
Examples for gWidgets

John Verzani, gWidgetsRGtk@gmail.com

April 30, 2007

Abstract:

Examples for using the gWidgets package are presented. The gWidgets API is
intended to be a cross platform means within an R session to interact with a graphics
toolkit. Currently, there are two available toolkits. The GTK toolkit is implemented
via the gWidgetsRGtk2 package which in turn uses the RGtk2 package. JAVA can
be used via the gWidgetsrJava package, which in turn calls rJava. The gWidget-
sRGtk2 implementation is much more complete, as the gWidgetsrJava package is
lacking many features and must run from within a JGR (http://www.rosuda.org)
session.

The API is inteneded to faciliatate the task of writing basic GUIs, as it simplifies
many of the steps involved in setting up widgets and packing them into containers.
Although not nearly as powerful as any individual toolkit, the gWidgets API is suit-
able for many tasks or as a rapid prototyping tool for more complicated applications.
The examples contained herein illustrate that quite a few things can be done fairly
easily with more complicated applications being pieced together in a straightforward
manner. To see a fairly complicated application built using gWidgets, install the
pmg GUI (http://www.math.csi.cuny.edu/pmg), which is on CRAN.

Contents

1 Background 2

2 Installation 3
2.1 Installing the GTK libraries . 3
2.2 Install the R packages . 4

1

gWidgetsRGtk@gmail.com
http://www.rosuda.org
http://www.math.csi.cuny.edu/pmg

gWidgets

3 Loading gWidgets 4

4 Hello world 5
4.1 Using containers . 7

5 Making a confirmation dialog 8

6 Methods 10

7 Adding a GUI to some common tasks 10
7.1 file.choose() . 11
7.2 browseEnv() . 12

8 A gWidgetsDensity demo 13

9 Composing email 15

10 Drag and drop 19
10.1 DND with plots . 19
10.2 DND from the data frame editor . 20

11 Notebooks 22

12 The tree widget 23

13 Popup menus 26

14 Making widgets from an R function 27
14.1 Using ggenericwidget() . 27
14.2 An alternative to ggenericwidget() 28

1 Background

The gWidgets API is intended to be a cross-toolkit API for working with GUI ob-
jects. It is based on the iwidgets API of Simon Urbanek, with improvement by
Philippe Grosjean, Michael Lawrence, Simon Urbanek and John Verzani. This doc-
ument focuses on the more complete toolkit implementation provided by the gWid-
getsRGtk2 package. [Occasional differences with gWidgetsrJava are pointed
out in braces.] The GTK toolkit is interfaced via the RGtk2 package of Michael
Lawrence, which in turn is derived from Duncan Temple Lang’s RGtk package.

- page 2 -

gWidgets

The excellent RGtk2 package opens up the full power of the GTK2 toolkit, only a
fraction of which is available though gWidgetsRGtk2.

The gWidgets API is still in the formative stages and likely will change as more
people use it and offer suggestions for improvement.

This document supplements the man pages by providing more detailed examples.
The man pages contain more specific information. See the page gWidgets-package

for a listing of the available man pages.
This document is a vignette. As such, the code displayed is available within an

R session through the command edit(vignette("gWidgets")).

2 Installation

In case you are reading this vignette without having installed gWidgets, here are
some instructions. This focuses on installing gWidgetsRGtk2.

Installing gWidgets with the gWidgetsRGtk2 pakcage requires two steps: in-
stalling the GTK libraries and installing the R packages.

2.1 Installing the GTK libraries

The gWidgetsRGtk2 provides a link between gWidgets and the GTK libraries through
the RGTk2 package. RGtk2 requires relatively modern versions of the GTK libraries
(2.8.0 or higher). These may need to be installed or upgraded on your system.

In case of Windows you can do this:

1. Download the files from http://gladewin32.sourceforge.net/modules/wfdownloads/visit.php?lid=102

2. run the resulting file. This is an automated installer which will walk you
through the installation of the Gtk2 libraries.

For Windows users, the following command, will do this and install pmg

> source("http://www.math.csi.cuny.edu/pmg/installPMG.R")

In Linux, you may or may not need to upgrade the GTK libraries depending on
your distribution.

For Mac OS X the macports (http://www.macports.org) project maintains a
gtk28 package to install the 2.8 version of GTK. Once macports is installed, the
command

sudo port install gtk28

- page 3 -

http://gladewin32.sourceforge.net/modules/wfdownloads/visit.php?lid=102
http://www.macports.org

gWidgets

will install the libraries (although it may take quite a while).
There are more details on RGtk2 at RGtk2’s home page.

2.2 Install the R packages

The following R packages are needed: RGtk2, cairoDevice, gWidgets, and gWidgetsRGtk2.
Install them in this order, as some depend on others to be installed first. All can be
downloaded from CRAN.

These can all be installed by following the dependencies for gWidgetsRGtk2. The
following command will install them all if you have the proper write permissions:

install.packages("gWidgetsRGtk2", dep = TRUE)

It may be necessary to adjust the location where the libraries will be installed if
you do not have the proper permissions.

For MAC OS X, the packages are provided as source, not the default“mac.binary.”
Use the type= argument, as follows:

> install.packages("gWidgetsRGtk2", dep = TRUE,type = "source")

On occasion, newer versions are available from gWidgets’s website. To install
from here add the repos= argument, as follows:

> install.packages("gWidgetsRGtk2",dep = TRUE, repos = "http://www.math.csi.cuny.edu/pmg")

[The gWidgetsrJava package is installed similarly. However, it requires rJava
and JGR and friends to work properly. These should install through the dependen-
cies, so

> install.packages("gWidgetsrJava", dep = TRUE)

should do it.]

