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Abstract

The maximum entropy bootstrap is an algorithm that creates an ensem-
ble for time series inference. Stationarity is not required and the ensemble
satisfies the ergodic theorem and the central limit theorem. The meboot R-
package implements such algorithm. This document introduces the procedure
and illustrates its scope by means of several guided applications.
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This paper illustrates the use of meboot R-package based on Vinod (2004, 2006).
In traditional theory, an ensemble §2 represents the population behind the observed
time series. The maximum entropy (ME) bootstrap constructs a large number of
replicates (J =999, say) as elements of 2 for inference using a seven-step algorithm
designed to satisfy the ergodic theorem (the grand mean of all ensembles is close to
the sample mean). The algorithm’s practical appeal is that it avoids all structural
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Mazimum Entropy Bootstrap for Time Series

change and unit root type testing involving complicated asymptotics and all shape-
destroying transformations like de-trending or differencing to achieve stationarity.
The constructed ensemble elements retain the basic shape and dependence structure
of autocorrelation function (acf) and partial autocorrelation function (pacf) of the
original time series.

This discussion collects relevant portions of Vinod (2004, 2006) as templates for
users of the meboot package. Let us begin with some motivation. In social sciences
the underlying system is often dynamic, complex and adaptive leading to irreversible
non-stationary and short time series. Economists often use detrending and differenc-
ing to convert such series to stationarity. We avoid the ‘non-standard’ Dickey-Fuller
type sampling distribution of regression coefficients with severe inference problems
for panel data. Wiener, Kolmogorov and Khintchine (WKK), among others, devel-
oped the stationary model in 1930’s where the data x; arise from a collection of an
infinite set of time series, called the ensemble.

Vinod (2004, 2006) offers a computer intensive construction of a plausible ensem-
ble created from a density satisfying the maximum entropy principle. The meboot
algorithm uses quantiles x;, for j=1,.., J (=999, say), of the ME density as members
of the ensemble from the inverse of its ‘empirical’ cumulative distribution function
(CDF). The ergodic theorem (grand mean of all x;, representing the ensemble av-
erage equals the time average of z;) is guaranteed as is the central limit theorem.

Stationary times series are integrated of order zero, 1(0). Many real world ap-
plications involve a mixture of I(0) and nonstationary I(d) series, where the order
of integration d can be different for different series and even fractional, and where
the stationarity assumptions are difficult to verify. The WKK theory mostly needs
the zero memory I(0) white noise type processes, where some results are true only
for circular processes, implying that we can go back in history, (e.g., undo the SEC,
FCC, or go back to horse and buggy, pre 9/11 days, etc.) and is quite unrealistic.

One can bring realism by testing and allowing for finite ‘structural changes’,
often with ad hoc tools. It is hard to accept the notion of infinite memory of the
random walk I(1) when the very definitions of economic series (e.g., quality and
content of the GDP, names of stocks in the Dow Jones average) change over finite
time intervals. This is often not a problem in natural sciences. For example, the
definition of water or the height of an ocean wave is unchanged over time.

2 Maximum Entropy Bootstrap

This section describes the ME bootstrap procedure and indicates the similarities
and differences with the traditional bootstrap.

2.1 The algorithm

The set of steps entailed in the Vinod’s ME bootstrap algorithm to create a random
realization of x; is as follows.

1. Sort the original data in increasing order and store the ordering index vector.
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2. Compute intermediate points on the sorted series.

3. Compute lower limit for left tail and upper limit for right tail . This is done
by extrapolating beyond sample limits using the trimmed mean of deviations
among all consecutive observations.

4. Compute the mean of the maximum entropy density within each interval in
such a way that the mean preserving constraint is satisfied. (Denoted as m; in
the reference paper.) The first and last interval means have different formulas.

5. Generate random numbers from the [0,1] uniform interval and compute sample
quantiles at those points.

6. Apply to the sample quantiles the correct order to keep the dependence rela-
tionships of the observed data using ordering index of step 1.

7. Repeat steps 2 to 6 several times (e.g. 999).

2.2 A toy example

The procedure described above is illustrated with a small example. Let the sequence
xy = 4,12, 36, 20,8 be the series of data observed from the period t =1 to t =5 as
indicated in the first two columns of Table 1. We start by sorting the observed data
in increasing order and store the ordering index vector (Table 1 columns 3 and 4).

