
An MCMC Package for R

Charles J. Geyer

April 2, 2005

1 Introduction

This package is a simple first attempt at a sensible general MCMC package.
It doesn’t do much yet. It only does “normal random-walk” Metropolis for
continuous distributions. No non-normal proposals. No Metropolis-Hastings
or Metropolis-Hastings-Green. No discrete state. No dimension jumping. No
simulated tempering. No perfect sampling. There’s a lot left to do. Still, limited
as it is, it does equilibrium distributions that no other R package does.

Its basic idea is the following. Given an R function fred that calculates
the unnormalized density of the desired equilibrium distribution of the Markov
chain, or, better yet, log unnormalized density, so we avoid overflow and under-
flow, the metrop function should generate a Markov chain having this stationary
distribution.

The package does not do any of the following.

• Theory. (What R package does?) It doesn’t prove the Markov chain is
irreducible or ergodic or positive recurrent or Harris recurrent or geomet-
rically ergodic or uniformly ergodic or satisfies conditions for the central
limit theorem.

• Diagnostics. There are no non-bogus Markov chain diagnostics (except
for perfect sampling). This package doesn’t do any bogus diagnostics
(other R packages do them).

• Calculus. If the putative unnormalized density specified by fred is not
integrable, then it does not specify an equilibrium distribution. But this
package doesn’t check that either.

Thus the only requirement the package has to satisfy is that given a func-
tion fred it correctly simulates a Markov chain that actually has fred as its
equilibrium distribution (when fred actually does specify some equilibrium dis-
tribution)

1

2 Design Issues

2.1 First Try

For a start we have a function with signature

metrop(lud, initial, niter, ...)

such that when

• initial is a real vector, the initial state of the Markov chain,

• lud is a function, the log unnormalized density of the equilibrium distri-
bution of the Markov chain, such that

– lud(initial, ...) works and produces a finite scalar value and

– lud(x, ...) works for any real vector x having the same length as
initial and all elements finite and and produces a scalar value that
is finite or -Inf,

then the function produces an niter by length(initial) matrix whose rows
are the iterations of the Markov chain.

2.1.1 Checks

If

logh <- lud(initial, ...)

then is.finite(logh) is TRUE.
Moreover, if x is any vector such that length(x) == length(initial) and

all(is.finite(x)) are TRUE and

logh <- lud(x, ...)

then

is.finite(logh) | (logh == -Inf)

is TRUE.
Points x having log unnormalized density -Inf have density zero (normalized

or unnormalized, since a constant times zero is zero) hence cannot occur. Thus
if

path <- metrop(fred, x, n, some, extra, arguments)

then

all(is.finite(apply(path, 1, fred, some, extra, arguments)))

2

is TRUE.
This is how we specify log unnormalized densities for distribution having

support that is not all of Euclidean space. The value of the log unnormalized
density off the support is -Inf.

Thus when coding a log unnormalized density, we should normally do some-
thing like

fred <- function(x, ...)
{

if (! is.numeric(x))
stop("argument x not numeric")

if (length(x) != d)
stop("argument x wrong length")

if (! all(is.finite(x)))
stop("elements of argument x not all finite")

if (! is.in.the.support(x))
return(-Inf)

return(log.unnormalized.density(x))
}

where d is the dimension of the state space of the Markov chain (defined in
the global environment or in the ... arguments), is.in.the.support(x) re-
turns TRUE if x is in the support of the desired equilibrium distribution and
FALSE otherwise and log.unnormalized.density(x) calculates the log unnor-
malized density of the desired equilibrium distribution at the point x, which is
guaranteed to be finite because x is in the support if the this code is executed.

Of course, you needn’t actually have functions named is.in.the.support
and log.unnormalized.density. The point is that you use this logic. First
you check whether x is in the support. If not return -Inf. If it is, return a finite
value. Do not crash. Do not return NA, NaN, or Inf. If you do, then metrop
crashes, and it’s your fault.

Of course, a crash is no big deal. Lots of first efforts in R crash. You just
fix the problem and retry. Error messages are your friends.