3 Loading gWidgets

We load the gWidgets package, using the gWidgetsRGtk2 toolkit, below: following

> options(guiToolkit = "RGtk2")

> require(gWidgets)

- page 4 -

http://www.ggobi.org/rgtk2
http://www.math.csi.cuny.edu/pmg

gWidgets

[1] TRUE

When gWidgets is started, it tries to figure out what its default toolkit will be. In
this examples, we’ve set it to be “gWidgetsRGtk2.” If the option was not set and
there is more than one toolkit available, then a menu asks the user to choose between
toolkit implementations. [For gWidgetsrJava use “rJava” in the options() call.]

Both the gWidgets and gWidgetsRGtk2 package use S4 methods and classes
and load much faster under the newer methods package accompanying R version
2.4.0 or greater.

[For gWidgetsrJava the interactive features only work if run from within a JGR

session. For this, one starts JGR(), then uses its console to load gWidgets.]

4 Hello world

We begin by showing how to make various widgets which display the ubiquitous
“Hello world” message. First though we define a function allowing us to comment
code within Sweave.

> Comment = function(...) invisible(...)

Now to illustrate (Figure 1 shows a few) some of the basic widgets. These first
widgets display text: a label, a button and a text area.

First a button:

> obj = gbutton("Hello world", container = gwindow())

Next a label:

> obj = glabel("Hello world", container = gwindow())

Now for single line of ediable text:

> obj = gedit("Hello world", container = gwindow())

Finally, a text buffer for multiple lines of text:

> obj = gtext("Hello world", container = gwindow())

The following widgets are used for selection of a value or values from a vector of
possible values.

First a radio group for selecting just one of several:

- page 5 -

gWidgets

Figure 1: Four basic widgets: a button, a label, radio buttons, and a drop list.

> obj = gradio(c("hello", "world"), container = gwindow())

Next, a drop list, or combo box, again for selecting just one of several, although
in this case an option can be give for the user to edit the value.

> obj = gdroplist(c("hello", "world"), container = gwindow())

A drop list can also allow its value to be entered,

> obj = gdroplist(c("hello", "world"), editable = TRUE, container = gwindow())

For longer lists, a table of values can be used.

> obj = gtable(c("hello", "world"), container = gwindow())

This widget is also used for displaying tabular data with multiple columns and rows
(data frames). For this widget there is an argument allowing for multiple selections.
Multiple selections can also be achieved with a checkbox group:

- page 6 -

gWidgets

> obj = gcheckboxgroup(c("hello", "world"), container = gwindow())

For selecting a numeric value from a sequence of values, sliders and spinbuttons
are commonly used:

> obj = gslider(from = 0, to = 7734, by = 100, value = 0, container = gwindow())

> obj = gspinbutton(from = 0, to = 7734, by = 100, value = 0, container = gwindow())

Common to all of the above is a specification of the “value” of the widget, and
the container to attach the widget to. In each case a top-level window constructed
by gwindow().

4.1 Using containers

In this next example, we show how to combine widgets together using containers.
(Figure 2.)

> win = gwindow("Hello World, ad nauseum", visible = TRUE)

> group = ggroup(horizontal = FALSE, container = win)

> obj = gbutton("Hello...", container = group, handler = function(h,

+ ...) gmessage("world"))

> obj = glabel("Hello...", container = group, handler = function(h,

+ ...) gmessage("world"))

> obj = gdroplist(c("Hello", "world"), container = group)

> obj = gedit("Hello world", container = group)

> obj = gtext("Hello world", container = group, font.attr = list(style = "bold"))

As before, the constructors gbutton(), glabel(), gedit() and gtext() create
widgets of different types. The button looks like a button. A label is used to show
text which may perhaps be edited. A droplist allows a user to select one of several
items, or as illustrated can take user input. The gedit() and gtext() constructors
both create widgets for inputting text, in the first case for single lines, and in the
second for multiple lines using a text buffer.

These widgets are packed into containers (see ?ggroup or ?gwindow). The base
container is a window, created with the gwindow() function. A top-level window
only contains one widget, like a group, so we pack in a group container created
with ggroup(). The ggroup() container packs in widgets from left to right or top to
bottom. Imagine each widget as a block which is added to the container. In this case,
we want the subsequent widgets packed in top to bottom so we used the argument
horizontal=FALSE.

- page 7 -

gWidgets

Figure 2: Hello world example

For the button and label widgets, a handler is set so that when the widget is
clicked a message dialog appears showing “world.” Handlers are used to respond
to mouse-driven events. In this case the event of a widget being clicked. See
?gWidgetsRGtk-handlers for details on handlers.

The message is an instance of a dialog. in the gWidgets API dialogs are usually
modal, meaning nothing can be done until they are dismissed. (This can be annoying
if a dialog appears under another window and can’t be seen!)

5 Making a confirmation dialog

Let’s see how we might use widgets to create our own confirmation dialog. We want
to have an icon, a label for the message, and buttons to confirm or dismiss the dialog.

The gimage() constructor allows images to be shown in a widget. In gWidget-
sRGtk there are several stock images, which can be listed with getStockIcons().
We will use “info” below.

First we define a function for making a dialog. This one uses nested group con-
tainers to organize the layout. (Alternately the glayout() constructor could have
been used in some manner.)