Next, intermediate points between two consecutive ordered observations are ob-
tained (column 5, simple averages), being the limits used to build half open intervals.
The maximum entropy density in the ME bootsrap is defined as the combination of
T uniform densities where the lower and upper limits are the intermediate points
shown in column 5. For the first and last intervals, the lower limit and the upper
limit, respectively, (i.e. the smallest and the largest allowable values) are obtained
by substracting to the minimum and maximum observed values the trimmed mean
of the absolute deviations among all consecutive observations. Hence the tails are
uniform distributed as well. For a trimming proportion equal to 10%, these values
are —11 and 51, respectively.

Table 1: Example of the ME bootsrap procedure

. Ordering Sorted Ir‘lterme— Desired  Uniform Pr.eh— Final
Time =z, diate minary .
vector  xy . means draws replicate
points values
1 4 1 4 6 5 0.12 5.85 5.85
2 12 5 8 10 8 0.83 6.70 8.90
3 36 2 12 16 13 0.53 8.90 23.95
4 20 4 20 28 22 0.59 10.70 10.70
5 8 3 36 32 0.11 23.95 6.70
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In the example, the ME density is the combination of the following uniform
densities: U(—11,6] x U(6,10] x U(10, 16] x U(16, 28] x U(28, 51| as shown in Figure
1.

Figure 1: Maximum entropy density for the z; = 4,12, 36, 20, 8 example
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Then, half open intervals are defined between two consecutive ordered data and
their intermediate points are obtained (column 5). In order to satisfy the mean
preserving constraint of the ME density, the interval means, m;, are obtained as
follows:

my = 0.75xx1 + 0.25zx9, for the lowest interval,
my = 0.25zz;_1 4+ 0.50xx) + 0.252084,, fork=2,...,T —1
mr = 0.25zx7_1 +0.75zx7,

where xx; stands for the data sorted in increasing order. The desired means for this
case are reported in column 6.

Then random numbers from the [0, 1] uniform intervals are drawn and used as
reference to compute quantiles of the ME density. (See left side plot in Figure 2.)
The ME density quantiles obtained in this way provide a monotonic series. The final
replicate is obtained by recovering the original order. (See right side plot in Figure
2.)

2.3 Contrast with traditional iid bootstrap

Vinod (2004, 2006) mentions three properties of traditional iid bootstrap which are
worth avoiding for the purpose of constructing ensembles viewed as reincarnations
of original time series.
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Figure 2: Example of the ME bootstrap procedure
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e The traditional bootstrap sample repeats some z; values while not using as
many others. We are considering applications where there is no reason to
believe that values near the observed x; are impossible. For example, let

xy = 49.2. Since 49.19 or 49.24, both of which round up to x; = 49.2, there is
no justification for excluding at least such values.

e The traditional bootstrap resamples must lie in the closed interval [min(z;), max(z;)].
In most real world series this is an artificial restriction with no justification.
Since the observed range is random, we cannot rule out somewhat smaller or
larger x; and wider ranges.

e The traditional bootstrap resample shuffles z; such that any dependence infor-
mation in the time series sequence (21, ..., Ty, Ti1, ..., or) is lost. If we try to
restore the original order to the shuffled resample of the traditional bootstrap,
we end up with essentially the original set x;, except that some dropped x;
values are replaced by the repeats of adjacent values. Hence, it is impossible
to generate a large number J of sensibly distinct resamples with the traditional
bootstrap.

2.4 Shape retention

In addition to strong dependence arguments offering a justification for perfect rank
matching, we now show that pseudo utilities associated with z; and x;; share com-
parable ordinal utilities. FEconomists familiar with the ordinal utility theory know
that economists do not like to make interpersonal comparisons of utility, since no
two persons can ‘feel” exactly the same satisfactions. Yet economists must compare
utilities to make policy recommendations.
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The problem was solved in classical economics by using the concept of ordinal
utility, which says that utilities experienced by individuals are comparable to each
other, provided the utility bundles satisfy common partial ordering (what we call
perfect rank matching).