2.2 Proposal

We also need to specify the proposal distribution (the preceding stuff as-
sumed some default proposal). This can be any multivariate normal distribu-
tion on the Euclidean space of dimension length(initial) having mean zero.
Thus it is specified by specifying its covariance matrix.

But to avoid having to check whether the specified covariance matrix ac-
tually is a covariance matrix, we make the specification an arbitrary d by d
matrix, call it scale, where d is the dimension of the state space, specified by
length(initial), and use the proposal x + scale %*% z, where x is the cur-
rent state and z is a standard normal random vector (“standard” meaning its
covariance matrix is the identity matrix).

Thus we need to add this to the argument list of our function. It is now

3

metrop(lud, initial, niter, scale, ...)

The covariance matrix specified by this is, of course, scale %*% t(scale).
If you want the proposal to have covariance matrix melvin, then specifying
scale = t(chol(melvin)) will do the job. (Of course, many other specifica-
tions will also do the job.)

For convenience, we also allow scale to be a vector of length d and in this
case take scale = sally to mean the same thing as scale = diag(sally).

For convenience, we also allow scale to be a vector of length 1 and in this
case take scale = sally to mean the same thing as scale = sally * diag(d)
where d is still the dimension of the state space length(initial).

We can use this last convenience option to give scale a default

metrop(lud, initial, niter, scale = 1, ...)

In order to tell what is sensible scaling, we need to return the acceptance
rate (the proportion of proposals that are accepted). The only criterion known
for choosing sensible scaling is to adjust so that the acceptance rate is about
20%. Of course, that recommendation was derived for a specific toy model that
is not very much like what people do in real MCMC applications, so 20% is
only a very rough guideline. But acceptance rate is all we know to use, so that’s
what we will output.

Thus the result of metrop, assuming we write it in R will be something like

return(structure(list(path = path, rate = rate),
class = "mcmc"))

and if we write it in C will be whatever does the same job.

2.3 Output I

Generally we don’t want path to be as described above. It may be way too
big. We might have d, the dimension of the state space 103 or even larger and
we might have niter 107 or even larger, the resulting path matrix would be
1010 doubles or 8× 1010 bytes. Too big to fit in my computer!

Thus we facilitate subsampling and batching of the output.

2.3.1 Subsampling

If the Markov chain exhibits high autocorrelation, subsampling the chain
may lose little information. (Most users way overdo the subsampling, but it’s
not the job of a computer program to keep users from overdoing things). Thus
we add an argument nspac that specifies subsampling. Only every nspac iterate
is output.

4

2.3.2 Batching

The method of batch means uses “batches” which are sums over consecutive
blocks of output. For most purposes batching is better than subsampling. It
loses no information while reducing the amount of output even more than sub-
sampling. So we introduce arguments nbatch specifying the number of batches
and blen specifying the length of the batches.

Our function now has signature

metrop(lud, initial, nbatch, blen = 1, nspac = 1, scale = 1,
...)

Note that the argument niter formerly present has vanished. The number
of iterations that will now be done is nbatch * blen * nspac. If we accept
the defaults blen = 1 and nspac = 1, then nbatch is the same as the former
argument niter. Otherwise, it is quite different.

2.4 Output II

The preceding section takes care of of the problem of niter being too big.
This section deals with the dimension of the state space being too big. When
the dimension of the state space is large, we generally do not want to output
the whole state, but only some function of the state.

Thus we need another function (besides lud) to produce the output vector.
Call it outfun. The requirements on outfun are

• If is.finite(lud(x, ...)), then outfun(x, ...) works (it does not
crash) and produces a vector having all elements finite and always of the
same length (say k).

outfun will never be called in any other situation (that is, never when x is not
in the support of the equilibrium distribution).

Now we can describe the path component of the output. We’ll use a little
math here. Write L for blen and M for nspac. Write xi for the i-th iterate of
the Markov chain, and write g for outfun. Then path[j,] is the vector

1
L

L∑
i=1

g(xM [L(j−1)+i])

For convenience, we also allow outfun to be a logical vector of length d or
an integer vector having elements in 1:d or in -(1:d) and in this case take
outfun = fred to mean the same thing as outfun = function(x) x[fred].