> confirmDialog = function(message, handler = NULL) {

+ window = gwindow("Confirm")

+ group = ggroup(container = window)

+ add(group, gimage("info", dirname = "stock", size = "dialog"))

- page 8 -

gWidgets

A group for the message and buttons

+ innner.group = ggroup(horizontal = FALSE, container = group)

+ add(innner.group, glabel(message), expand = TRUE)

A group to organize the buttons

+ button.group = ggroup(container = innner.group)

+ addSpring(button.group) # Push buttons to right

+ obj = gbutton("ok", handler = handler, container = button.group)

+ obj = gbutton("cancel", handler = function(h, ...) dispose(window),

+ container = button.group)

+ return()

+ }

The key to making a useful confirmation dialog is attaching a response to a click
of the “ok” button. This is carried out by a handler, which are added using the
argument handler= for the constructor, with one of the addHandler functions. the
handler below prints a message and then closes the dialog. To close the dialog, the
dispose() method is called on the “ok” button widget, which is referenced inside
the handler by h$obj below. In gWidgets, handlers are passed information via the
first argument, which is a list with named elements. The $obj component refers to
the widget the handler is assigned to.

Trying it out produces a widget like that shown in Figure 3

Figure 3: Confirmation dialog

> confirmDialog("This space for rent", handler = function(h, ...) {

+ print("what to do... [Change accordingly]")

In this instance dispose finds its parent window and closes it

- page 9 -

gWidgets

+ dispose(h$obj)

+ })

NULL

6 Methods

Widgets are interacted with by their methods. The main methods are svalue() and
svalue<-() for getting and setting a widgets primary value.

The following silly example illustrates how clicking one widget can be used to
update another widget.

> group = ggroup(container = gwindow("Two widgets"))

> widget1 = gbutton("Click me to update the counter", container = group,

+ handler = function(h, ...) {

+ oldVal = svalue(widget2)

+ svalue(widget2) <- as.numeric(oldVal) + 1

+ })

> widget2 = glabel(0, container = group)

The value stored in a label is just the text of the label. This is returned by svalue()

and after 1 is added to the value, replaced back into the label. As text labels are of
class “character,” the value is coerced to be numeric.

There are other methods (see ?gWidgetsRGtk-methods) that try to make inter-
acting with a widget as natural (to an R user) as possible. For instance, a radio
button has a selected value returned by svalue(), but also a vector of possible
values. These may be referenced using vector, [, notation. Whereas, a notebook
container has a names() method which refers to the tab labels, a [method for re-
ferring to the widgets comprising the notebook pages, and a length() method to
return the number of notebook pages.

7 Adding a GUI to some common tasks

A GUI can make some command line tasks easier to perform. Here are a few examples
that don’t involve much coding in gWidgets.

- page 10 -

gWidgets

7.1 file.choose()

The file.choose() function is great for simplifying a user’s choice of a file from the
file system. A typical usage might be

source(file.choose())

to allow a user to source a file with a little help from a GUI. However, in many
UNIX environments, there is no GUI for file.choose(), only a more convenient
curses interface. With the gfile() dialog, we can offer some improvement.

This dialog returns the name of the file selected, so that

source(gfile())

can replace the above.
More in keeping with the gWidgets style, though, would be to give a handler when

constructing the file chooser. The function below is written to give some flexibility
to the process:

> fileChoose = function(action = "print", text = "Select a file...",

+ type = "open", ...) {

+ gfile(text = text, type = type, ..., action = action, handler = function(h,

+ ...) {

+ do.call(h$action, list(svalue(h$obj)))

+ })

+ }

The action= argument parameterizes the action. The default above calls print()
on the selected file name. However, other tasks can now be done quite simply. For
example, to source() a file we have:

> fileChoose(action="source")

Or to set the current working directory we have:

> fileChoose(action="setwd", type="selectdir", text="Select a directory...")

- page 11 -

gWidgets

7.2 browseEnv()

The browseEnv() function creates a table in a web browser listing the current objects
in the global environement (by default) and details some properties of them. This
is an easy to use function, but suffers from the fact that it may have to open up a
browser for the user if none is already open. This may take a bit of time as browsers
are generally slow to load. We illustrate a means of using the gtable() constructor
to show in a table the objects in an environment.

The following function creates the data.frame we will display. Consult the code
of browseEnv() to see how to produce more details.

> lstObjects = function(envir = .GlobalEnv, pattern) {

+ objlist = ls(envir = envir, pattern = pattern)

+ objclass = sapply(objlist, function(objName) {

+ obj <- get(objName, envir = envir)

+ class(obj)[1]

+ })

+ data.frame(Name = I(objlist), Class = I(objclass))

+ }

Now to make a table to display the results. We have some flexibility with the
arguments, which is shown in subsequent examples:

> browseEnv1 = function(envir = .GlobalEnv, pattern) {

+ listOfObjects = lstObjects(envir = envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv1"))

+ }

Tables can have a double click handler (a single click is used for selection). To
illustrate, we add a handler which calls summary() (or some other function) on a
double-clicked item.

> browseEnv2 = function(envir = .GlobalEnv, pattern, action = "summary") {

+ listOfObjects = lstObjects(envir = envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv2"),

+ action = action, handler = function(h, ...) {

+ print(do.call(h$action, list(svalue(h$obj))))

+ })

+ }

- page 12 -

gWidgets

As a final refinement, we add a droplist box to filter by the unique values of
“Class.” We leave as an excercise the display of icons based on the class of the
object.

> browseEnv3 = function(envir = .GlobalEnv, pattern, action = "summary") {

+ listOfObjects = lstObjects(envir = envir, pattern)

+ gtable(listOfObjects, container = gwindow("browseEnv3"),

+ filter.column = 2, action = action, handler = function(h,

+ ...) {

+ print(do.call(h$action, list(svalue(h$obj))))

+ })

+ }

The gvarbrowser() function constructs a widget very similar to this, only it uses
gtree() to allow further display of list-like objects.

