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Abstract

Many statistical analyses are based on models containing systems of structurally related
equations. In cases where cross-equation disturbances are correlated, full information methods
are required (Zellner, 1962). If exogenous variables are stochastically dependent on the distur-
bances in the system, then instrumental variable estimation methods should be used (Zellner
and Theil, 1962) The package systemfit provides the capability to estimate systems of linear
equations within the R programming environment.

Keywords: R, simultaneous equations systems, seemingly unrelated regression, two-stage
least squares, three-stage least squares

1 Introduction

Many theoretical models that are econometrically estimated consist of more than one equa-
tion. The disturbance terms of these equations are likely to be contemporaneously correlated,
because unconsidered factors that influence the disturbance term in one equation probably
influence the disturbance terms in other equations. Ignoring this contemporaneous correlation
and estimating these equations separately leads to inefficient parameter estimates. However,
estimating all equations simultaneously, taking the covariance structure of the residuals into
account, leads to efficient estimates. This estimation procedure is generally called “Seemingly
Unrelated Regression” (SUR) (Zellner, 1962). Another reason to estimate an equation system
simultaneously are cross-equation parameter restrictions.1 These restrictions can be tested
and/or imposed only in a simultaneous estimation approach.

Furthermore, these models can contain variables that appear on the left-hand side in one
equation and on the right-hand side of another equation. Ignoring the endogeneity of these
variables can lead to inconsistent parameter estimates. This simultaneity bias can be cor-
rected for in each equation by applying a “Two-Stage Least Squares” (2SLS) method or for all
equations simultaneously when combined with SUR resulting in a “Three-Stage Least Squares”
(3SLS) estimation of the system of equations.

The systemfit package provides the capability to estimate linear equation systems in R (R De-
velopment Core Team, 2005). Although linear equation systems can be estimated with several
other statistical and econometric software packages (e.g. SAS, EViews, TSP), systemfit has
several advantages. First, all estimation procedures are publicly available in the source code.
Second, the estimation algorithms can be easily modified to meet specific requirements. Third,

1 Especially the economic theory suggests many cross-equation parameter restrictions (e.g. the symmetry restriction
in demand models).
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the (advanced) user can control estimation details generally not available in other software
packages by overriding reasonable defaults.

In Section 2 we introduce the statistical background of estimating equation systems. The
implementation of the statistical procedures in R is shortly explained in Section 3. Section 4
demonstrates how to run systemfit and how some of the features presented in the previous
section can be utilized. In Section 5 the reliability of the results from systemfit are presented.
Finally, a summary and outlook are presented in Section 6.

2 Statistical background

In this section we provide the statistical background of the functionality provided by the sys-
temfit package. After introducing notations and assumptions, we provide the formulas to
estimate systems of linear equations. We then demonstrate how to impose linear restrictions
on parameters. Finally, we present additional relevant issues about estimation of equation
systems.

Consider a system of G equations, where the ith equation is of the form

yi = Xiβi + ui, i = 1, 2, . . . , G (1)

where yi is a vector of the dependent variable, Xi is a matrix of the exogenous variables, βi is
the coefficient vector and ui is a vector of the disturbance terms of the ith equation.

We can write the “stacked” system as
y1

y2
...

yG

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XG

 ·


β1

β2
...

βG

 +


u1

u2
...

uG

 (2)

or more simply as
y = Xβ + u (3)

We assume that there is no correlation of the disturbance terms across observations:

E (uit ujt∗) = 0 ∀ t 6= t∗ (4)

where i and j indicate the equation number and t and t∗ denote the observation number.
However, we explicitly allow for contemporaneous correlation:

E (uit ujt) = σij (5)

Thus, the covariance matrix of the total system is

E
(
u u′

)
= Ω = Σ⊗ I (6)

where Σ = [σij ] is the residual covariance matrix and I is an identity matrix.

2.1 Estimation

2.1.1 Ordinary least squares (OLS)

The Ordinary Least Squares (OLS) estimator of the system is obtained by

β̂OLS =
(
X ′X

)−1
X ′y (7)
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These estimates are efficient only if the disturbance terms are not contemporaneously corre-
lated, which means σij = 0 ∀ i 6= j. If the whole system is treated as one single equation, the
covariance matrix of the estimated parameters is

Cov
[
β̂OLS

]
= σ2

(
X ′X

)−1 (8)

with σ2 = E (u′u). This assumes that the disturbances of all equations have the same variance.
If the disturbance terms of the individual equations are allowed to have different variances,

the covariance matrix of the estimated parameters is

Cov
[
β̂OLS

]
=

(
X ′Ω−1X

)−1 (9)

with Ω = Σ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui).
If no cross-equation parameter restrictions are imposed, the simultaneous OLS estimation of

the system leads to the same parameter estimates as an equation-wise OLS estimation. The
covariance matrix of the parameters from an equation-wise OLS estimation is equal to the
covariance matrix obtained by equation (9).

2.1.2 Weighted least squares (WLS)

The Weighted Least Squares (WLS) estimator of the system is obtained by

β̂WLS =
(
X ′Ω−1X

)−1
X ′Ω−1y (10)

with Ω = Σ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui). Like the OLS estimates these estimates are
only efficient if the disturbance terms are not contemporaneously correlated. The covariance
matrix of the estimated parameters is

Cov
[
β̂WLS

]
=

(
X ′Ω−1X

)−1 (11)

If no cross-equation parameter restrictions are imposed, the parameter estimates are equal to
the OLS estimates.

2.1.3 Seemingly unrelated regression (SUR)

When the disturbances are contemporaneously correlated, a Generalized Least Squares (GLS)
estimation leads to efficient parameter estimates. In this case, the GLS is generally called
“Seemingly Unrelated Regression” (SUR) (Zellner, 1962). It should be noted that while an
unbiased OLS or WLS estimation requires only that the regressors and the disturbance terms
of each single equation are uncorrelated (E [ui|Xi] = 0 ∀ i), a consistent SUR estimation
requires that all disturbance terms and all regressors are uncorrelated (E [u|X] = 0).

The SUR estimator can be obtained by:

β̂SUR =
(
X ′Ω−1X

)−1
X ′Ω−1y (12)

with Ω = Σ⊗ I and σij = E (u′iuj). And the covariance matrix of the estimated parameters is

Cov
[
β̂SUR

]
=

(
X ′Ω−1X

)−1 (13)

2.1.4 Two-stage least squares (2SLS)

If the regressors of one or more equations are correlated with the disturbances (E (ui|Xi) 6= 0),
the estimated coefficients are biased. This can be circumvented by an instrumental variable
(IV) two-stage least squares (2SLS) estimation. The instrumental variables for each equation
Hi can be either different or identical for all equations. The instrumental variables of each
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equation may not be correlated with the disturbance terms of the corresponding equation
(E (ui|Hi) = 0).

At the first stage new (’fitted’) regressors are obtained by

X̂i = Hi

(
H ′

iHi

)−1
H ′

iX (14)

At the second stage the unbiased two-stage least squares estimates of β are obtained by:

β̂2SLS =
(
X̂ ′X̂

)−1
X̂ ′y (15)

If the whole system is treated as one single equation, the covariance matrix of the estimated
parameters is

Cov
[
β̂2SLS

]
= σ2

(
X̂ ′X̂

)−1
(16)

with σ2 = E (u′u). If the disturbance terms of the individual equations are allowed to have
different variances, the covariance matrix of the estimated parameters is

Cov
[
β̂2SLS

]
=

(
X̂ ′Ω−1X̂

)−1
(17)

with Ω = Σ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui).

2.1.5 Weighted two-stage least squares (W2SLS)

The Weighted Two-Stage Least Squares (W2SLS) estimator of the system is obtained by

β̂W2SLS =
(
X̂ ′Ω−1X̂

)−1
X̂ ′Ω−1y (18)

with Ω = Σ ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui). The covariance matrix of the estimated
parameters is

Cov
[
β̂W2SLS

]
=

(
X̂ ′Ω−1X̂

)−1
(19)

2.1.6 Three-stage least squares (3SLS)

If the regressors are correlated with the disturbances (E (u|X) 6= 0) and the disturbances are
contemporaneously correlated, a Generalized Least Squares (GLS) version of the two-stage
least squares estimation leads to consistent and efficient estimates. This estimation procedure
is generally called “Three-stage Least Squares” (3SLS) (Zellner and Theil, 1962).

