
estimation code. Also, equivalent representations may have effects which are not
yet fully appreciated in the literature. The following models from Gilbert (1995)
will be used to illustrate.

> mod1 <- ARMA(A = array(c(1, -0.25, -0.05), c(3, 1, 1)), B = array(1,

c(1, 1, 1)))

> mod2 <- ARMA(A = array(c(1, -0.8, -0.2), c(3, 1, 1)), B = array(1,

c(1, 1, 1)))

> mod3 <- ARMA(A = array(c(1, -0.06, 0.15, -0.03, 0, 0.02, 0.03,

-0.02, 0, -0.02, -0.03, -0.02, 0, -0.07, -0.05, 0.12, 1,

0.2, -0.03, -0.11, 0, -0.07, -0.03, 0.08, 0, -0.4, -0.05,

-0.66, 0, 0, 0.17, -0.18, 1, -0.11, -0.24, -0.09), c(4, 3,

3)), B = array(diag(1, 3), c(1, 3, 3)))
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mod2 has a unit root, as can be verified with roots(mod2) or stability(mod2).
The function MonteCarloSimulations runs simulate repeatedly to give many

data samples.

> z <- MonteCarloSimulations(mod1, simulation.args = list(sampleT = 100))

> tfplot(z)

> distribution(z)

Usually it is not necessary to use MonteCarloSimulations and actually save
all the simulations since the seed and other information about the random num-
ber generator (RNG) can be used to reproduce the samples. Thus functions
for testing estimation methods can produce the same samples when they are
needed.

The function EstEval simulates and then estimates models:

> e.ls.mod1 <- EstEval(mod1, replications = 100, simulation.args = list(sampleT = 100,

sd = 1), estimation = "estVARXls", estimation.args = list(max.lag = 2),

criterion = "TSmodel")

In this example simulation and estimation will be repeated 100 times with
samples of size 100 and the standard deviation of the model noise will be set
to 1. simulation.args are passed to the function simulate, which may take dif-
ferent arguments depending on the class of the model. Estimation is done with
the function estVARXls and estimation.args are passed to it. The argument
criterion specifies what should be returned from the estimation. In this case the
model is returned (An object of class TSmodel) but not additional information
as is usually returned in the object TSestModel. It is also possible to spec-
ify coef or roots to return only that specific information, but that information
can be extracted from the TSmodel as illustrated below. In general EstEval will
work with any estimation method which will take the results of simulate applied
to the supplied model and returns something that criterion can extract. That
is, if criterion(estimation(simulate(model))) returns something (with criterion
and estimation replaced by the functions you supply and model replaced by the
model you supply), then EstEval should work with your functions. This does
not mean that plots described below will necessarily work or make sense.

An optional argument rng can be specified here and in examples below. If
supplied, the RNG and seed will be set. This is useful if an experiment is to
be reproduced. Using Splus 3.2 and 3.3 the settings indicated by comments in
the examples in this section will reproduce the results in Gilbert (1995). It is
possible to generate similar random experiments in S and in R, but not using
the Splus default generator. If the argument rng above is given as

> rng = list(kind = "Wichmann-Hill", seed = c(979, 1479, 1542),

normal.kind = "Box-Muller")

then the uniform RNG is set to Wichmann-Hill, the normal transformation
is set to Box-Muller, and the initial seed is set. With the RNG set in this way
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both Splus and R will produce similar results. These settings are reset to their
previous values when the function completes. They can be set so that they do
not revert using the function

> setRNG(kind = "Wichmann-Hill", seed = c(979, 1479, 1542), normal.kind = "Box-Muller")

The argument seed is optional (and other values can be supplied but they
should be consistent with the generator). An initial seed will be generated if
it is omitted. Typically the seed should be set only when trying to reproduce
previous results.

The following uses mod2 as the true model.

> e.ls.mod2 <- EstEval(mod2, replications = 100, simulation.args = list(sampleT = 100,

sd = 1), estimation = "estVARXls", estimation.args = list(max.lag = 2),

criterion = "TSmodel")

To plot a line chart of the cumulative average of the estimated parameters
use coef to extract the parameters (coefficients) from the TSmodel:

> par(mfcol = c(2, 1))

> tfplot(coef(e.ls.mod1))

The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2))
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The straight line indicates the true value. To plot a line chart of the esti-
mated parameters use coef to extract the parameters from the TSmodel:

> par(mfcol = c(2, 1))

> tfplot(coef(e.ls.mod1), cumulate = FALSE, bounds = FALSE)

bounds controls whether or not estimated one standard deviation bounds
are plotted. The plot from mod2 looks like this:

> tfplot(coef(e.ls.mod2), cumulate = FALSE, bounds = FALSE)
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To plot the distribution of estimates:

> distribution(coef(e.ls.mod1), bandwidth = 0.2)

The plot from mod2 looks like this:

> distribution(coef(e.ls.mod2), bandwidth = 0.2)
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To plot the roots of the estimated model use roots to extract the roots from
the TSmodel:

> e.ls.mod1.roots <- roots(e.ls.mod1)

> plot(e.ls.mod1.roots)

> plot(e.ls.mod1.roots, complex.plane = F)

> plot(roots(e.ls.mod2), complex.plane = F)

> distribution(e.ls.mod1.roots, bandwidth = 0.2)

bandwidth is an argument passed to the kernel estimator used to generate
the plot. The plot from mod2 looks like this:

> distribution(roots(e.ls.mod2), bandwidth = 0.1)
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Some attention to the equivalence of different model representations is nec-
essary when evaluating estimation methods. For example, if the state space
equivalent of a VAR model is used as the true model for simulation and est-
VARXls is used for estimation then parameter estimates will be very different
from those of the state space model (but root estimates should still be similar).
Many estimation techniques may also do some model selection (such as estBlack-
Box does), so the returned models may have different numbers of parameters
and/or lags.

Evaluating models based on their forecast performance avoids some of these
difficulties. In any case, since forecasting is often the end objective, it is useful
to evaluate models directly on their forecasting performance. The function
forecastCovEstimatorsWRTtrue() evaluates estimation methods using a given
true model for simulation. It calculates the covariance of forecast errors of the
estimated models relative to the output of the true model:

> pc <- forecastCovEstimatorsWRTtrue(mod3, estimation.methods = list(estVARXls = list(max.lag = 6)),

est.replications = 2, pred.replications = 10)

The names of the elements in the list estimation.methods specify the esti-
mation methods and their value is a list of the arguments to the method. If no
arguments are required then the value should be specified as NULL. The covari-
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ance for forecasts of zero and a simple trend are also calculated. These are useful
benchmarks. est.replications controls the number of times a sample is generated
and used for estimating a model with each estimation method. pred.replications
controls how many times the forecasts from the estimated model are compared
with output from the true model. Thus the total number of simulations is
est.replications + est.replications * pred.replications, so 22 in the above exam-
ple.

A similar function is available which applies a model reduction procedure
after the estimation:

> pc.rd <- forecastCovReductionsWRTtrue(mod3, estimation.methods = list(estVARXls = list(max.lag = 3)),

est.replications = 2, pred.replications = 10)

The reduction procedure used is MittnikReducedModels.. An optional ar-
gument criteria can be specified. This controls the model selection criteria used
by the reduction technique.

It is possible to compare different estimation techniques on the basis of their
out-of-sample forecasting error with respect to a data sample. In the following
example estimation.sample controls the portion of the sample used for estima-
tion. It can be a fraction indicating a portion of the sample, or it can be an
integer in which case it will be treated as the number of periods to use for
estimation.

> data(eg1.DSE.data, package = "dse1")

> z <- outOfSample.forecastCovEstimatorsWRTdata(trimNA(eg1.DSE.data),

estimation.sample = 0.5, estimation.methods = list(estVARXar = NULL,

estVARXls = NULL), trend = T)

The plot looks like this:

> tfplot(z)
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In the example below the number of lags is limited (the default is 12 for
estBlackBox4 ) and printing of intermediate results is suppressed.

> z <- outOfSample.forecastCovEstimatorsWRTdata(trimNA(eg1.DSE.data),

estimation.sample = 0.5, estimation.methods = list(estBlackBox4 = list(max.lag = 3,

verbose = F), estVARXls = list(max.lag = 3)), trend = T,

zero = T)

> tfplot(z)

The object returned by outOfSample.forecastCovEstimatorsWRTdata() con-
tains the estimated models so it is possible to extract the models and use l, hori-
zonForecasts and featherForecasts. In the above example the model estimated
with estBlackBox4 is the first model and that estimated with estVARXls is the
second, so

> zz <- horizonForecasts(TSmodel(z, select = 1), TSdata(z), horizons = c(1,

3, 6))

would generate an object with the actual forecasts for the model estimated
with estBlackBox4 (rather than the covariance of the forecast errors) and fore-
casts(zz)[3,30,] will then be the prediction made for the 30th period from 6 (the
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third element of horizons) periods previous. The generic function horizonFore-
casts() can also be applied directly to z and the appropriate information will be
extracted to generate forecasts for all the estimated models.