8 A gWidgetsDensity demo

We illustrate how to make a widget dynamically update a density plot. The idea
comes from the tkdensity demo that accompanies the tcltk package.

We use the ggraphics() constructor to create a new plot device. For RGtk2,
this uses the cairoDevice package also developed by Michael Lawrence.

[In gWidgetsrJava the JavaGD package is used for a JAVA device. This im-
plementation does not currently allow the device to be embedded in a widget, so the
gimage() constructor below would make a widget in a separate window.]

This demo consists of a widget to control a random sample, in this case from the
standard normal distribution or the exponential distribution with rate 1; a widget
to select the sample size; a widget to select the kernel; and a widget to adjust the
default bandwidth. We use radio buttons for the first two, a drop list for the third
and a slider for the latter.

Proceeding, first we define the two distributions and the possible kernels.

> availDists = c(Normal = "rnorm", Exponential = "rexp")

> availKernels = c("gaussian", "epanechnikov", "rectangular", "triangular",

+ "biweight", "cosine", "optcosine")

We then define the key function for drawing the graphic. This refers to widgets
yet to be defined.

- page 13 -

gWidgets

> updatePlot = function(h, ...) {

+ x = do.call(availDists[svalue(distribution)], list(svalue(sampleSize)))

+ plot(density(x, adjust = svalue(bandwidthAdjust), kernel = svalue(kernel)),

+ main = "Density plot")

+ rug(x)

+ }

Now to define the widgets.

> distribution = gradio(names(availDists), horizontal = FALSE,

+ handler = updatePlot)

> kernel = gdroplist(availKernels, handler = updatePlot)

> bandwidthAdjust = gslider(from = 0, to = 2, by = 0.01, value = 1,

+ handler = updatePlot)

> sampleSize = gradio(c(50, 100, 200, 300), handler = updatePlot)

And now the layout. We use frames to set off the different arguments. A frame
is like a group, only it has an option for placing a text label somewhere along the
top, with a default using the left-hand side.

> window = gwindow("gWidgetsDensity")

> BigGroup = ggroup(cont = window)

> group = ggroup(horizontal = FALSE, container = BigGroup)

> tmp = gframe("Distribution", container = group)

> add(tmp, distribution)

> tmp = gframe("Sample size", container = group)

> add(tmp, sampleSize)

> tmp = gframe("Kernel", container = group)

> add(tmp, kernel)

> tmp = gframe("Bandwidth adjust", container = group)

> add(tmp, bandwidthAdjust, expand = TRUE)

Now to add a graphics device.

> add(BigGroup, ggraphics())

[Again, if using gWidgetsrJava() this wouldn’t place the device inside the BigGroup
container.]

A realization of this widget was captured in Figure 4.

- page 14 -

gWidgets

Figure 4: The gWidgetsDensity example in action.

9 Composing email

This example shows how to write a widget for composing an email message. Not that
this is what R is intended for, but rather to show how a familiar widget is produced by
combining various pieces from gWidgets. This example is a little lengthy (especially
with Sweave’s formatting), but hopefully straightforward due to the familiarity with
the result of the task.

For our stripped-down compose window we want the following: a menubar to
organize functions; a toolbar for a few common functions; a “To:” field which should
have some means to store previously used e-mails; a “From:” field that should be
editable, but not obviously so as often it isn’t edited; a “Subject:” field which also
updates the title of the window; and a text buffer for typing the message.

The following code will create a function called Rmail() (apologies to any old-
time emacs users) which on many UNIX machines can send out e-mails using the
sendmail command.

First we define some variables:

> FROM = "gWidgetsRGtk <gWidgetsRGtk@gmail.com>"

> buddyList = c("My Friend <myfriend@gmail.com>", "My dog <mydog@gmail.com>")

Now for the main function. We define some helper functions inside the body, so
as not to worry about scoping issues.

- page 15 -

gWidgets

> Rmail = function(draft = NULL, ...) {

Define main widgets, store in a list for ease of use

+ widgets = list()

+ widgets$to = gdroplist(c(), editable = TRUE)

+ widgets$from = glabel(FROM, editable = TRUE)

+ widgets$subject = gedit()

+ widgets$text = gtext()

Handle drafts. Either a list or a filename to source

The generic svalue() method makes setting values easy

+ if (!is.null(draft)) {

+ if (is.character(draft))

+ source(draft)

+ if (is.list(draft))

+ sapply(c("to", "from", "subject", "text"), function(i) svalue(widgets[[i]]) <- draft[[i]])

+ }

+ sendIt = function(...) { # Helper functions

+ tmp = tempfile()

+ cat("To:", svalue(widgets$to), "\n", file = tmp, append = TRUE)

+ cat("From:", svalue(widgets$from), "\n", file = tmp,

+ append = TRUE)

+ cat("Subject:", svalue(widgets$subject), "\n", file = tmp,

+ append = TRUE)

+ cat("Date:", format(Sys.time(), "%d %b %Y %T %Z"), "\n",

+ file = tmp, append = TRUE)

+ cat("X-sender:", "R", file = tmp, append = TRUE)

+ cat("\n\n", file = tmp, append = TRUE)

+ cat(svalue(widgets$text), file = tmp, append = TRUE)

+ cat("\n", file = tmp, append = TRUE)

Use UNIX sendmail to send message

+ system(paste("sendmail -t <", tmp))

Add To: to buddyList

+ if (exists("buddyList"))

+ assign("buddyList", unique(c(buddyList, svalue(widgets$to))),

+ inherits = TRUE)

+ unlink(tmp) # Close window, delete file

+ dispose(window)

+ }

Function to save a draft to the file draft.R

- page 16 -

gWidgets

+ saveDraft = function(...) {

+ draft = list()