The standard 3SLS estimator can be obtained by:

β̂3SLS =
(
X̂ ′Ω−1X̂

)−1
X̂ ′Ω−1y (20)

with Ω = Σ⊗ I and σij = E (u′iuj). Its covariance matrix is:

Cov
[
β̂3SLS

]
=

(
X̂ ′Ω−1X̂

)−1
(21)

While an unbiased 2SLS or W2SLS estimation requires only that the instrumental variables and
the disturbance terms of each single equation are uncorrelated (E [ui|Hi]) = 0 ∀ i), Schmidt
(1990) points out that this estimator is only consistent if all disturbance terms and all instru-
mental variables are uncorrelated (E [u|H]) = 0) with

H =


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · HG

 (22)
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Since there might be occasions where this cannot be avoided, Schmidt (1990) analyses other
approaches to obtain 3SLS estimators:

One of these approaches is based on instrumental variable estimation (3SLS-IV):

β̂3SLS−IV =
(
X̂ ′Ω−1X

)−1
X̂ ′Ω−1y (23)

The covariance matrix of this 3SLS-IV estimator is:

Cov
[
β̂3SLS−IV

]
=

(
X̂ ′Ω−1X

)−1
(24)

Another approach is based on the Generalized Method of Moments (GMM) estimator (3SLS-
GMM):

β̂3SLS−GMM =
(
X ′H

(
H ′ΩH

)−1
H ′X

)−1
X ′H

(
H ′ΩH

)−1
H ′y (25)

The covariance matrix of the 3SLS-GMM estimator is:

Cov
[
β̂3SLS−GMM

]
=

(
X ′H

(
H ′ΩH

)−1
H ′X

)−1
(26)

A fourth approach developed by Schmidt (1990) himself is:

β̂3SLS−Schmidt =
(
X̂ ′Ω−1X̂

)−1
X̂ ′Ω−1H

(
H ′H

)−1
H ′y (27)

The covariance matrix of this estimator is:

Cov
[
β̂3SLS−Schmidt

]
=

(
X̂ ′Ω−1X̂

)−1
X̂ ′Ω−1H

(
H ′H

)−1
H ′ΩH

(
H ′H

)−1
H ′Ω−1X̂

(
X̂ ′Ω−1X̂

)−1

(28)
The econometrics software EViews uses following approach:

β̂3SLS−EV iews = β̂2SLS +
(
X̂ ′Ω−1X̂

)−1
X̂ ′Ω−1

(
y −Xβ̂2SLS

)
(29)

where β̂2SLS is the two-stage least squares estimator as defined by (15). EViews uses the
standard 3SLS formula (21) to calculate the covariance matrix of the 3SLS estimator.

If the same instrumental variables are used in all equations (H1 = H2 = . . . = HG), all the
above mentioned approaches lead to identical parameter estimates. However, if this is not the
case, the results depend on the method used (Schmidt, 1990). The only reason to use different
instruments for different equations is a correlation of the instruments of one equation with
the disturbance terms of another equation. Otherwise, one could simply use all instruments in
every equation (Schmidt, 1990). In this case, only the 3SLS-GMM (25) and the 3SLS estimator
developed by Schmidt (1990) (27) are consistent.

2.2 Imposing linear restrictions

It is common to perform hypothosis tests by imposing restrictions on the parameter estimates.
There are two ways to impose linear parameter restrictions. First, a matrix T can be specified
that

β = T · β∗ (30)

where β∗ is a vector of restricted (linear independent) coefficients, and T is a matrix with the
number of rows equal to the number of unrestricted coefficients (β) and the number of columns
equal to the number of restricted coefficients (β∗). T can be used to map each unrestricted
coefficient to one or more restricted coefficients.

To impose these restrictions, the X matrix is (post-)multiplied by this T matrix.

X∗ = X · T (31)
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Then, X∗ is substituted for X and a standard estimation as described in the previous section
is done (equations 7–29). This results in the linear independent parameter estimates β∗ and
their covariance matrix. The original parameters can be obtained by equation (30) and the
covariance matrix of the original parameters can be obtained by:

Cov
[
β̂
]

= T · Cov
[
β̂∗

]
· T ′ (32)

The second way to impose linear parameter restrictions can be formulated by

Rβ0 = q (33)

where β0 is the vector of the restricted coefficients, and R and q are a matrix and vector,
respectively, to impose the restrictions (see Greene, 2003, p. 100). Each linear independent
restriction is represented by one row of R and the corresponding element of q.

The first way is less flexible than this latter one2, but the first way is preferable if equality
constraints for coefficients across many equations of the system are imposed. Of course, these
restrictions can be also imposed using the latter method. However, while the latter method
increases the dimension of the matrices to be inverted during estimation, the first reduces it.
Thus, in some cases the latter way leads to estimation problems (e.g. (near) singularity of the
matrices to be inverted), while the first doesn’t.

These two methods can be combined. In this case the restrictions imposed using the latter
method are imposed on the linear independent parameters due to the restrictions imposed
using the first method:

Rβ∗0 = q (34)

where β∗0 is the vector of the restricted β∗ coefficients.

2.2.1 Restricted OLS estimation

The OLS estimator restricted by Rβ0 = q can be obtained by[
β̂0

OLS

λ̂

]
=

[
X ′X R′

R 0

]−1

·
[

X ′y
q

]
(35)

where λ is a vector of the Lagrangean multipliers of the restrictions. If the whole system is
treated as one single equation, the covariance matrix of the estimated parameters is

Cov

[
β̂0

OLS

λ̂

]
= σ2

[
X ′X R′

R 0

]−1

(36)

with σ2 = E (u′u). If the disturbance terms of the individual equations are allowed to have
different variances, the covariance matrix of the estimated parameters is

Cov

[
β̂0

OLS

λ̂

]
=

[
X ′Ω−1X R′

R 0

]−1

(37)

with Ω = Σ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui).

2 While restrictions like β1 = 2β2 can be imposed by both methods, restrictions like β1 + β2 = 4 can be imposed
only by the second method.
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2.2.2 Restricted WLS estimation

The WLS estimator restricted by Rβ0 = q can be obtained by[
β̂0

WLS

λ̂

]
=

[
X ′Ω−1X R′

R 0

]−1

·
[

X ′Ω−1y
q

]
(38)

with Ω = Σ ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui). The covariance matrix of the estimated
parameters is

Cov

[
β̂0

WLS

λ̂

]
=

[
X ′Ω−1X R′

R 0

]−1

(39)

2.2.3 Restricted SUR estimation

The SUR estimator restricted by Rβ0 = q can be obtained by[
β̂0

SUR

λ̂

]
=

[
X ′Ω−1X R′

R 0

]−1

·
[

X ′Ω−1y
q

]
(40)

with Ω = Σ⊗ I and σij = E (u′iuj). The covariance matrix of the estimated parameters is

Cov

[
β̂0

SUR

λ̂

]
=

[
X ′Ω−1X R′

R 0

]−1

(41)

2.2.4 Restricted 2SLS estimation

The 2SLS estimator restricted by Rβ0 = q can be obtained by[
β̂0

2SLS

λ̂

]
=

[
X̂ ′X̂ R′

R 0

]−1

·
[

X̂ ′y
q

]
(42)

If the whole system is treated as one single equation, the covariance matrix of the estimated
parameters is

Cov

[
β̂0

2SLS

λ̂

]
= σ2

[
X̂ ′X̂ R′

R 0

]−1

(43)

with σ2 = E (u′u). If the disturbance terms of the individual equations are allowed to have
different variances, the covariance matrix of the estimated parameters is

Cov

[
β̂0

2SLS

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

(44)

with Ω = Σ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui).

2.2.5 Restricted W2SLS estimation

The W2SLS estimator restricted by Rβ0 = q can be obtained by[
β̂0

W2SLS

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

·
[

X̂ ′Ω−1y
q

]
(45)

with Ω = Σ ⊗ I, σij = 0 ∀ i 6= j and σii = E (u′iui). The covariance matrix of the estimated
parameters is

Cov

[
β̂0

W2SLS

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

(46)
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2.2.6 Restricted 3SLS estimation

The standard 3SLS estimator restricted by Rβ0 = q can be obtained by[
β̂0

3SLS

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

·
[

X̂ ′Ω−1y
q

]
(47)

with Ω = Σ⊗ I and σij = E (u′iuj). The covariance matrix of this estimator is

Cov

[
β̂0

3SLS

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

(48)

The 3SLS-IV estimator restricted by Rβ0 = q can be obtained by[
β̂0

3SLS−IV

λ̂

]
=

[
X̂ ′Ω−1X R′

R 0

]−1

·
[

X̂ ′Ω−1y
q

]
(49)

with

Cov

[
β̂0

3SLS−IV

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

(50)

The restricted 3SLS-GMM estimator can be obtained by[
β̂0

3SLS−GMM

λ̂

]
=

[
X ′H (H ′ΩH)−1 H ′X R′

R 0

]−1

·
[

X ′H (HΩH)−1 H ′y
q

]
(51)

with

Cov

[
β̂0

3SLS−GMM

λ̂

]
=

[
X ′H (H ′ΩH)−1 H ′X R′

R 0

]−1

(52)