Imagine that xz; represents the evolving time path for income of one individual
(or collection of individuals in a country) sensitive to initial resources at birth and
intellectual endowments. Our aim is to make reincarnations comparable to each
other without assuming more than necessary knowledge. Our double sorting in the
ME boot algorithm retains just enough of the basic shape of z;, without pretending
to compare underlying ‘feelings’ across reincarnations. Formally each j obeys the
partial ordering of x; and retains the broad shape of its ups and downs.

3 The meboot R-package

The package meboot implements the maximum bootstrap bootstrap procedure for
time series described in Vinod (2004, 2006). The package can be obtained from the
Comprehensive R Archive Network at http://www.cran.r-project.org and can
be easily installed by typing install.packages("meboot") or
install.packages("meboot", lib.loc="R-library-no-default-path" in the R
console.

Once the package is installed, the functions can be made available in the workspace
loading the package by means of library(meboot) or library(meboot, lib.loc="R-
library-no-default-path").

Reference information about the package (help (package=meboot)) or help pages
for the functions implemented in it (for instance help(meboot)) can also be ob-
tained.

4 Applications

4.1 Consumption function

This example describes how to carry out inference through the ME ensemble in the
following regression:

¢t =01+ Bacio1 + Bsy—1 + uy, (1)

for the null hypothesis g3 = 0.

We use the data set employed in Murray, M.P. (2006, pp. 799-801) to discuss
the Keynesian consumption function on the basis of the Friedman’s permanent in-
come hypothesis and Robert Hall’s model. The data are the logarithm of the US
consumption, ¢;, and disposable income, 1, in the period 1948-1998.

> library (meboot)
> library(car)
> library(lmtest)
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v

data (USconsum)
attach (USconsum)

v

lc <- log(consum)

ly <- log(dispinc)

Imcf <- 1Im(1c[2:51] ~ 1c[1:50] + 1y[1:50])
coeftest (1mcf)

vV VvV Vv Vv

t test of coefficients:

Estimate Std. Error t value Pr(>[t])
(Intercept) 0.026932 0.026101 1.0318 0.3074
1c[1:50] 0.969680 0.142612 6.7994 1.647e-08 **x*
1y[1:50] 0.026953 0.143889 0.1873 0.8522

Signif. codes: O 's*x' 0.001 'x+' 0.01 '#' 0.05'." 0.1 ' ' 1
> durbin.watson(model = lmcf, max.lag = 4)

lag Autocorrelation D-W Statistic p-value

1 0.14597875 1.690194 0.180
2 -0.03521029 2.017553 0.89%4
3 -0.08825760 2.082973 0.768
4 -0.08849678 2.078104 0.604

Alternative hypothesis: rho[lag] != 0

The estimated coefficient of lagged income, B3 = 0.027, is statistically insignifi-
cant. The 95% confidence interval is (—0.263,0.316), with zero inside this interval.
The residuals are serially uncorrelated since the p-values of the generalized Durbin-
Watson statistics up to order 4 are larger than the significance level 0.05.

This result is traditionally interpreted as supporting the Friedman permanent
income hypothesis. However, with the advent of unit root literature we know that
the sampling distribution of (33 is nonstandard and that traditional inference based
on the Student’s ¢t or Normal distributions may lead to spurious results.

The literature suggests differencing or de-trending C; and Y; and/or using a non-
standard density to assess statistical significance. Instead of unit root tests on C; and
Y, to decide whether differencing is appropriate, we use the ME bootstrap to create
J=999 replicates of C; and Y;. The ensemble can be used to construct confidence
intervals and decide whether the estimated coefficient is statistically significantly
different from zero.

By means of the meboot function it is straightforward to create a set of replicates
that approximate the population for the logarithm of the disposable income. We
compute bigJ=999 replicates and make sure that the ensemble elements satisfy the
desirable statistical properties of central limit theorem and ergodic theorem.!

> semx <- meboot(x = ly, reps = 999, reachbnd = TRUE, expand.sd = TRUE,
+ force.clt = TRUE)$ensemble

'For example, the grand mean of the 999 realizations equals the sample mean.
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Creation of a similar population for the dependent variable C; needs further care
since we must abide by the expression (1) under the null hypothesis 53 = 0. For
it we generate a first order autoregressive model where the coefficients are obtained
from the regression restricted to the null hypothesis 3 = 0, 1mrcf.