+ sapply(c("to", "from", "subject", "text"), function(i) draft[[i]]) <- svalue(widgets[[i]])

+ dump("draft", "draft.R")

+ cat("Draft dumped to draft.R\n")

+ }

A simple dialog

+ aboutMail = function(...) gmessage("Sends a message")

Make main window from top down

+ window = gwindow("Compose mail")

+ group = ggroup(horizontal = FALSE, spacing = 0, container = window)

+ svalue(group) <- 0 # Remove border

Menubar is defined by a list

+ menubarlist = list()

+ menubarlist$File$Save$handler = saveDraft

+ menubarlist$File$Send$handler = sendIt

+ menubarlist$File$Quit$handler = function(...) dispose(window)

+ menubarlist$File$Quit$icon = "quit"

+ menubarlist$Help$About$handler = aboutMail

+ add(group, gmenu(menubarlist))

Toolbar is also defined by a list

+ toolbarlist = list()

+ toolbarlist$Send$handler = sendIt

+ toolbarlist$Send$icon = "connect"

+ toolbarlist$Save$handler = saveDraft

+ toolbarlist$Save$icon = "save"

+ add(group, gtoolbar(toolbarlist))

Put headers in a glayout() container

+ tbl = glayout(container = group)

To: field. Looks for buddyList

+ tbl[1, 1] = glabel("To:")

+ tbl[1, 2] = widgets$to

+ if (exists("buddyList"))

+ widgets$to[] <- buddyList

From: field. Click to edit value

+ tbl[2, 1] = glabel("From:")

+ tbl[2, 2] = widgets$from

Subject: field. Handler updates window title

- page 17 -

gWidgets

+ tbl[3, 1] = glabel("Subject:")

+ tbl[3, 2] = widgets$subject

+ addHandlerKeystroke(widgets$subject, handler = function(h,

+ ...) svalue(window) = paste("Compose mail:", svalue(h$obj),

+ collapse = ""))

Layout needs to be finalized

+ visible(tbl) <- TRUE

Add text box for message, but first some space

+ addSpace(group, 5)

+ add(group, widgets$text, expand = TRUE)

+ } # That's it.

To compose an e-mail we call the function as follows. (The widget constructed
looks like Figure 5.)

> Rmail()

Figure 5: Widget for composing an e-mail message

The Rmail() function uses a few tricks. A droplist is used to hold the “To:” field.
This is done so that a “buddy list” can be added if present. The [<- method for drop
lists make this straightforward. For widgets that have a collection of items to select
from, the vector and matrix methods are defined to make changing values familiar
to R users.

The “From:” field uses an editable label. Clicking in the label’s text allows its
value to be changed. Just hit ENTER when done.

The handler assigned to the “Subject:” field updates the window title every
keystroke. The title of the window is updated with the windows svalue<-() method.

- page 18 -

gWidgets

The svalue() and svalue<-() methods are the work-horse methods of gWidgets.
The are used to retrieve the selected value of a widget or set the selected value of a
widget. One advantage to have a single generic function do this is illustrated in the
handling of a draft:

sapply(c("to","from","subject","text"), function(i)

svalue(widgets[[i]]) <- draft[[i]])

(Another work-horse method is addHandlerChanged() which can be used to add
a handler to any widget, where “changed” is loosely interpreted: i.e., for buttons, its
aliased to addHandlerClicked().

As for the sendIt() function, this is just one way to send an e-mail message on
a UNIX machine. There are likely more than 100 different ways clever people could
think of doing this task, most better than this one.

10 Drag and drop

GTK supports drag and drop features, and the gWidgets API provides a simple
mechanism to add drag and drop to widgets. (Some widgets, such as text boxes,
support drag and drop without these in GTK.) The basic approach is to add a drop
source to the widget you wish to drag from, and add a drop target to the widget you
want to drag to. You can also provide a handler to deal with motions over the drop
target. See the man page ?gWidgetsRGtk-dnd for more information.

[In gWidgetsrJava drag and drop is not fully implemented. One can drag from
widget to widget, but there is no way to configure what happens when a drop is
made, or what is dragged when a drag is initiated.]

We give two examples of drag and drop. One where variables from the variable
browser are dropped onto a graph widget. Another illustrating drag and drop from
the data frame editor to a widget.

10.1 DND with plots

This example shows the use of the plot device, the variable browser widget, and the
use of the drag and drop features of gWidgets (Figure 6).

> doPlot = function() {

Set up main group

+ mainGroup = ggroup(container = gwindow("doPlot example"))

The variable browser widget

- page 19 -

gWidgets

+ gvarbrowser(container = mainGroup)

+ rightGroup = ggroup(horizontal = FALSE, container = mainGroup)

The graphics device

+ ggraphics(container = rightGroup)

+ entry = gedit("drop item here to be plotted", container = rightGroup)

+ adddroptarget(entry, handler = function(h, ...) {

+ do.call("plot", list(svalue(h$dropdata), main = id(h$dropdata)))

+ })

+ }

> doPlot()

Figure 6: Dialog produced by doPlot() example

The basic structure of using gWidgets is present in this example. The key widgets
are the variable browser (gvarbrowser()), the plot device (ggraphics()), and the
text-entry widget (gedit()). These are put into differing containers. Finally, there
is an handler given to the result of the drag and drop. The do.call() line uses
the svalue() and id() methods on a character, which in this instance return the
variable with that name and the name.

To use this widget, one drags a variable to be plotted from the variable browser
over to the area below the plot window. The plot() method is called on the values
in the dropped variable.