The restricted 3SLS estimator based on the suggestion of Schmidt (1990) is:[
β̂0

3SLS−Schmidt

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

·
[

X̂ ′Ω−1H (H ′H)−1 H ′y
q

]
(53)

with

Cov

[
β̂0

3SLS−Schmidt

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

(54)

·
[

X̂ ′Ω−1H (H ′H)−1 H ′ΩH (H ′H)−1 H ′Ω−1X̂ 0′

0 0

]−1

·
[

X̂ ′Ω−1X̂ R′

R 0

]−1

The econometrics software EViews calculates the restricted 3SLS estimator by:[
β̂0

3SLS−EV iews

λ̂

]
=

[
X̂ ′Ω−1X̂ R′

R 0

]−1

·

[
X̂ ′Ω−1

(
y −Xβ̂0

2SLS

)
q

]
(55)

where β̂0
2SLS is the restricted 2SLS estimator calculated by equation (42). To calculate the

covariance matrix EViews uses the standard formula of the restricted 3SLS estimator (48).
If the same instrumental variables are used in all equations (H1 = H2 = . . . = HG), all

the above mentioned approaches lead to identical parameter estimates and identical covariance
matrices of the estimated parameters.
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2.3 Residual covariance matrix

Since the true residuals of the estimated equations are generally not known, the true covariance
matrix of the residuals cannot be determined. Thus, this covariance matrix must be calculated
from the estimated residuals. Generally, the estimated covariance matrix of the residuals
(Σ̂ = [σ̂ij ]) can be calculated from the residuals of a first-step OLS or 2SLS estimation. The
following formula is often applied:

σ̂ij =
û′iûj

T
(56)

where T is the number of observations in each equation. However, in finite samples this
estimator is biased, because it is not corrected for degrees of freedom. The usual single-
equation procedure to correct for degrees of freedom cannot always be applied, because the
number of regressors in each equation might differ. Two alternative approaches to calculate
the residual covariance matrix are

σ̂ij =
û′iûj√

(T −Ki) · (T −Kj)
(57)

and

σ̂ij =
û′iûj

T −max (Ki,Kj)
(58)

where Ki and Kj are the number of regressors in equation i and j, respectively. However, these
formulas yield unbiased estimators only if Ki = Kj (Judge et al., 1985, p. 469).

A further approach to obtain the estimated residual covariance matrix is (Zellner and Huang,
1962, p. 309)

σ̂ij =
û′iûj

T −Ki −Kj + tr

[
Xi (X ′

iXi)
−1 X ′

iXj

(
X ′

jXj

)−1
X ′

j

] (59)

=
û′iûj

T −Ki −Kj + tr

[
(X ′

iXi)
−1 X ′

iXj

(
X ′

jXj

)−1
X ′

jXi

] (60)

This yields an unbiased estimator for all elements of Σ̂, but even if Σ̂ is an unbiased estimator
of Σ, its inverse Σ̂−1 is not an unbiased estimator of Σ−1 (Theil, 1971, p. 322). Furthermore,
the covariance matrix calculated by (59) is not necessarily positive semidefinite (Theil, 1971,
p. 322). Hence, “it is doubtful whether [this formula] is really superior to [(56)]” (Theil, 1971,
p. 322).

The WLS, SUR, W2SLS and 3SLS parameter estimates are consistent, if the estimated
residual covariance matrix is calculated using the residuals from a first-step OLS or 2SLS
estimation. There exists also an alternative slightly different approach.3 This alternative
approach uses the residuals of a first-step OLS or 2SLS estimation to apply a WLS or W2SLS
estimation on a second step. Then, it calculates the residual covariance matrix from the
residuals of the second-step estimation to estimates the model by SUR or 3SLS in a third step.
If no cross-equation restrictions are imposed, the parameter estimates of OLS and WLS as
well as 2SLS and W2SLS are identical. Hence, in this case both approaches generate the same
results.

It is also possible to iterate WLS, SUR, W2SLS and 3SLS estimations. At each iteration
the residual covariance matrix is calculated from the residuals of the previous iteration. If
equation (56) is applied to calculate the estimated residual covariance matrix, an iterated SUR
estimation converges to maximum likelihood (Greene, 2003, p. 345).

3 For instance, this approach is applied by the command “TSCS” of the software LIMDEP that carries out SUR
estimations in which all coefficient vectors are constrained to be equal (Greene, 2006).
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In some uncommon cases, for instance in pooled estimations, where the coefficients are
restricted to be equal in all equations, the means of the residuals of each equation are not equal
to zero (ûi 6= 0). Therefore, it might be argued that the residual covariance matrix should
be calculated by subtracting the means from the residuals and substituting ûi − ûi for ûi in
(56–59).

2.4 Degrees of freedom

To our knowledge the question about how to determine the degrees of freedom for single-
parameter t-tests is not comprehensively discussed in the literature. While sometimes the
degrees of freedom of the entire system (total number of observations in all equations minus
total number of estimated parameters) are applied, in other cases the degrees of freedom of each
single equation (number of observations in the equations minus number of estimated parameters
in the equation) are used. Asymptotically, this distinction doesn’t make a difference. However,
in many empirical applications, the number of observations of each equation is rather small,
and therefore, it matters.

If a system of equations is estimated by an unrestricted OLS and the covariance matrix of
the parameters is calculated by (9), the estimated parameters and their standard errors are
identical to an equation-wise OLS estimation. In this case, it is reasonable to use the degrees
of freedom of each single equation, because this yields the same p-values as the equation-wise
OLS estimation.

In contrast, if a system of equations is estimated with many cross-equation restrictions and
the covariance matrix of an OLS estimation is calculated by (8), the system estimation is
similar to a single equation estimation. Therefore, in this case, it seems to be reasonable to
use the degrees of freedom of whole system.

2.5 Goodness of fit

The goodness of fit of each single equation can be measured by the traditional R2 values:

R2
i = 1− û′iûi

(yi − yi)′(yi − yi)
(61)

where R2
i is the R2 value of the ith equation and yi is the mean value of yi.

The goodness of fit of the whole system can be measured by the McElroy’s R2 value (McElroy,
1977):

R2
∗ = 1− û′Ω̂−1û

y′
(
Σ̂−1 ⊗

(
I − ii′

T

))
y

(62)

where T is the number of observations in each equation, I is an T × T identity matrix and i is
a column vector of T ones.

2.6 Testing linear restrictions

Linear restrictions can be tested by an F test, Wald test or likelihood-ratio (LR) test.
The F-statistic for systems of equations is

F =
(Rβ̂ − q)′(R(X ′(Σ̂⊗ I)−1X)−1R′)−1(Rβ̂ − q)/j

û′(Σ⊗ I)−1û/(M · T −K)
(63)

where j is the number of restrictions, M is the number of equations, T is the number of
observations per equation, K is the total number of estimated coefficients, and Σ̂ is the esti-
mated residual covariance matrix used in the estimation. Under the null hypothesis, F has an
F-distribution with j and M · T −K degrees of freedom (Theil, 1971, p. 314).
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The Wald-statistic for systems of equations is

W = (Rβ̂ − q)′(RĈov[β̂]R′)−1(Rβ̂ − q) (64)

Asymptotically, W has a χ2 distribution with j degrees of freedom under the null hypothesis
(Greene, 2003, p. 347).

The LR-statistic for systems of equations is

LR = T ·
(
log

∣∣∣ ˆ̂Σr

∣∣∣− log
∣∣∣ ˆ̂Σu

∣∣∣) (65)

where T is the number of observations per equation, and ˆ̂Σr and ˆ̂Σu are the residual covariance
matrices calculated by formula (56) of the restricted and unrestricted estimation, respectively.
Asymptotically, LR has a χ2 distribution with j degrees of freedom under the null hypothesis
(Greene, 2003, p. 349).

2.7 Hausman test

Hausman (1978) developed a test for misspecification. The null hypotheses of the test is that all
exogenous variables are uncorrelated with all disturbance terms. Under this hypothesis both the
2SLS and the 3SLS estimator are consistent but only the 3SLS estimator is (asymptotically)
efficient. Under the alternative hypothesis the 2SLS estimator is consistent but the 3SLS
estimator is inconsistent. The Hausman test statistic is,

m =
(
β̂2SLS − β̂3SLS

)′ (
Cov

[
β̂2SLS

]
− Cov

[
β̂3SLS

]) (
β̂2SLS − β̂3SLS

)
(66)

where β̂2SLS and Cov
[
β̂2SLS

]
are the estimated coefficient and covariance matrix from 2SLS

estimation, and β̂3SLS and Cov
[
β̂3SLS

]
are the estimated coefficients and covariance matrix

from 3SLS estimation. Under the null hypotheses this test statistic has a χ2 distribution with
degrees of freedom equal to the number of estimated parameters.