For convenience, we also allow outfun to be missing take this to mean the
same thing as outfun = function(x) x, that is, the “outfun” is the identity
function and we are back to outputting the entire state.

Our function now has signature

metrop(lud, initial, nbatch, blen = 1, nspac = 1, scale = 1,
outfun, ...)

5

2.5 Restarting

It should be possible to restart the Markov chain and get exactly the same
results. It should be possible to continue the Markov chain and get exactly the
same results. Thus we need to save the initial and final state of the Markov
chain and the initial and final state of the random number generator (the R
object .Random.seed).

Thus the result of metrop now looks like

return(structure(list(path = path, rate = rate,
initial = initial, final = final,
initial.seed = iseed, final.seed = .Random.seed),
class = "mcmc"))

We also need to add arguments to metrop. It now has signature

metrop(lud, initial, nbatch, blen = 1, nspac = 1, scale = 1,
outfun, object, restart = FALSE, ...)

Here object is an R object of class "mcmc", the output a previous call to metrop,
from which we take either initial or final state and seed depending the value of
restart.

While we are at it, it is convenient to allow any or all of the other arguments
to be missing if object is supplied. We just take the argument from object.
Thus we can make calls like

out <- metrop(fred, x, 1e3, scale = 4, blen = 3)
out.too <- metrop(object = out, nbatch = 1e4)

Woof! I now see (how embarrasing) after four earlier versions how to use
the R class system to make this convenient. We have three functions.

metrop.default <- function(o, ...)
UseMethod("metrop")

metrop.mcmc <- function(o, initial, nbatch, blen = 1,
nspac = 1, scale = 1, outfun, restart = FALSE, ...)

{
if (missing(nbatch)) nbatch <- o$nbatch
if (missing(blen)) blen <- o$blen
if (missing(nspac)) nspac <- o$nspac
if (missing(scale)) scale <- o$scale
if (missing(outfun)) outfun <- o$outfun

if (restart) {
.Random.seed <- o$final.seed
return(metrop.function(olud, ofinal, nbatch, blen,

nspac, scale, outfun))
} else {

6

.Random.seed <- o$initial.seed
return(metrop.function(olud, oinitial, nbatch, blen,

nspac, scale, outfun))
}

}

metrop.function <- function(o, initial, nbatch, blen = 1,
nspac = 1, scale = 1, outfun, restart = FALSE, ...)

{
if (! exists(".Random.seed")) runif(1)
initial.seed <- .Random.seed
func1 <- function(state) o(state, ...)
func2 <- function(state) outfun(state, ...)
.Call("metrop", func1, initial, nbatch, blen,

nspac, scale, func2, environment(fun = func1),
environment(fun = func2))

}

Note that restart is ignored in metrop.function. We can’t “restart” when
we have no saved state in an "mcmc" object.

Note also that our "mcmc" objects must now store a lot more stuff (and more
to come in the next section).

2.6 Testing and Debugging

It is nearly impossible to test or debug a random algorithm (any Monte
Carlo) from looking at its designed (useful to the user) output. In order to do
any serious testing or debugging, it is necessary to look under the hood. For
the Metropolis algorithm, we need to look at the current state, the proposal,
the log odds ratio, the uniform random variate (if any) used in the Metropolis
rejection, and the result (accept or reject) of the Metropolis rejection.

Hence we need to add one final argument debug = FALSE to our functions
and a lot of debugging output to the result.

In debugging a Metropolis (etc.) algorithm there is a very important prin-
ciple. Debugging should use Markov chain theory! Just enlarge the state space
of the Markov chain to include

• the proposal (vector),

• details of the calculation of the Metropolis-Hastings-Green ratio (for Metropo-
lis this is just the log unnormalized density at the current state and pro-
posal, for others it includes proposal densities) and the calculated ratio,

• the uniform random number (if any) used in the decision, and

• the decision (TRUE or FALSE) in the Metropolis rejection.

With all that it is easy to tell whether the algorithm is doing the Right Thing.
Without all that, it’s nearly impossible.

7