10.2 DND from the data frame editor

[This example applies only to gWidgetsRGtk, not gWidgetsrJava]]

- page 20 -

gWidgets

The gdf() constructor makes a widget for editing data frames. The columns of
which can be dropped onto a widget. This is done by dragging the column header.
The code below also adds a handler so that changes to the column propogate to
changes in the widget where the column is dropped. (Careful, this has some issues:
the handler needs to be removed if the widget is closed.)

Drag a column onto plot to have a boxplot drawn.

Changing the column values will redraw the graph.

> makeDynamicWidget = function() {

+ win = gwindow("Draw a boxplot")

+ gd = ggraphics(container = win)

+ adddroptarget(gd, targetType = "object", handler = function(h,

+ ...) {

+ tag(gd, "data") <- h$dropdata

+ plotWidget(gd)

this makes the dynamic part:

- we put a change handler of the column that we get the data from

- we store the handler id, so that we can clean up the handler when this

window is closed

The is.gdataframecolumn function checks if the drop value

comes from the data frame editor (gdf)

+ if (is.gdataframecolumn(h$dropdata)) {

+ view.col = h$dropdata

Put change handler on column to update plotting widget

+ id = addHandlerChanged(view.col, handler = function(h,

+ ...) plotWidget(gd))

Save drop handler id so that it can be removed when

widget is closed

+ dropHandlers = tag(gd, "dropHandlers")

+ dropHandlers[[length(dropHandlers) + 1]] = list(view.col = view.col,

+ id = id)

+ tag(gd, "dropHandlers") <- dropHandlers

+ }

+ })

Remove drop handlers if widget is unrealized.

+ addHandlerUnrealize(gd, handler = function(h, ...) {

+ dropHandlers = tag(gd, "dropHandlers")

+ if (length(dropHandlers) > 0) {

+ for (i in 1:length(dropHandlers)) {

- page 21 -

gWidgets

+ removehandler(dropHandlers[[i]]$view.col, dropHandlers[[i]]$id)

+ }

+ }

+ })

+ }

Next, we make the function that produces or updates the graphic. The data is
stored in the tag-key ”data”. The use of id() and svalue() works for values which
are either variable names or columns.

> plotWidget = function(widget) {

+ data = tag(widget, "data")

+ theName = id(data)

+ values = svalue(data)

+ boxplot(values, xlab = theName, horizontal = TRUE, col = gray(0.75))

+ }

Now show the two widgets, the gdf() function constructs the data frame editor
widget.

> gdf(mtcars, container=TRUE)

> makeDynamicWidget()

11 Notebooks

The notebook is a common metaphor with computer applications, as they can give
access to lots of information compactly on the screen. The gnotebook() constructor
produces a notebook widget. New pages are added via the add() method, the cur-
rent page is deleted through an icon [not implemented in gWidgetsrJava], or via
the dispose() method, and vector methods are defined, such as names(), to make
interacting with notebooks natural.

The following example shows how a notebook can be used to organize different
graphics devices.

[In gWidgetsRGtk2 the ggraphicsnotebook() function produces a similar
widget. However, this is not possible if using gWidgetsrJava, as the graphic devices
can’t currently be embedded in a notebook page.]

Our widget consists of a toolbar to add or delete plots and a notebook to hold
the different graphics devices. The basic widgets are defined by the following:

First we make window and group containers to hold our widgets and then a
notebook instance.

- page 22 -

gWidgets

> win = gwindow("Plot notebook")

> group = ggroup(horizontal = FALSE, container = win)

> nb = gnotebook()

Next, we begin with an initial plot device.

> add(nb, ggraphics(), label="plot")

The add() method is used to add new widgets, in this case a graphics device. The
label goes on the tab.

Now we define and add a toolbar.

> tblist = list()

> tblist$Quit$handler = function(h, ...) dispose(win)

> tblist$Quit$icon = "quit"

> tblist$tmp1$separator = TRUE

> tblistNewhandler = function(h, ...) add(nb, ggraphics(), label = "plot")

> tblistNewicon = "new"

> tblist$Delete$handler = function(h, ...) dispose(nb)

> tblist$Delete$icon = "delete"

> add(group, gtoolbar(tblist))

The dispose() method is used both to close the window, and to close a tab on the
notebook (the currently selected one).

Finally we add the notebook.

> add(group, nb, expand = TRUE)

That’s it (Figure 7). There is one thing that should be added. If you switch
tabs, the active device does not switch. This happens though if you click in the plot
area. To remedy this, you can think about the addHandlerChanged() method for
the notebook, or just use ggraphicsnotebook().

12 The tree widget

The gtree() constructor is used to present tree-like data. A familiar example of
such data is the directory structure of your computer. To describe a tree, gtree()
has the idea of a node which consists of a path back to a root node. This node can
have offspring which will be determined by a function (offspring()) which takes
the current path, and a passed in parameter as arguments. These offspring can either

- page 23 -

gWidgets

Figure 7: Notebook widget for holding multiple plot devices provided by
ggraphics()

have subsequent offspring or not. This information must be known at the time of
displaying the current offspring, and is answered by a function (hasOffspring())
which takes as an argument the offspring. In our file-system analogy, offspring()
would list the files and directories in a given directory, and hasOffspring() would
be TRUE for a directory in this listing, and FALSE for a file. For decorations, a function
icon.FUN() can be given to decide what icon to draw for which listing.

The data presented for the offspring is a data frame, with one column determining
the path. This is typically the first column, but can be set with chosencol=.

[The tree() widget is not implemented in gWidgetsrJava. The default JAVA
tree only holds a single item, so a new table-tree class needs to be written.]