3 Source code

The systemfit package includes functions to estimate systems of equations (systemfit, sys-
temfitClassic) and to test hypotheses in these systems (ftest.systemfit, waldtest.sys-
temfit, lrtest.systemfit, hausman.systemfit). Furthermore, this package provides some
helper functions e.g. to extract the estimated coefficients (coef.systemfit) or to calculate
predicted values (predict.systemfit).

The source code of the systemfit is publicly available for download from“CRAN” (The Com-
prehensive R Archive Network, http://cran.r-project.org/src/contrib/Descriptions/
systemfit.html). Since the whole package has more than 2,100 lines of code, it is not pre-
sented in this article. Furthermore, the code corresponds exactly to the procedures and formulas
described in the previous section.

3.1 The basic function systemfit

The basic functionality of this package is provided by the function systemfit. This func-
tion estimates the equation system as described in sections 2.1. If parameter restrictions are
provided, the formulas in section 2.2 are applied. Furthermore, the user can control several
details of the estimation. For instance, the formula to calculate the residual covariance matrix
(see section 2.3), the degrees of freedom for the t-tests (see section 2.4), or the formula for
the 3SLS estimation (see sections 2.1 and 2.2) can be specified by the user. The systemfit
function returns many objects that users might be interest in. A complete list is available in
the documentation of this function that is included in the package.
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3.2 The wrapper function systemfitClassic

Furthermore, the systemfit package includes the function systemfitClassic. This is a wrapper
function for systemfit that can be applied to (classical) panel-like data in long format if the
regressors are the same for all equations. The data are reshaped and the formulas are modified
to enable an estimation using the standard systemfit function. The user can specify whether
the coefficients should be restricted to be equal in all equations.

3.3 Statistical tests

The statistical tests described in sections 2.6 and 2.7 are implemented as specified in these sec-
tions. The functions ftest.systemfit, waldtest.systemfit and lrtest.systemfit test
linear restrictions on the estimated parameters. On the other hand, the function haus-
man.systemfit tests the consistency of the 3SLS estimator. All functions return the empirical
test statistic, the degree(s) of freedom, and the p-value.

3.4 Efficiency of the code

We have followed Bates (2004) to make the code faster and more stable. First, if a formula
contains an inverse of a matrix that is post-multiplied by a vector, we use solve(A, b) instead
of solve(A) %*% b. Second, we calculate crossproducts by crossprod(X) or crossprod(X,
y) instead of t(X) %*% X or t(X) %*% y, respectively.

The matrix Ω−1 that is used to compute the estimated coefficients and their covariance matrix
is of size (G ·T )× (G ·T ) (see sections 2.1 and 2.2). In case of large data sets, this matrix Ω−1

gets really huge and needs a lot of memory. Therefore, we use the following transformation
and compute X ′Ω−1 by deviding the X matrix into submatrices, doing some calculations with
these submatrices, adding up some of these submatrices, and finally putting the submatrices
together:

X ′Ω−1 =
∑
i=1


σ1iX1

σ2iX2

...
σGiXG


′

(67)

where σij are the elements of the matrix Σ−1, and Xi is a submatrix of X that contains the
rows that belong to the i’s equation.

4 Using systemfit

In this section we demonstrate how to use the systemfit package. First, we show the standard
usage of systemfit by a simple example. Second, several options that can be specified by the
user are presented. Then, the wrapper function systemfitClassic is described. Finally, we
demonstrate how to apply some statistical tests.

4.1 Standard usage of systemfit

As described in the previous section, equation systems can be econometrically estimated with
the function systemfit. It is generally called by

> systemfit(method, eqns)

There are two mandatory arguments: method and eqns. The argument method is a string
determining the estimation method. It must be either“OLS”,“WLS”,“SUR”,“WSUR”,“2SLS”,
“W2SLS”, “3SLS”, or “W3SLS”. While six of these methods correspond to the estimation meth-
ods described in sections 2.1 and 2.2, the methods“WSUR”and“W3SLS”are“SUR”and“3SLS”
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estimations using the residual covariance matrices from “WLS” and “W2SLS” estimations, re-
spectively (see section 2.3). The other mandatory argument, eqns, is a list of the equations to
be estimated. Each equation is a standard formula in R and starts with a dependent variable
on the left hand side. After a tilde (∼) the regressors are listed, separated by plus signs4.

The following demonstration uses an example taken from Kmenta (1986, p. 685). We want
to estimate a small model of US the food market:

consump = β1 + β2 ∗ price + β3 ∗ income (68)
consump = β4 + β5 ∗ price + β6 ∗ farmPrice + β7 ∗ trend (69)

The first equation represents the demand side of the food market. Variable consump (food
consumption per capita) is the dependant variable. The regressors are price (ratio of food
prices to general consumer prices) and income (disposable income) as well as a constant. The
second equation specifies the supply side of the food market. Variable consump is the dependant
variable of this equation as well. The regressors are again price (ratio of food prices to general
consumer prices) and a constant as well as farmPrice (ratio of preceding year’s prices received
by farmers) and trend (a time trend in years). These equations can be estimated as SUR in R
by

> library(systemfit)

> data(Kmenta)

> attach(Kmenta)

> eqDemand <- consump ~ price + income

> eqSupply <- consump ~ price + farmPrice + trend

> fitsur <- systemfit("SUR", list(demand = eqDemand, supply = eqSupply))

The first line loads the systemfit package. The second line loads example data that are
included with the package. They are attached to the R search path in line three. In the fourth
and fifth line, the demand and supply equations are specified, respectively5. Finally, in the last
line, a seemingly unrelated regression is performed and the regression result is assigned to the
variable fitsur.

Summary results can be printed by

> summary(fitsur)

systemfit results
method: SUR

N DF SSR MSE RMSE R2 Adj R2
demand 20 17 65.6829 3.86370 1.96563 0.755019 0.726198
supply 20 16 104.0584 6.50365 2.55023 0.611888 0.539117

The covariance matrix of the residuals used for estimation
demand supply

demand 3.72539 4.13696
supply 4.13696 5.78444

The covariance matrix of the residuals
demand supply

demand 3.86370 4.92431
supply 4.92431 6.50365

The correlations of the residuals

4 For Details see the R help files to formula.
5 A regression constant is always implied if not explicitly omitted.
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demand supply
demand 1.000000 0.982348
supply 0.982348 1.000000

The determinant of the residual covariance matrix: 0.879285
OLS R-squared value of the system: 0.683453
McElroy's R-squared value for the system: 0.788722

SUR estimates for 'demand' (equation 1)
Model Formula: consump ~ price + income

Estimate Std. Error t value Pr(>|t|)
(Intercept) 99.332894 7.514452 13.218913 0 ***
price -0.275486 0.088509 -3.112513 0.006332 **
income 0.29855 0.041945 7.117605 2e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.96563 on 17 degrees of freedom
Number of observations: 20 Degrees of Freedom: 17
SSR: 65.682902 MSE: 3.8637 Root MSE: 1.96563
Multiple R-Squared: 0.755019 Adjusted R-Squared: 0.726198

SUR estimates for 'supply' (equation 2)
Model Formula: consump ~ price + farmPrice + trend

Estimate Std. Error t value Pr(>|t|)
(Intercept) 61.966166 11.08079 5.592215 4e-05 ***
price 0.146884 0.094435 1.555397 0.139408
farmPrice 0.214004 0.039868 5.367761 6.3e-05 ***
trend 0.339304 0.067911 4.996283 0.000132 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.550226 on 16 degrees of freedom
Number of observations: 20 Degrees of Freedom: 16
SSR: 104.05843 MSE: 6.503652 Root MSE: 2.550226
Multiple R-Squared: 0.611888 Adjusted R-Squared: 0.539117

First, the estimation method is reported and a few summary statistics for each equation are
given. Then, some results regarding the whole equation system are printed: covariance matrix
and correlations of the residuals, log of the determinant of the residual covariance matrix, R2

value of the whole system, and McElroy’s R2 value. If the model is estimated by (W)SUR
or (W)3SLS, the covariance matrix used for estimation is printed additionally. Finally, the
estimation results of each equation are reported: formula of the estimated equation, estimated
parameters, their standard errors, t-values, p-values and codes indicating their statistical sig-
nificance, and some other statistics like standard error of the residuals or R2 value of the
equation.
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4.2 User options of systemfit

The user can modify the default estimation method by providing additional optional argu-
ments, e.g. to specify instrumental variables or to impose parameter restrictions. All optional
arguments are described in the following:

4.2.1 Equation labels

The optional argument eqnlabels allows the user to label the equations. It has to be a vector of
strings. If this argument is not provided, the labels are taken from the names of the equations
in argument eqns. And if the equations have no names, they are numbered consecutively.
Hence, the following command has the same effect as the command above.