Since the C} is subject to error, u;, we need to create a set of innovations. We
do this by creating an ensemble for the residuals of the restricted regression, lmrcf.
As one observation is lost due to the presence of a lagged variable, we take the first
value for consumption, observation in year 1948, as the first observation.

> Imrcf <- 1m(1c[2:51] ~ 1c[1:50])

> bb <- coef(lmrcf)

> resi <- resid(lmrcf)

> bigJ <- 999

> et <- meboot(x = resi, reps = 1)$ensemble

> AC <- arima.sim(n = length(lc), model = list(order = c(1, O,

+ 0), ar = bb[2]), n.start = 1, innov = c(1c[1], et + bb[1]),

+ start.innov = 0)

> semy <- meboot(x = AC, reps = bigJ, reachbnd = TRUE, expand.cd = TRUE,
+ force.clt = TRUE)$ensemble

Thus we have all the needed data to fit bigJ additional regressions as in (1).
By repeating this £ = 1,...,bigk=100 times we have 99900 regression coefficient
estimates of (33, the focus of our inference. Next, confidence limits for (3 can be
obtained, rejecting the null hypothesis if zero lies outside these confidence interval
limits.

Now run all commands in the appendix (allow enough time). In each iteration
from k=1 to bigkK, two-sided confidence interval around zero based on the 1000
coefficients, all.artif.b, are stored in all.LO and all.UP respectively for the
lower and upper limit for the purpose of averaging.

> zci <- zero.ci(all.artif.b)
> all.LO[k] <- zci$lolim

> all.UP[k] <- zci$uplim

> avL0 <- mean(all.LO)

> avUP <- mean(all.UP)

The averaging lower and upper limits are avL0 = —0.083 and avUP = 0.333.

Size corrected lower and upper limits (confidence interval around zero as the true
value as computed by the function zero.ci) can be obtained for the grand set of
slopes (allK.artif.b in the appendix).

> cc <- rbind(as.matrix(all.L0O), as.matrix(all.UP))

> zcc <- zero.ci(cc)

> scL0 <- zcc$lolim

> scUP <- zcc$uplim

The refined 95% ME bootstrap confidence interval (scLO, scUP) for the statistic
of interest estimated as (5 = 0.027 is [—0.110,0.396]. Since zero lies within this
null interval, the results provide statistical evidence in favour of the Friedman’s
hypothesis.
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4.2 Assessment of the Fed effect on stock prices using panel
data

This example shows how the ME bootstrap can be employed for panel data analysis.
Our example is from Vinod (2002) where the effect of monetary policy (interest rates)
on prices and their turning points in the stock market is evaluated.

The Fed effect discussed in the financial press refers to a rally in the S&P 500
prices few days before the Fed meeting and a price decline after the meeting. This ex-
ample focuses on the longer term than daily price fluctuations by using the monthly
data (May 1993 to November 1998) for stocks with ticker symbols: ABT, AEG,
ATI, ALD, ALL, AOL, and AXP and regard this as a representative sample. Thus
the data set consists of 67 x 7 = 469 observations.

First, we regress the stock price (P) on the natural log of market capitalization
(LMV), as a control variable for the size of the firm and the interest on 3-month
Treasury bills (TB3). Note that TB3 is the key interest rate influenced by monetary
policy of the Federal Reserve Bank (Fed). The model is:

Py = Bo+ B LMV + B3 TB3;; + €4t (2)

where the subscript it refers to i-th individual at time t. The Fed effect is present,
if the variable TB3 in equation (2) is statistically significant.