To illustrate, we create a file system browser using gtree().
First to define the offspring() function we use the file.info() function. The

current working directory is used as the base node for the tree:

- page 24 -

gWidgets

> offspring = function(path, user.data = NULL) {

+ if (length(path) > 0)

+ directory = paste(getwd(), "/", paste(path, sep = "/",

+ collapse = ""), sep = "", collapse = "")

+ else directory = getwd()

+ tmp = file.info(dir(path = directory))

+ files = data.frame(Name = rownames(tmp), isdir = tmp[, 2],

+ size = as.integer(tmp[, 1]))

+ return(files)

+ }

The offspring function is determined by the isdir column in the offspring data
frame.

> hasOffspring = function(children, user.data = NULL, ...) {

+ return(children$isdir)

+ }

Finally, an icon function can be given as follows, again using the isdir column.

> icon.FUN = function(children, user.data = NULL, ...) {

+ x = rep("file", length = nrow(children))

+ x[children$isdir] = "directory"

+ return(x)

+ }

The widget is then constructed as follows. See Figure 8 for an example.

> gtree(offspring, hasOffspring, icon.FUN = icon.FUN, container = gwindow(getwd()))

guiWidget of type: gTreeRGtk for toolkit: guiWidgetsToolkitRGtk2

The presence of the isdir column may bug some. It was convenient when defining
hasOffspring() and icon.FUN(), but by then had served its purpose. One way to
eliminate it, is to use the default for the hasOffspring= argument which is to look
for the second column of the data frame produced by offspring(). If this is logical,
it is used to define hasOffspring() and is then eliminated from the display. That
is, the following would produce the desired file browser:

> gtree(offspring, icon.FUN = icon.FUN, container = gwindow(getwd()))

guiWidget of type: gTreeRGtk for toolkit: guiWidgetsToolkitRGtk2

Finally, the handler= argument (or addHandlerDoubleclick) could have been
used to give an action to double clicking of an item in the tree.

- page 25 -

gWidgets

Figure 8: Illustration of a file browser using gtree() constructor.

13 Popup menus

A popup menu “pops” up a menu after a mouse click, typically a right mouse click.
Implemented here are the functions

add3rdmousepopupmenu() for adding a popup on a right click

addpopupmenu() for adding a popup on any click

The menu is specified using the syntax for gmenu().

A simple example would be something like:

> group = ggroup(container = gwindow("Click on button to change"))

> glabel("Hello ", container = group)

guiWidget of type: gLabelRGtk for toolkit: guiWidgetsToolkitRGtk2

> world = gbutton("world", container = group)

> lst = list()

> lst$world$handler = function(h, ...) svalue(world) <- "world"

> lst$continent$handler = function(h, ...) svalue(world) <- "continent"

> lst$country$handler = function(h, ...) svalue(world) <- "country"

> lst$state$handler = function(h, ...) svalue(world) <- "state"

> addpopupmenu(world, lst)

Clicking on “world” with the mouse allows one to change the value in the label.

- page 26 -

gWidgets

14 Making widgets from an R function

A common task envisioned for gWidgets is to create GUIs that make collecting the
arguments to a function easier to remember or enter. Presented below are two ways
to do so without having to do any programming, provided you are content with the
layout and features provided.

14.1 Using ggenericwidget()

The ggenericwidget() constructor maps a list into a widget. The list contains two
types of information: meta information about the widget, such as the name of the
function, and information about the widgets. This is specified using a list whose first
component is the constructor, and subsequent components are fed to the constructor.

To illustrate, a GUI for a one sample t-test is given. The list used by ggenericwidget()

is defined below.

> lst = list()

> lst$title = "t.test()"

> lst$help = "t.test"

> lst$variableTypes = "univariate"

> lst$action = list(beginning = "t.test(", ending = ")")

> lst$arguments$hypotheses$mu = list(type = "gedit", text = 0,

+ coerce.with = as.numeric)

> lst$arguments$hypotheses$alternative = list(type = "gradio",

+ items = c("'two.sided'", "'less'", "'greater'"))

This list is then given to the constructor.

> ggenericwidget(lst, container = gwindow("One sample t test"))

guiWidget of type: gGenericWidgetRGtk for toolkit: guiWidgetsToolkitRGtk2

Although this looks intimidating, due to the creation of the list, there is a func-
tion autogenerategeneric() that reduces the work involved. In particular, if the
argument to ggenericwidget() is a character, then it is assumed to be the name of
a function. From the arguments of this function, a layout is guessed.

For example, we could have done:

> our.t.test = stats:::t.test.default

> ggenericwidget("our.t.test", container = gwindow("t-test"))

- page 27 -

gWidgets

guiWidget of type: gGenericWidgetRGtk for toolkit: guiWidgetsToolkitRGtk2

As the arguments of this function are

> args(our.t.test)

function (x, y = NULL, alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95,

...)

NULL

This widget has fields for selecting the alternative, the null, whether the data is
paired, has equal variance assumption and a field to adjust the confidence level.

14.2 An alternative to ggenericwidget()

This next example shows a different (although ultimately similar) way to produce a
widget for a function. One of the points of this example is to illustrate the power
of having common method names for the different widgets. Of course, the following
can be improved. Two obvious places are the layout of the automagically generated
widget, and and the handling of the initial variable when a formula is expected.