> fitsur <- systemfit("SUR", list(eqDemand, eqSupply), eqnlabels = c("demand",

+ "supply"))

4.2.2 Instrumental variables

The instruments for a 2SLS, W2SLS or 3SLS estimation can be specified by the argument
inst. If the same instruments should be used for all equations, inst must be a one-sided
formula. If different instruments should be used for the equations, inst must be a list that
contains a one-sided formula for each equation. The first example uses the same instruments
for all equations, and the second uses different instruments:

> fit3sls <- systemfit("3SLS", list(demand = eqDemand, supply = eqSupply),

+ inst = ~income + farmPrice + trend)

> fit3sls2 <- systemfit("3SLS", list(demand = eqDemand, supply = eqSupply),

+ inst = list(~farmPrice + trend, ~income + farmPrice + trend))

4.2.3 Data

Having all data in the global environment or attached to the search path is often inconvenient.
Therefore, a data frame data can be provided that contains the variables of the model. In the
following example we do not need to attach the data frame Kmenta before calling systemfit:

> fitsur <- systemfit("SUR", list(eqDemand, eqSupply), data = Kmenta)

4.2.4 Parameter restrictions

As outlined in section 2.2, parameter restrictions can be imposed in two ways. The first way
is to use the transformation matrix T that can be specified by the argument TX. If we want to
impose the restriction, say β2 = −β6, we can do this as follows

> tx <- matrix(0, nrow = 7, ncol = 6)

> tx[1, 1] <- 1

> tx[2, 2] <- 1

> tx[3, 3] <- 1

> tx[4, 4] <- 1

> tx[5, 5] <- 1

> tx[6, 2] <- -1

> tx[7, 6] <- 1

> fitsurTx <- systemfit("SUR", list(eqDemand, eqSupply), TX = tx)

The first line creates a 7× 6 matrix of zeros, where 7 is the number of unrestricted coefficients
and 6 is the number of restricted coefficients. The following seven lines specify this matrix in
a way that the unrestricted coefficients (β) are assigned to the restricted coefficients (β∗) with
β1 = β∗

1 , β2 = β∗
2 , β3 = β∗

3 , β4 = β∗
4 , β5 = β∗

5 , β6 = −β∗
2 , and β7 = β∗

6 . Finally the model is
estimated with restriction β∗

2 = β2 = −β6 imposed.
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The second way to impose parameter restrictions is to use the matrix R and the vector q
(see section 2.2). Matrix R can be specified with the argument R.restr and vector q with
argument q.restr. We convert the restriction specified above to β2 + β6 = 0 and impose it in
the second way:

> Rmat <- matrix(0, nrow = 1, ncol = 7)

> Rmat[1, 2] <- 1

> Rmat[1, 6] <- 1

> qvec <- c(0)

> fitsurRmat <- systemfit("SUR", list(eqDemand, eqSupply), R.restr = Rmat,

+ q.restr = qvec)

The first line creates a 1 × 7 matrix of zeros, where 1 is the number of restrictions and 7 is
the number of unrestricted coefficients. The following two lines specify this matrix in a way
that the multiplication with the parameter vector results in β2 + β6. The fourth line creates a
vector with a single element that contains the left hand side of the restriction, i.e. zero. Finally
the model is estimated with restriction β2 + β6 = 0 imposed.

4.2.5 Iteration control

The estimation methods WLS, SUR, W2SLS and 3SLS need a covariance matrix of the residuals
that can be calculated from a first-step OLS or 2SLS estimation (see section 2.3). If the
argument maxiter is set to a number large than one, this procedure is iterated and at each
iteration the covariance matrix is calculated from the previous step estimation. This iteration
is repeated until the maximum number of iterations is reached or the parameter estimates
have converged. The maximum number of iterations is specified by the argument maxiter. Its
default value is one, which means no iteration. The convergence criterion is√∑

i(bi,g − bi,g−1)2∑
i b

2
i,g−1

< tol (70)

where bi,g is the ith coefficient of the gth iteration. The default value of tol is 10−5.

4.2.6 Residual covariance matrix

It was explained in section 2.3 that several different formulas have been proposed to calculate
the residual covariance matrix. The user can specify, which formula systemfit should use.
Possible values of the argument rcovformula are presented in table 1. By default, systemfit
uses equation (57).

Table 1: Possible values of argument rcovformula
argument equation

rcovformula

0 56
1 or ’geomean’ 57

2 or ’Theil’ 59
3 or ’max’ 58

Furthermore, the user can specify whether the means should be subtracted from the resid-
uals before (56), (57), (58), or (59) are applied to calculate the residual covariance matrix
(see section 2.3). The corresponding argument is called centerResiduals. It must be either
“TRUE” (subtract the means) or “FALSE” (take the unmodified residuals). The default value of
centerResiduals is “FALSE”.
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4.2.7 3SLS formula

As discussed in sections 2.1 and 2.2, there exist several different formulas to perform a 3SLS
estimation. The user can specify the applied formula by the argument formula3sls. Possible
values are presented in table 2. The default value is ’GLS’.

Table 2: Possible values of argument formula3sls
argument equation equation

formula3sls (unrestricted) (restricted)
’GLS’ 20 47
’IV’ 23 49

’GMM’ 25 51
’Schmidt’ 27 53
’EViews’ 29 55

4.2.8 Degrees of freedom for t-tests

There exist two different approaches to determine the degrees of freedom to perform t-tests on
the estimated parameters (section 2.4). This can be specified with argument probdfsys. If it
is TRUE, the degrees of freedom of the whole system are taken. In contrast, if probdfsys is
FALSE, the degrees of freedom of the single equation are taken. By default, probdfsys is TRUE,
if any restrictions are specified using either the argument R.restr or the argument TX, and it
is FALSE otherwise.

4.2.9 Sigma squared

In case of OLS or 2SLS estimations, argument single.eq.sigma can be used to specify, whether
different σ2s for each single equation or the same σ2 for all equations should be used. If argu-
ment single.eq.sigma is TRUE, equations (9) and (17) are applied. In contrast, if argument
single.eq.sigma is FALSE, equations (8) and (16) are applied. By default, single.eq.sigma
is FALSE, if any restrictions are specified using either the argument R.restr or the argument
TX, and it is TRUE otherwise.

4.2.10 System options

Finally, two options regarding some internal calculations are available. First, argument sol-
vetol specifies the tolerance level for detecting linear dependencies when inverting a matrix or
calculating a determinant (using functions solve and det). The default value depends on the
used computer system and is equal to the default tolerance level of solve and det. Second,
argument saveMemory can be used in case of large data sets to accelerate the estimation by
omitting some calculation that are not crucial for the basic estimation. Currently, only the
calculation of McElroy’s R2 is omitted. The default value of argument saveMemory is TRUE, if
the argument data is specified and the number of observations times the number of equations
is larger than 1000, and it is FALSE otherwise.

4.3 The wrapper function systemfitClassic

The wrapper function systemfitClassic can be applied to (classical) panel-like data in long
format6 if the regressors are the same for all equations. This function is called by

> systemfitClassic(method, formula, eqnVar, timeVar, data)

6 Panel data can be either in “long format” (different individuals are arranged below each other) or in “wide format”
(different individuals are arranged next to each other).
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The mandatory arguments are method, formula, eqnVar, and timeVar. Argument method
is the same as in systemfit (see section 4.1). The second argument formula is a standard
formula in R that will be applied to all equations. Argument eqnVar specifies the variable name
indicating the equation to which the observation belongs, and argument timeVar specifies the
variable name indicating the time. Finally, data is a data.frame that contains all required
data.

We demonstrate the usage of systemfitClassic using an example taken from Theil (1971,
pp. 295, 300) that is based on Grunfeld (1958). We want to estimate a model for gross
investment of 2 US firms in the years 1935–1954:

investit = β1 + β2 ∗ valueit + β3 ∗ capitalit (71)

where invest is the gross investment of firm i in year t, value is the market value of the firm
at the end of the previous year, and capital is the capital stock of the firm at the end of the
previous year.

This model can be estimated by

> data("GrunfeldTheil")

> theilSur <- systemfitClassic("SUR", invest ~ value + capital,

+ "firm", "year", data = GrunfeldTheil)

The first line loads example data that are included with the package. And then, a seemingly
unrelated regression is performed, where the variable “firm” indicates the firm and the variable
“year” indicates the time.

The function systemfitClassic has also an optional argument pooled that is a logical
variable indicating whether the coefficients should be restricted to be equal in all equations.
By default, this argument is set to “FALSE”. In addition all optional arguments of systemfit
(see section 4.2) except for eqnLabels and TX can be used with systemfitClassic, too.

4.4 Testing linear restrictions

As described in section 2.6, linear restrictions can be tested by an F test, Wald test or LR test.
The corresponding functions in package systemfit are ftest.systemfit, waldtest.systemfit,
and lrtest.systemfit, respectively.