4.2.1 Pooled effects

As reported below, the t-value for TB3 in the pooled model is highly significant and
the corresponding p-value suggests that the Fed does have a statistically significant
effect on the level of stock prices in a pooled regression. The multiple regression R?
is 0.4972, if adjusted for the degrees of freedom, it becomes 0.495 based on T=468
observations.

library(meboot)
library(plm)
data(ullwan)
attach(ullwan)

vV V. Vv Vv

v

LMV <- log(MktVal)
> summary(lm(Price ~ LMV + Tb3))

Call:
Im(formula = Price ~ LMV + Tb3)

Residuals:
Min 1Q Median 3Q Max
-35.415 -11.474 -2.923 4.822 70.909

Coefficients:
Estimate Std. Error t value Pr(>|t])
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(Intercept) -125.5963 11.2089 -11.205 < 2e-16 **x*
LMV 18.8479 0.8864 21.264 < 2e-16 **x*
Tb3 -4.8046 1.4795 -3.247 0.00125 *x*

Signif. codes: O 's*x' 0.001 'x+' 0.01 '#' 0.05'." 0.1 ' ' 1

Residual standard error: 18.95 on 466 degrees of freedom
Multiple R-Squared: 0.4972, Adjusted R-squared: 0.495
F-statistic: 230.4 on 2 and 466 DF, p-value: < 2.2e-16

We use the R package plm (Croissant, 2005) and ¢-value for the coefficient of TB3
from the pooled model suggests that the Fed does have a statistically significant effect
on the level of stock prices in a pooled regression. The high value of the F-statistic
in the following table suggests that pooling may not be appropriate.

> gi <- plm(Price ~ LMV + Tb3, data = ullwan)
> gicoef <- gi$pooling[[1]]

> n1 <- length(gicoef)

> summary(gi)

Model Description

Oneway (individual) effect

Model Formula : Price ~ LMV + Tb3

Balanced Panel

Number of Individuals : 7
Number of Time Obserbations : 67
Total Number of Observations : 469

____________________________ Coefficients ____________________________
within wse random rse

(intercept) . . —184.92025 10.4036

LMV 25.14412 0.78547  25.00087 0.7842

Tb3 -4.96342 1.01881 -4.95981 1.0217

_______________________________ Tests _ __ _ _ o _____

Hausman Test : chi2(2) = 10.09357 (p.value=0.00642998)

F Test : F(6,460) = 87.14226 (p.value=0)

Lagrange Multiplier Test : chi2(1) = 3253.871 (p.value=0)

We need to slightly modify the ME bootstrap algorithm for panel data to care-
fully create J replicates over time, separately for N individuals (N=7 stock symbols
here). The extended ME boot algorithm is used to create 999 ensembles for the 67
time series points for the 7 stocks separately. Collecting them together, we have

10
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1000 sets of 67 x 7 = 469 data points upon including the original data as the first
column and 999 additional columns. Below we use panel.boot to create ensembles
of the panel data set for the logarithm of the market capitalization, stock prices and
interest on 3-month Treasury bills.

> jboot <- 999

> ullwan[, 3] <- log(ullwan[, 3])

> set.seed(567)

> LMV.ens <- panel.meboot(x = ullwan, reps = jboot, colsubj = 1,

+ coldata = 3, expand.sd = TRUE, force.clt = TRUE)

> Price.ens <- panel.meboot(x = ullwan, reps = jboot, colsubj = 1,
+ coldata = 4, expand.sd = TRUE, force.clt = TRUE)

> Tb3.ens <- panel.meboot(x = ullwan, reps = jboot, colsubj = 1,

+ coldata = 6, expand.sd = TRUE, force.clt = TRUE)

The purpose of the ME boot here is to assess if we continue to have significant Fed
effect for pooled and other models described below. Results based on ME bootstrap
can be computed as follows.

> slopeTb3 <- slopeLMV <- rep(0, jboot)

> for (j in 1:jboot) {

+ frm <- data.frame(Subj = ullwan[, 1], Time = ullwan[, 2],
+ Price = Price.ens[, j], Tb32 = Tb3.ens[, jJ,

+ LMV2 = LMV.ens[,j])

+ frm <- pdata.frame(frm, 7)

+ gip <- plm(Price ~ LMV + Tb3, data = frm)$pooling[[1]]

+ slopeTb3[j] <- as.numeric(gip[3])

+ slopelMV[j] <- as.numeric(gip[2])

+ }

The 95% ME boot percentile confidence interval for TB3 obtained by:

n25 <- ceiling(0.025 * jboot)

n975 <- floor(0.975 * jboot)

sortb <- sort(as.numeric(slopeTb3[1:jboot]))
c(sortb[n25], sortb[n975])

vV VvV Vv VvV

is (-5.597, -3.381). A refined asymmetric interval obtained by calling the function
zero.ci provided in the meboot package as follows: zero.ci(as.numeric(slopeTb3)),
is (-5.746 -3.931). Both intervals do not contain zero implying that the effect of TB3
on stock prices is statistically significantly negative (different from zero) in a pooled
model.