A constructor to automagically make a GUI for a function

> gfunction = function(f, window = gwindow(title = fName), ...) {

Get the function and its name

+ if (is.character(f)) {

+ fName = f

+ f = get(f)

+ }

+ else if (is.function(f)) {

+ fName = deparse(substitute(f))

+ }

Use formals() to define the widget

+ lst = formals(f)

Hack to figure out variable type

+ type = NULL

+ if (names(lst)[1] == "x" && names(lst)[2] == "y") {

+ type = "bivariate"

+ }

- page 28 -

gWidgets

+ else if (names(lst)[1] == "x") {

+ type = "univariate"

+ }

+ else if (names(lst)[1] == "formula") {

+ type = "model"

+ }

+ else {

+ type = NULL

+ }

Make widgets for arguments from formals

+ widgets = sapply(lst, getWidget)

Add update handler to each widget when changed

+ sapply(widgets, function(obj) {

+ try(addHandlerChanged(obj, function(h, ...) update()),

+ silent = TRUE)

+ })

Add drop target to each widget

+ sapply(widgets, function(obj) try(adddroptarget(obj, handler = function(h,

+ ...) {

+ svalue(h$obj) <- h$dropdata

+ update()

+ }), silent = TRUE))

Put widgets into a layout container

+ tbl = glayout()

+ for (i in 1:length(widgets)) {

+ tbl[i, 1] = glabel(names(lst)[i])

+ tbl[i, 2] = widgets[[i]]

+ }

Finalize the layout container

+ visible(tbl) <- TRUE

Main group

+ gp = ggroup(horizontal = TRUE, container = window)

Arrange widgets with an output area

+ add(gp, tbl)

+ gseparator(horizontal = FALSE, container = gp)

+ outputArea = gtext()

+ add(gp, outputArea, expand = TRUE)

In case this doesn't get exported

- page 29 -

gWidgets

+ svalue.default = function(obj, ...) obj

Function used to weed out 'NULL' values to widgets

+ isNULL = function(x) ifelse(class(x) == "character" && length(x) ==

+ 1 && x == "NULL", TRUE, FALSE)

Function called when a widget is changed

2nd and 3rd lines trim out non-entries

+ update = function(...) {

+ outList = lapply(widgets, svalue)

+ outList = outList[!sapply(outList, is.empty)]

+ outList = outList[!sapply(outList, isNULL)]

+ outList[[1]] = svalue(outList[[1]])

+ if (type == "bivariate")

+ outList[[2]] = svalue(outList[[2]])

+ out = capture.output(do.call(fName, outList))

+ dispose(outputArea)

+ if (length(out) > 0)

+ add(outputArea, out)

+ }

+ invisible(NULL)

+ }

The getWidget() function takes a value from formals() and maps it to an
appropriate widget. For arguments of type call the function recurses.

> getWidget = function(x) {

+ switch(class(x), numeric = gedit(x, coerce.with = as.numeric),

+ character = gdroplist(x, active = 1), logical = gdroplist(c(TRUE,

+ FALSE), active = 1 + (x == FALSE)), name = gedit(""),

+ "NULL" = gedit("NULL"), list = gListOfWidgets(x, name = ""),

+ call = getWidget(eval(x)), gedit())

+ }

This function defines a separate widget to handle the case where an argument
expects a list. It is written in the gWidgetsRGtk style including an svalue() method
below. The tag() method stores a value in the widget, similar to setting an attribute.
In this case, the list of widgets stored is consulted by the following svalue() method.

> gListOfWidgets = function(lst, name = "", container = NULL, ...) {

+ gp = gframe(text = name, container = container, horizontal = FALSE,

- page 30 -

gWidgets

+ ...)

+ obj = list(ref = gp)

+ class(obj) = c("gListOfWidgets", "gComponent", "gWidget")

+ widgetList = lapply(lst, getWidget)

+ tag(obj, "widgetList") <- widgetList

+ tbl = glayout(container = gp)

+ for (i in 1:length(widgetList)) {

+ tbl[i, 1] = glabel(names(widgetList)[i])

+ tbl[i, 2] = widgetList[[i]]

+ }

+ visible(tbl) <- TRUE

+ return(obj)

+ }

The methods below (svalue(), svalue<-() and addHandlerChanged()) map
the same method to each component of the list using sapply().

> svalue.gListOfWidgets = function(obj, ...) {

+ lst = lapply(tag(obj, "widgetList"), svalue)

+ return(lst)

+ }

> "svalue<-.gListOfWidgets" = function(obj, ..., value) {

+ if (!is.list(value))

+ return(obj)

+ widgetList = getdata(obj, "widgetList")

+ sapply(names(value), function(x) svalue(widgetList[[x]]) <- value[[x]])

+ return(obj)

+ }

> addHandlerChanged.gListOfWidgets = function(obj, handler = NULL,

+ action = NULL, ...) {

+ widgetList = getdata(obj, "widgetList")

+ sapply(widgetList, function(x) try(addHandlerChanged(x, handler,

+ action), silent = TRUE))

+ }

We can try this out on the default t.test() function. First we grab a local copy
from the namespace, then call our function. The widget with an initial value for x is
shown in Figure 9.

- page 31 -

gWidgets

> our.t.test = stats:::t.test.default

> gfunction(our.t.test)

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gDroplistRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gDroplistRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gDroplistRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

Define length for x of class:[1] "gEditRGtk"

attr(,"package")

[1] "gWidgetsRGtk2"

- page 32 -

gWidgets

Figure 9: Illustration of gfunction()

- page 33 -

	Background
	Installation
	Installing the GTK libraries
	Install the R packages

	Loading gWidgets
	Hello world
	Using containers

	Making a confirmation dialog
	Methods
	Adding a GUI to some common tasks
	file.choose()
	browseEnv()

	A gWidgetsDensity demo
	Composing email
	Drag and drop
	DND with plots
	DND from the data frame editor

	Notebooks
	The tree widget
	Popup menus
	Making widgets from an R function
	Using ggenericwidget()
	An alternative to ggenericwidget()