We will now test the restriction β2 = −β6 that was specified by the matrix Rmat and the
vector qvec in the example above (p. 16).

> ftest.systemfit(fitsur, Rmat, qvec)

F-test for linear parameter restrictions in equation systems
F-statistic: 0.9322
degrees of freedom of the numerator: 1
degrees of freedom of the denominator: 33
p-value: 0.3413

> waldtest.systemfit(fitsur, Rmat, qvec)

Wald-test for linear parameter restrictions in equation systems
Wald-statistic: 0.6092
degrees of freedom: 1
p-value: 0.4351

> lrtest.systemfit(fitsurRmat, fitsur)

Likelihood-Ratio-test for parameter restrictions in equation systems
LR-statistic: 1.004
degrees of freedom: 1
p-value: 0.3163
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The linear restrictions are tested by an F test first, then by a Wald test, and finally by an LR
test. The functions ftest.systemfit and waldtest.systemfit have three arguments. The
first argument must be an unrestricted regression returned by systemfit. The second and
third argument are the restriction matrix R and the vector q as described in section 2.2. In
contrast, the function lrtest.systemfit needs two arguments. The first argument must be a
restricted and the second an unrestricted regression returned by systemfit.

All tests print a short explanation first. Then the empirical test statistic and the degree(s)
of freedom are reported. Finally the p-value is printed. While there is some variation of the
p-values across the three different tests, all tests suggest the same decision: The null hypothesis
β2 = −β6 cannot be rejected at any reasonable level of significance.

4.5 Hausman test

A Hausman test, which is described in section 2.7, can be carried out with following commands:

> fit2sls <- systemfit("2SLS", list(demand = eqDemand, supply = eqSupply),

+ inst = ~income + farmPrice + trend, data = Kmenta)

> fit3sls <- systemfit("3SLS", list(demand = eqDemand, supply = eqSupply),

+ inst = ~income + farmPrice + trend, data = Kmenta)

> hausman.systemfit(fit2sls, fit3sls)

Hausman specification test for consistency of the 3SLS estimation

data: Kmenta
Hausman = 2.5357, df = 7, p-value = 0.9244

First of all, the model is estimated by 2SLS and then by 3SLS. Finally, in the last line the test
is carried out by the command hausman.systemfit. This function requires two arguments:
the result of a 2SLS estimation and the result of a 3SLS estimation. The Hausman test statistic
is 2.536, which has a χ2 distribution with 7 degrees of freedom under the null hypothesis. The
corresponding p-value is 0.924. This shows that the null hypothesis is not rejected at any
reasonable level of significance. Hence, we can assume that the 3SLS estimator is consistent.

5 Testing reliability

In this section we test the reliability of the results from systemfit and systemfitClassic.

5.1 Kmenta (1986): Example on p. 685 (food market)

First, we reproduce an example taken from Kmenta (1986, p. 685). The data are available
from Table 13-1 (p. 687), and the results are presented in Table 13-2 (p. 712) of this book.

Before starting the estimation, we load the data and specify the two formulas to estimate
as well as the instrumental variables. Then the equation system ist estimated by OLS, 2SLS,
3SLS, and iterated 3SLS. After each estimation the estimated coefficients are reported.

> data("Kmenta")

> eqDemand <- consump ~ price + income

> eqSupply <- consump ~ price + farmPrice + trend

> inst <- ~income + farmPrice + trend

> system <- list(demand = eqDemand, supply = eqSupply)

OLS estimation:

> fitOls <- systemfit("OLS", system, data = Kmenta)

> round(coef(summary(fitOls)), digits = 4)
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Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 99.8954 7.5194 13.2851 0.0000
eq 1 price -0.3163 0.0907 -3.4882 0.0028
eq 1 income 0.3346 0.0454 7.3673 0.0000
eq 2 (Intercept) 58.2754 11.4629 5.0838 0.0001
eq 2 price 0.1604 0.0949 1.6901 0.1104
eq 2 farmPrice 0.2481 0.0462 5.3723 0.0001
eq 2 trend 0.2483 0.0975 2.5462 0.0216

2SLS estimation:

> fit2sls <- systemfit("2SLS", system, inst = inst, data = Kmenta)

> round(coef(summary(fit2sls)), digits = 4)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 94.6333 7.9208 11.9474 0.0000
eq 1 price -0.2436 0.0965 -2.5243 0.0218
eq 1 income 0.3140 0.0469 6.6887 0.0000
eq 2 (Intercept) 49.5324 12.0105 4.1241 0.0008
eq 2 price 0.2401 0.0999 2.4023 0.0288
eq 2 farmPrice 0.2556 0.0473 5.4096 0.0001
eq 2 trend 0.2529 0.0997 2.5380 0.0219

3SLS estimation:

> fit3sls <- systemfit("3SLS", system, inst = inst, data = Kmenta)

> round(coef(summary(fit3sls)), digits = 4)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 94.6333 7.9208 11.9474 0.0000
eq 1 price -0.2436 0.0965 -2.5243 0.0218
eq 1 income 0.3140 0.0469 6.6887 0.0000
eq 2 (Intercept) 52.1972 11.8934 4.3888 0.0005
eq 2 price 0.2286 0.0997 2.2934 0.0357
eq 2 farmPrice 0.2282 0.0440 5.1861 0.0001
eq 2 trend 0.3611 0.0729 4.9546 0.0001

Iterated 3SLS estimation:

> fitI3sls <- systemfit("3SLS", system, inst = inst, data = Kmenta,

+ maxit = 250)

> round(coef(summary(fitI3sls)), digits = 4)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 94.6333 7.9208 11.9474 0.0000
eq 1 price -0.2436 0.0965 -2.5243 0.0218
eq 1 income 0.3140 0.0469 6.6887 0.0000
eq 2 (Intercept) 52.6618 12.8051 4.1126 0.0008
eq 2 price 0.2266 0.1075 2.1086 0.0511
eq 2 farmPrice 0.2234 0.0468 4.7756 0.0002
eq 2 trend 0.3800 0.0720 5.2771 0.0001

The results above show that systemfit returns exactly the same coefficients and standard
errors as published in Kmenta (1986, p. 712) except for two minor exemptions. Two standard
errors of the 2SLS estimation deviate by 0.0001. However, this difference is likely due to
rounding errors in systemfit or Kmenta (1986) and is so small that it empirically doesn’t
matter.
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5.2 Greene (2003): Example 15.1 (Klein’s model I)

Second, we try to replicate Klein’s Model I (Klein, 1950) that is described in Greene (2003,
pp. 381). The data are available from the online complements to Greene (2003), Table F15.1
(http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm), and the esti-
mation results are presented in Table 15.3 (p. 412).

Initially, the data are loaded and three equations as well as the instrumental variables are
specified. As in the example before, the equation system ist estimated by OLS, 2SLS, 3SLS,
and iterated 3SLS, and estimated coefficients of each estimation are reported.

> data("KleinI")

> eqConsump <- consump ~ corpProf + corpProfLag + wages

> eqInvest <- invest ~ corpProf + corpProfLag + capitalLag

> eqPrivWage <- privWage ~ gnp + gnpLag + trend

> inst <- ~govExp + taxes + govWage + trend + capitalLag + corpProfLag +

+ gnpLag

> system <- list(Consumption = eqConsump, Investment = eqInvest,

+ "Private Wages" = eqPrivWage)

OLS estimation:

> kleinOls <- systemfit("OLS", system, data = KleinI)

> round(coef(summary(kleinOls)), digits = 3)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 16.237 1.303 12.464 0.000
eq 1 corpProf 0.193 0.091 2.115 0.049
eq 1 corpProfLag 0.090 0.091 0.992 0.335
eq 1 wages 0.796 0.040 19.933 0.000
eq 2 (Intercept) 10.126 5.466 1.853 0.081
eq 2 corpProf 0.480 0.097 4.939 0.000
eq 2 corpProfLag 0.333 0.101 3.302 0.004
eq 2 capitalLag -0.112 0.027 -4.183 0.001
eq 3 (Intercept) 1.497 1.270 1.179 0.255
eq 3 gnp 0.439 0.032 13.561 0.000
eq 3 gnpLag 0.146 0.037 3.904 0.001
eq 3 trend 0.130 0.032 4.082 0.001

2SLS estimation:

> klein2sls <- systemfit("2SLS", system, inst = inst, data = KleinI,

+ rcovformula = 0)