In the same way, the percentile intervals for the regressor LMV is (17.622,
20.845), with the refined one as (18.482, 21.171) suggesting a significantly positive
regressor.

11
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4.2.2 Random effects

The random effects model results are obtained below. To save space and focus on the
results based on ME replicates we do not display here the results from the traditional
procedure.

> summgi = summary(gi)
> sr <- summgi$Coef[, 3:4]
> gicoef <- sr[, 1]
> n2 <- length(gicoef)
> se <- sr[, 2]
> print(gicoef)
Results based on the ME bootstrap are computed as follows:
> slopeTb3 <- slopeLMV <- rep(0, jboot)
> for (j in 1:jboot) {
+ frm <- data.frame(Subj = ullwan[, 1], Tim = ullwan[, 2],
+ Price = Price.ens[, jl, Tb32 = Tb3.ens[, j],
+ LMV2 = LMV.ens/[,j])
+ frm <- pdata.frame(frm, 7)
+ gip <- plm(Price ~ LMV + Tb3, data = frm)$random[[1]]
+ slopeTb3[j] <- as.numeric(gip[3])
+ slopelMV[j] <- as.numeric(gip([2])
+ }

The random effects 95% ME boot confidence interval using the 999 replicates
of data yields (22.614, 28.779) as the refined interval and (23.864, 29.542) as the
percentile interval for LMV. More important, it yields (-5.782, -3.497) as the refined
interval and (-5.951, -4.083) as the percentile interval for TB3. Since the latter
intervals do not cover zero, we can conclude that Fed effect is significant for the
random effects panel data model.

5 Concluding remarks
We illustrated the performance and usage of the Vinod’s maximum entropy boot-

strap for dependent data by means of several examples of relevance for time series
inference.

A Appendix

A.1 Consumption function

> 0l1sHALL.b <- function(x, y) {
+ n <- length(x)
* x <- c¢bind(y[-n], x[-n])

12
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y <- yl-1]
tol <- 1e-07
p <- ncol(x)
ny <- NCOL(y)
Imh <- Im(y ~ x)
coef (1mh) [3]
}
bigJ <- 999
bigk <- 100
allK.artif.b <- rep(0, (bigJ * bigK +
1))
all.LO <- rep(0, bigK)
all.UP <- all.LO
set.seed(321)
for (k in 1:bigK) {
et <- meboot(x = resi, reps = 1)$ensemble
AC <- arima.sim(n = length(lc), model = list(order = c(1,
0, 0), ar = bb[2]), n.start = 1,
innov = c(Ic[1], et + bb[1]),
start.innov = 0)
semy <- meboot(x = AC, reps = bigd,
reachbnd = TRUE, expand.sd = TRUE,
force.clt = TRUE)$ensemble
semy <- cbind(AC, semy)
semx <- meboot(x = ly, reps = bigJ,
reachbnd = TRUE, expand.sd = TRUE,
force.clt = TRUE)$ensemble
semx <- cbind(ly, semx)
all.artif.b <- rep(NA, ncol(semy))
for (h in seq(along = all.artif.b))
all.artif.b[h] <- 0lsHALL.b(x = semx[,h], y = semy[, h])
if (k == 1)
allK.artif.b[1] <- all.artif.b[1]
k1 <- (k - 1) * bigJ + 2
k2 <- k * bigJ + 1
allK.artif.b[k1:k2] <- all.artif.b[2:(bigJ + 1)]
zci <- zero.ci(all.artif.b)
all.LO[k] <- zci$lolim
all.UP[k] <- zci$uplim
if ((k * 100/bigK)%%5 == 0)
cat (paste((k * 100/bigK), "%",
sep = ""), "complete.\n")

13
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