Adding a toolkit to gWidgets

John Verzani, gWidgetsRGtkOgmail.com
April 30, 2007

Abstract:

This little vignette illustrates what is required to write a toolkit for the gWidgets
package. Since the gWidgetsRGtk package is written this sketches out what a
toolkit would possibly look like using the tcltk package. Unfortunately, this author
does not know enough about the tcltk package to actually do this.

Contents
1 Basics of gWidgets 1
2 An example 2

1 Basics of gWidgets

The gWidgets implementation is simply a set of functions that dispatch to similarly
named functions in a toolkit. That is the glabel(...,toolkit=guiToolkit())
function dispatches to the .glabel(toolkit, ...) function in the appropriate
toolkit, and the svalue(obj, ...) method dispatches to the .svalue(obj@widget,obj@toolkit,
...) function in the appropriate toolkit. In the first case, a constructor, the dispatch
is done by the class of the toolkit. For the method, the dispatch is based on both the
toolkit and the class of the object, and perhaps other arguments in the signature of
the method.
The classes for the toolkits RGtk2, tcltk, rJava, and SJava are already defined
by gWidgets. These are named guiWidgetsToolkit plus the package name.



gWidgets

As such, the basic structure of a gWidgets implementation is to set up some
classes, and a set of methods for dispatch. !

2 An example

As gWidgets is supposed to be cross-toolkit, it would be nice were there a toolkit
implementation for the tcltk package. I know only as much about tcltk as was
learned by browsing P. Dalgaard’s RNews article and a quick glance at the examples
provided by James Wettenhall.

The following is a start, although we quickly run into issues that hopefully some-
one more knowledgeable about tcltk could resolve.

First we load the package.

> options(guiToolkit = NA)
> library(gWidgets)
> library(tcltk)

The options setting ensures no toolkit for gWidgets gets loaded.

Recall the subclass of guiWidgetsToolkit, guiWidgetsToolkittcltk is already
defined in gWidgets.

Now we make a base class for the tcltk widgets created here.

> setClass("gWidgetTcltk")

[1] "gWidgetTcltk"

> setClass("guiWidgetORgWidgetTcltkORtcltk")
[1] "guiWidgetORgWidgetTcltkORtcltk"

> setIs("guilWidget", "guiWidgetORgWidgetTcltkORtcltk")
> setIs("gWidgetTcltk", "guiWidgetORgWidgetTcltkORtcltk")

Finally, we promote the tkwin class to an S4 class and add it to our virtual class.
This would be done for all possible classes of tcltk objects.

L Although it likely wasn’t necessary, at the time of first writing a package, the dispatch was to
a "dot” file. This caused an extra level to the dispatch, that while unfortunate, does not seem to be
worth rewriting to avoid.

- page 2 -



gWidgets

> oldclasses = c("tkwin")

> for (i in oldclasses) {

+ set01dClass (i)

+ setIs(i, "guiWidgetORgWidgetTcltkORtcltk")
+ }

The gWidgetTcltk class is a virtual class, here are two subclasses. We create
slots for the widget and the toolkit here, but perhaps should add others.

> setClass("gComponentTcltk", representation(widget = "guiWidgetORgWidgetTcltkORtcl
+ toolkit = "guiWidgetsToolkit"), contains = "gWidgetTcltk",
+ )

[1] "gComponentTcltk"

> setClass("gContainerTcltk", representation(widget = "guiWidgetORgWidgetTcltkORtcl
+ toolkit = "guiWidgetsToolkit"), contains = "gWidgetTcltk",
+ )

[1] "gContainerTcltk"

Now we define some necessary functions to implement gwindow () in the toolkit.
This involves defining a class, making a constructor (.gwindow()) and defining some
methods.

> setClass("gWindowTcltk", contains = "gContainerTcltk", prototype = prototype (new(
[1] "gWindowTcltk"

This implementation of the constructor should have a handler for the window
destroy event.

> setMethod(".gwindow", signature(toolkit = "guiWidgetsToolkittcltk"),

+ function(toolkit, title = "Window", visible = TRUE, handler = NULL,
+ action = NULL, ...) {

+ win <- tktoplevel()

+ tktitle(win) <- title

+ obj = new("gWindowTcltk", widget = win, toolkit = toolkit)

+ return(obj)

+ §9)

- page 3 -



gWidgets

[1] ".gwindow"

The svalue () method for gwindow() objects is used to retrieve and set the title
of the window.

> setMethod(".svalue", signature(toolkit = "guiWidgetsToolkittcltk",

+ obj = "gWindowTcltk"), function(obj, toolkit, index = NULL,
+ drop = NULL, ..) {

+ tktitle(obj@widget)

+ })

[1] ".svalue"

> setMethod(".svalue<-", signature(toolkit = "guiWidgetsToolkittcltk",
+ obj = "gWindowTcltk"), function(obj, toolkit, index = NULL,

+ ..., value) {

+ tktitle(obj@widget) <- value

+ return(obj)

+ })
[1] ".svalue<-"

The add () method is used to add a widget to a container. This is where we run
into problems with tcltk as the constructors there require a “parent” container at
the time of construction. As such, we don’t have both a container (obj below) and
widget (value) needed when we add, rather we only specify how things are packed
in.