9 Adding New TSdata Classes

Data used by functions in this library are objects of class TSdata. The default
methods assume that this is a list with an element output and optionally an
element input, each of which is a (multivariate) time series object. New classes
of time series can be defined and the DSE library should work as long as the
methods describe in the tframe library are implemented for the new time series
class. This usually will not require any changes to TSdata methods (or anything
else in the DSE library). The time series class tfPADIdata defined in the tframe
library is an object which does not contain data, but only a description of where
to get the data. The generic function freeze() calls freeze.tfPADIdata() which
uses the location descriptor in order to get a fixed copy of the data as a time
series matrix.

More generally, it is possible to define new specific classes of TSdata. The
TSPADIdata object described in the appendix on database interfaces is an ob-
ject of class TSdata and specific class TSPADIdata. The input and output
for this class are time series location descriptors of class tfPADIdata. Many
functions in this library require matrices for input and output in order to do
calculations. In this case they use the function freeze() before doing any cal-
culations. The method freeze.TSPADIdata() uses freeze.tfPADIdata() on each
element.

10 Adding New TSmodel Classes

Models used in the library are of class ”TSmodel”with secondary classes to indi-
cate specific types of models. The original library supported subclass ”ARMA”
and ”SS”. The current version also support subclass ”troll”. (*** The inter-
face for running troll models is broken at present. Another, more easily avail-
able example is under construction) To run models in this subclass requires
the Troll software from Intex Solutions, Inc. It also requires the TSPADI in-
terface. The main methods which will be necessary for a new class of mod-
els ”xxx” are print.xxx, is.xxx, l.xxx, simulate.xxx, seriesNamesInput.xxx, se-
riesNamesOutput.xxx, checkConsistentDimensions.xxx, and MonteCarloSimu-
lations.xxx. Also, the method to.xxx is useful for converting models from ex-
isting classes to this new class where possible. Models should inherit from
TSmodel.

The troll class of models is fairly interesting from a programming perspec-
tive, since the data is not native to S/R and the models are not run within S/R.
One reason for wanting to do this is to use all of the other tools in the library
to analyze models which have already been built and are running in other envi-
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ronments. Troll has very good algorithms for running ”forward looking models”
which are currently popular in economics. The tools in the DSE library (e.g.
functions for analyzing forecasting properties) can be used as if the troll models
were run directly in S/R, even though they are actually run with completely
separate software.

The troll TSmodels provide an example of how to implement additional
classes of models.

11 Appendix I: Mini-Reference

Following is a short list of some of the functions. The online help contains more
details on all functions, while the guides for each package contain more complete
descriptions.

OBJECTS

• ARMA - define an ARMA TSmodel

• SS - define a state-space TSmodel

• TSdata - an input/output time series data structure

• TSestModel - a TSmodel estimated with TSdata

MODEL INFORMATION

• print - display model arrays

• summary - summary information about a model

• tfplot - plot data or model predictions.

MODEL PROPERTIES

• McMillan.degree - calculate the McMillan degree of a model

• roots - calculate the roots of a model

• stability - check stability of model

MODEL CONVERSION

• to.SS - convert to an equivalent state space innovations representation

• to.ARMA - convert to an ARMA representation
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SIMULATION, ONE-STEP PREDICTIONS & RELATED STATIS-
TICS

• simulate - Simulate a model to generate artificial data.

• l - evaluate a TSmodel with TSdata and return a TSestModel object

• smoother - calculate smoothed state for a state space model.

• check.residuals - distribution, autocorrelation and partial autocorrelation
of residuals

• information.tests - print model selection criteria

MODEL ESTIMATION & REDUCTION

• est.VARX.ls - estimate VAR model with exogenous variable using OLS

• est.VARX.ar - estimate VAR model with exogenous variable using auto-
correlations

• est.SS.from.VARX - estimate a VARX model and convert to state space

• est.SS.Mittnik - estimate state space model using Mittnik’s markov pa-
rameter technique

• estMaxLik - Maximum likelihood estimation of models.

• est.black.box - estimate and find the best reduced model

• bft - estimate and find the best reduced model by techniques in Gilbert
(1995), also referred to as est.black.box4

• reduction.Mittnik - nested-balanced state space model reduction by svd
of Hankel generated from a model

FORECAST AND FORECAST EVALUATION

• forecast - generate a forecast from given model and data.

• featherForecasts - forecast from specified periods

• horizonsForecasts - forecast specified periods ahead

• forecastCov - calculate covariance of multi-period ahead forecasts

ESTIMATION EVALUATION

• EstEval - evaluate specified estimation techniques using a given true model

• out.of.sample.forecastCovEstimatorsWRTdata - evaluate specified estima-
tion techniques using a given data set
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