> round(coef(summary(klein2sls)), digits = 3)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 16.555 1.321 12.534 0.000
eq 1 corpProf 0.017 0.118 0.147 0.885
eq 1 corpProfLag 0.216 0.107 2.016 0.060
eq 1 wages 0.810 0.040 20.129 0.000
eq 2 (Intercept) 20.278 7.543 2.688 0.016
eq 2 corpProf 0.150 0.173 0.867 0.398
eq 2 corpProfLag 0.616 0.163 3.784 0.001
eq 2 capitalLag -0.158 0.036 -4.368 0.000
eq 3 (Intercept) 1.500 1.148 1.307 0.209
eq 3 gnp 0.439 0.036 12.316 0.000
eq 3 gnpLag 0.147 0.039 3.777 0.002
eq 3 trend 0.130 0.029 4.475 0.000
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3SLS estimation:

> klein3sls <- systemfit("3SLS", system, inst = inst, data = KleinI,

+ rcovformula = 0)

> round(coef(summary(klein3sls)), digits = 3)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 16.441 1.305 12.603 0.000
eq 1 corpProf 0.125 0.108 1.155 0.264
eq 1 corpProfLag 0.163 0.100 1.624 0.123
eq 1 wages 0.790 0.038 20.826 0.000
eq 2 (Intercept) 28.178 6.794 4.148 0.001
eq 2 corpProf -0.013 0.162 -0.081 0.937
eq 2 corpProfLag 0.756 0.153 4.942 0.000
eq 2 capitalLag -0.195 0.033 -5.990 0.000
eq 3 (Intercept) 1.797 1.116 1.611 0.126
eq 3 gnp 0.400 0.032 12.589 0.000
eq 3 gnpLag 0.181 0.034 5.307 0.000
eq 3 trend 0.150 0.028 5.358 0.000

iterated 3SLS estimation:

> kleinI3sls <- systemfit("3SLS", system, inst = inst, data = KleinI,

+ rcovformula = 0, maxit = 500)

> round(coef(summary(kleinI3sls)), digits = 3)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 16.559 1.224 13.524 0.000
eq 1 corpProf 0.165 0.096 1.710 0.105
eq 1 corpProfLag 0.177 0.090 1.960 0.067
eq 1 wages 0.766 0.035 22.031 0.000
eq 2 (Intercept) 42.896 10.594 4.049 0.001
eq 2 corpProf -0.357 0.260 -1.370 0.188
eq 2 corpProfLag 1.011 0.249 4.065 0.001
eq 2 capitalLag -0.260 0.051 -5.115 0.000
eq 3 (Intercept) 2.625 1.196 2.195 0.042
eq 3 gnp 0.375 0.031 12.050 0.000
eq 3 gnpLag 0.194 0.032 5.977 0.000
eq 3 trend 0.168 0.029 5.805 0.000

Again, the results show that systemfit returns the same results as published in Greene
(2003).7 Also in this case we have two minor deviations, where only the last digit is different.

5.3 Theil (1971): Example on p. 295 (General Electric and
Westinghouse)

Third, we estimate an example taken from Theil (1971, p. 295) that is based on Grunfeld (1958).
The data are available from Table 7.1 (p. 296), and the results are presented on pages 295 and
300 of this book.

After loading the data and specifying the formula, the model is estimated by OLS and SUR.
The coefficients of each estimation are reported.

> data("GrunfeldTheil")

> formulaGrunfeld <- invest ~ value + capital

7 There are two typos in Table 15.3 (p. 412). Please take a look at the errata (http://pages.stern.nyu.edu/
~wgreene/Text/econometricanalysis.htm).
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OLS estimation (page 295)

> theilOls <- systemfitClassic("OLS", formulaGrunfeld, "firm",

+ "year", data = GrunfeldTheil)

> round(coef(summary(theilOls)), digits = 3)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) -9.956 31.374 -0.317 0.755
eq 1 value.General.Electric 0.027 0.016 1.706 0.106
eq 1 capital.General.Electric 0.152 0.026 5.902 0.000
eq 2 (Intercept) -0.509 8.015 -0.064 0.950
eq 2 value.Westinghouse 0.053 0.016 3.368 0.004
eq 2 capital.Westinghouse 0.092 0.056 1.647 0.118

SUR estimation (page 300)

> theilSur <- systemfitClassic("SUR", formulaGrunfeld, "firm",

+ "year", data = GrunfeldTheil, rcovformula = 0)

> round(coef(summary(theilSur)), digits = 3)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) -27.719 27.033 -1.025 0.320
eq 1 value.General.Electric 0.038 0.013 2.883 0.010
eq 1 capital.General.Electric 0.139 0.023 6.036 0.000
eq 2 (Intercept) -1.252 6.956 -0.180 0.859
eq 2 value.Westinghouse 0.058 0.013 4.297 0.000
eq 2 capital.Westinghouse 0.064 0.049 1.308 0.208

The function systemfitClassic, which is a wrapper function to systemfit returns exactly
the same results as published in Theil (1971, pp. 295, 300).

5.4 Greene (2003): Example 14.1 (Grunfeld’s investment data)

Finally, we reproduce Example 14.1 of Greene (2003, p. 340) that is also based on Grunfeld
(1958). The data are available from the online complements to Greene (2003), Table F13.1
(http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm), and the esti-
mation results are presented in Tables 14.1 and 14.2 (p. 351).

First, we load the data and specify the formula to estimate. Then, the systems is estimated
by OLS, pooled OLS, SUR, and pooled SUR. Immediately after each estimation, the estimated
coefficients are reported. Furthermore, the σ2 values of the OLS estimations, and the residual
covariance matrix as well as the residual correlation matrix of the SUR estimations are printed.

> data("GrunfeldGreene")

> formulaGrunfeld <- invest ~ value + capital

OLS estimation (Table 14.2):

> greeneOls <- systemfitClassic("OLS", formulaGrunfeld, "firm",

+ "year", data = GrunfeldGreene)

> round(coef(summary(greeneOls)), digits = 4)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) -6.1900 13.5065 -0.4583 0.6525
eq 1 value.Chrysler 0.0779 0.0200 3.9026 0.0011
eq 1 capital.Chrysler 0.3157 0.0288 10.9574 0.0000
eq 2 (Intercept) -9.9563 31.3742 -0.3173 0.7548
eq 2 value.General.Electric 0.0266 0.0156 1.7057 0.1063
eq 2 capital.General.Electric 0.1517 0.0257 5.9015 0.0000
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eq 3 (Intercept) -149.7825 105.8421 -1.4151 0.1751
eq 3 value.General.Motors 0.1193 0.0258 4.6172 0.0002
eq 3 capital.General.Motors 0.3714 0.0371 10.0193 0.0000
eq 4 (Intercept) -30.3685 157.0477 -0.1934 0.8490
eq 4 value.US.Steel 0.1566 0.0789 1.9848 0.0635
eq 4 capital.US.Steel 0.4239 0.1552 2.7308 0.0142
eq 5 (Intercept) -0.5094 8.0153 -0.0636 0.9501
eq 5 value.Westinghouse 0.0529 0.0157 3.3677 0.0037
eq 5 capital.Westinghouse 0.0924 0.0561 1.6472 0.1179

> round(sapply(greeneOls$eq, function(x) {

+ return(x$ssr/20)

+ }), digits = 3)

[1] 149.872 660.829 7160.294 8896.416 88.662

pooled OLS (Table 14.2):

> greeneOlsPooled <- systemfitClassic("OLS", formulaGrunfeld, "firm",

+ "year", data = GrunfeldGreene, pooled = TRUE)

> round(coef(summary(greeneOlsPooled$eq[[1]])), digits = 4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -48.0297 21.4802 -2.2360 0.0276
value.Chrysler 0.1051 0.0114 9.2360 0.0000
capital.Chrysler 0.3054 0.0435 7.0186 0.0000

> sum(sapply(greeneOlsPooled$eq, function(x) {

+ return(x$ssr)

+ }))/100

[1] 15708.84

SUR estimation (Table 14.1):

> greeneSur <- systemfitClassic("SUR", formulaGrunfeld, "firm",

+ "year", data = GrunfeldGreene, rcovformula = 0)

> round(coef(summary(greeneSur)), digits = 4)

Estimate Std. Error t value Pr(>|t|)
eq 1 (Intercept) 0.5043 11.5128 0.0438 0.9656
eq 1 value.Chrysler 0.0695 0.0169 4.1157 0.0007
eq 1 capital.Chrysler 0.3085 0.0259 11.9297 0.0000
eq 2 (Intercept) -22.4389 25.5186 -0.8793 0.3915
eq 2 value.General.Electric 0.0373 0.0123 3.0409 0.0074
eq 2 capital.General.Electric 0.1308 0.0220 5.9313 0.0000
eq 3 (Intercept) -162.3641 89.4592 -1.8150 0.0872
eq 3 value.General.Motors 0.1205 0.0216 5.5709 0.0000
eq 3 capital.General.Motors 0.3827 0.0328 11.6805 0.0000
eq 4 (Intercept) 85.4233 111.8774 0.7635 0.4556
eq 4 value.US.Steel 0.1015 0.0548 1.8523 0.0814
eq 4 capital.US.Steel 0.4000 0.1278 3.1300 0.0061
eq 5 (Intercept) 1.0889 6.2588 0.1740 0.8639
eq 5 value.Westinghouse 0.0570 0.0114 5.0174 0.0001
eq 5 capital.Westinghouse 0.0415 0.0412 1.0074 0.3279