> setMethod(".add", signature(toolkit = "guiWidgetsToolkittcltk",

+ obj = "gWindowTcltk", value = "guiWidget"), function(obj,
+ toolkit, value, ...) {

+ tkpack (value@widget@widget)

+ })

[1] ".add"

The dispose method closes the window

> setMethod(".dispose", signature(toolkit = "guiWidgetsToolkittcltk",

+ obj = "gWindowTcltk"), function(obj, toolkit, ...) {
+ tkdestroy (obj@widget)
+ })

- page 4 -



gWidgets

[1] ".dispose"

Below we implement the basics of glabel(). No attempt is made to add a click
handler to this or editing or markup. For now, just setting of text in a label.
First a class

> setClass("gLabelTcltk", contains = "gComponentTcltk", prototype = prototype (new("
[1] "gLabelTcltk"

Next the constructor

> setMethod(".glabel", signature(toolkit = "guiWidgetsToolkittcltk"),
+ function(toolkit, text = "", markup = FALSE, editable = FALSE,
+ handler = NULL, action = NULL, container = NULL, ...) {

+ if (is.null(container)) {

+ cat("Can't have an NULL container with tcltk")

+ }

+ if (is(container, "guiWidget"))

+ container = container@widget

+ if (is(container, "gContainerTcltk"))

+ container = container@widget

+ label = tklabel(container, text = text)

+ obj = new("gLabelTcltk", widget = label, toolkit = toolkit)
+ tkpack(label)

+ return(obj)

+ §9)

[1] ".glabel"

The svalue() method returns the label text, to be honest I don’t know enough
about the tcltk package to write this, although to set the text is easy.

> setMethod(".svalue", signature(toolkit = "guiWidgetsToolkittcltk",

+ obj = "gLabelTcltk"), function(obj, toolkit, index = NULL,
+ drop = NULL, ..) {

+ cat("How to retrieve label text\n")

+ })

[1] ".svalue"

- page 5 -



gWidgets

> setReplaceMethod(".svalue", signature(toolkit = "guiWidgetsToolkittcltk",
+ obj = "gLabelTcltk"), function(obj, toolkit, index = NULL,

+ ..., value) {

+ tkconfigure (obj@widget, text = value)

+ return(obj)

+ })

[1] ".svalue<-"

For the gbutton() implementation we show how to add a handler in addition to
implementing the svalue<-() method.

> setClass("gButtonTcltk", contains = "gComponentTcltk", prototype = prototype (new(
[1] "gButtonTcltk"

As for the constructor we have:

> setMethod(".gbutton", signature(toolkit = "guiWidgetsToolkittcltk"),
+ function(toolkit, text = "", border = TRUE, handler = NULL,

+ action = NULL, container = NULL, ...) {

+ if (!is.null(container)) {

+ topwin = container@widget@widget

+ }

+ else {

+ topwin = gwindow(toolkit = toolkit)@widget

+ }

+ button = tkbutton(topwin, text = text)

+ obj = new("gButtonTcltk", widget = button, toolkit = toolkit)
+ tkpack (obj@widget)

+ if (!is.null(handler))

+ .addhandlerclicked(obj, toolkit, handler = handler)

+ return(obj)

+ P

[1] ".gbutton"

In dealing with the handler, we used the private method defined below, rather than
addHandlerClicked() as that method is for objects of class guiWidget, and not

- page 6 -



gWidgets

gWidgetTcltk. This awkwardness can be avoided by defining a method addHan-
dlerClicked for objects of class gWidgetTcltk within the toolkit. 2 For instance,

> setMethod("addHandlerClicked", signature(obj = "gWidgetTcltk"),
+ function(obj, handler = NULL, action = NULL, ...) {

+ .addhandlerclicked(obj, obj@toolkit, handler, action,
+ L)

+ })

[1] "addHandlerClicked"
(The internal function, .addhandlerclicked, uses lower case letters for now.)

Again, svalue() should retrieve the text, it shouldn’t be hard, but I don’t know
how. Below is how to set the button text.

> setReplaceMethod(".svalue", signature(toolkit = "guiWidgetsToolkittcltk",
+ obj = "gButtonTcltk"), function(obj, toolkit, index = NULL,

+ ..., value) {

+ tkconfigure (obj@widget, text = value)

+ return(obj)

+ })
[1] ".svalue<-"

This sets up a click handler for a button. The handler should have a first argument
which is a list with the object and the action value passed in. This isn’t done below,
as it isn’t clear to me how to do so with just the tkconfigure() function.

> setMethod(".addhandlerclicked", signature(toolkit = "guiWidgetsToolkittcltk",

+ obj = "gButtonTcltk"), function(obj, toolkit, handler, action = NULL,
+ o)t

+ tkconfigure (obj@widget, command = handler)

+ })

[1] ".addhandlerclicked"

2This is a result of the way dispatch was designed. The toolkit information is stored in a slot
separate from the widget provided by the toolkit in the gWidget object. Dispatch occurs on both
the object and the toolkit. The method with these signatures is the “dot” one implemented in the
toolkit package.

- page 7 -



gWidgets

_ Helloworld — & X

Hello word, how are you?

Close |

Figure 1: Hello world, how are you?

Well, that will let us make the following simple dialog (Figure 1).

> guitoolkit = new("guiWidgetsToolkittcltk")

> win = gwindow("Hello world", toolkit = guitoolkit)

> label = glabel("Hello world, how are you?", container = win,

+ toolkit = guitoolkit)

> button = gbutton("Close", handler = function(h, ...) dispose(win),
+ container = win, toolkit = guitoolkit)

For each widget we need to sepearte the container, This style makes it difficult
to cleanly separate the widgets, their layout and their handlers. As well, in this
example, we also specify the toolkit. This latter part can be avoide, if we put the
code in a package.

- page 8 -