> round(greeneSur$rcov, digits = 3)
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Chrysler General Electric General Motors US Steel
Chrysler 152.849 2.047 -313.704 455.089
General Electric 2.047 700.456 605.336 1224.405
General Motors -313.704 605.336 7216.044 -2686.517
US Steel 455.089 1224.405 -2686.517 9188.151
Westinghouse 16.661 200.316 129.887 652.716

Westinghouse
Chrysler 16.661
General Electric 200.316
General Motors 129.887
US Steel 652.716
Westinghouse 94.912

> round(summary(greeneSur)$rcor, digits = 3)

Chrysler General Electric General Motors US Steel Westinghouse
Chrysler 1.000 0.006 -0.299 0.384 0.138
General Electric 0.006 1.000 0.269 0.483 0.777
General Motors -0.299 0.269 1.000 -0.330 0.157
US Steel 0.384 0.483 -0.330 1.000 0.699
Westinghouse 0.138 0.777 0.157 0.699 1.000

pooled SUR estimation (Table 14.1):

> greeneSurPooled <- systemfitClassic("WSUR", formulaGrunfeld,

+ "firm", "year", data = GrunfeldGreene, pooled = TRUE, rcovformula = 0)

> round(coef(summary(greeneSurPooled$eq[[1]])), digits = 4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.2467 4.8882 -5.7785 0
value.Chrysler 0.0891 0.0051 17.5663 0
capital.Chrysler 0.3340 0.0167 19.9859 0

> round(greeneSurPooled$rcov, digits = 3)

Chrysler General Electric General Motors US Steel
Chrysler 305.610 -1966.648 -4.805 2158.595
General Electric -1966.648 34556.603 -7160.667 -28722.006
General Motors -4.805 -7160.667 10050.525 4439.989
US Steel 2158.595 -28722.006 4439.989 34468.976
Westinghouse -123.920 4274.000 -1400.747 -2893.733

Westinghouse
Chrysler -123.920
General Electric 4274.000
General Motors -1400.747
US Steel -2893.733
Westinghouse 833.357

> round(cov(residuals(greeneSurPooled)), digits = 3)

Chrysler General Electric General Motors US Steel
Chrysler 167.403 174.038 -432.370 260.431
General Electric 174.038 3733.260 -1322.236 -972.145
General Motors -432.370 -1322.236 9396.058 -897.950
US Steel 260.431 -972.145 -897.950 10052.045
Westinghouse 89.336 1302.231 -865.791 -180.385

Westinghouse
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Chrysler 89.336
General Electric 1302.231
General Motors -865.791
US Steel -180.385
Westinghouse 564.156

> round(summary(greeneSurPooled)$rcor, digits = 3)

Chrysler General Electric General Motors US Steel Westinghouse
Chrysler 1.000 0.220 -0.345 0.201 0.291
General Electric 0.220 1.000 -0.223 -0.159 0.897
General Motors -0.345 -0.223 1.000 -0.092 -0.376
US Steel 0.201 -0.159 -0.092 1.000 -0.076
Westinghouse 0.291 0.897 -0.376 -0.076 1.000

For this example, the function systemfitClassic returns nearly the same results as pub-
lished in Greene (2003).8 Two different residual covariance matrices of the pooled SUR estima-
tion are presented. The first is calculated without centering the results (see section 2.3). It is
equal to the one published in the book (Greene, 2003, p. 351). The second residual covariance
matrix is calculated after centering the results. It is equal to the one published in the errata
(http://pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm).

6 Summary and outlook

In this article, we have described some of the basic features of the systemfit package for esti-
mation of linear systems of equations. Many details of the estimation can be controlled by the
user. Furthermore, the package provides some statistical tests for parameter restrictions and
consistency of 3SLS estimation. It has been tested on a variety of datasets and has produced
satisfactory for a few years. While the systemfit package performs the basic fitting methods,
more sophisticated tools exist. We hope to implement missing functionalities in the near future.

Unbalanced datasets

Currently, the systemfit package requires that all equations have the same number of observa-
tions. However, many data sets have unbalanced observations.9 Simply dropping data points
that do not contain observations for all equations may reduce the number of observations con-
siderably, and thus, the information utilized in the estimation. Hence, it is our intention to
include the capability for estimations with unbalanced data sets as described in Schmidt (1977)
in future releases of systemfit.

Serial correlation and heteroscedasticity

For all of the methods developed in the package, the disturbances of the individual equations
are assumed to be independent and identically distributed (iid). The package could be en-
hanced by the inclusion of methods to fit equations with serially correlated and heteroscedastic
disturbances (Parks, 1967).

8 There are several typos and errors in Table 14.1 (p. 412). Please take a look at the errata of this book (http:
//pages.stern.nyu.edu/~wgreene/Text/econometricanalysis.htm).

9 For instance, forestry datasets typically contain many observations of inexpensive variables (stem diameter, tree
count) and few expensive variables such as stem height or volume.
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Estimation methods

In the future, we wish to include more sophisticated estimation methods such as limited-
information maximum likelihood (LIML), full-information maximum likelihood (FIML), gen-
eralized methods of moments (GMM) and spatial econometric methods.

Non-linear estimation

Finally, the systemfit package provides a function to estimate systems of non-linear estimations.
However, the function nlsystemfit is currently under development and the results are not yet
always reliable due to convergence difficulties.

References

Bates D (2004). “Least Squares Calculations in R.” R News, 4(1), 17–20. URL http://CRAN.
R-project.org/doc/Rnews/.

Greene WH (2003). Econometric Analysis. Prentice Hall, 5th edition.

Greene WH (2006). “Information about SUR estimation in LIMDEP.” Personal email on
2006/02/16.

Grunfeld Y (1958). The Determinants of Corporate Investment. Ph.D. thesis, University of
Chicago.

Hausman JA (1978). “Specification Test in Econometrics.” Econometrica, 46, 1251–1272.

Judge GG, Griffiths WE, Hill RC, Lütkepohl H, Lee TC (1985). The Theory and Practice of
Econometrics. John Wiley and Sons, 2nd edition.

Klein L (1950). Economic Fluctuations in the United States, 1921–1941. John Wiley, New
York.

Kmenta J (1986). Elements of econometrics. Macmillan, New York, 2 edition.

McElroy MB (1977). “Goodness of Fit for Seemingly Unrelated Regressions.” Journal of
Econometrics, 6, 381–387.

Parks RW (1967). “Effcient estimation of a system of regression equations when disturbances
are both serially and contemporaneously correlated.” Journal of the American Statistical
Association, 62, 500–509.

R Development Core Team (2005). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org.

Schmidt P (1977). “Estimation of Seemingly Unrelated Regressions with Unequal Numbers of
Observations.” Journal of Econometrics, 5, 365–377.

Schmidt P (1990). “Three-Stage Least Squares with Different Instruments for Different Equa-
tions.” Journal of Econometrics, 43, 389–394.

Theil H (1971). Principles of Econometrics. Wiley, New York.

Zellner A (1962). “An efficient method of estimating seemingly unrelated regressions and tests
for aggregation bias.” Journal of the American Statistical Association, 57, 348–368.

27

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org
http://www.R-project.org


Zellner A, Huang DS (1962). “Further Properties of Efficient Estimators for Seemingly Unre-
lated Regression Equations.” International Economic Review, 3(3), 300–313.

Zellner A, Theil H (1962). “Three-Stage Least Squares: Simultaneous Estimation of Simulta-
neous Equations.” Econometrica, 30(1), 54–78.

28


	Introduction
	Statistical background
	Estimation
	Ordinary least squares (OLS)
	Weighted least squares (WLS)
	Seemingly unrelated regression (SUR)
	Two-stage least squares (2SLS)
	Weighted two-stage least squares (W2SLS)
	Three-stage least squares (3SLS)

	Imposing linear restrictions
	Restricted OLS estimation
	Restricted WLS estimation
	Restricted SUR estimation
	Restricted 2SLS estimation
	Restricted W2SLS estimation
	Restricted 3SLS estimation

	Residual covariance matrix
	Degrees of freedom
	Goodness of fit
	Testing linear restrictions
	Hausman test

	Source code
	Basic function systemfit
	Wrapper function systemfitClassic
	Statistical tests
	Efficiency of the code

	Using systemfit
	Standard usage of systemfit
	User options of systemfit
	Equation labels
	Instrumental variables
	Data
	Parameter restrictions
	Iteration control
	Residual covariance matrix
	3SLS formula
	Degrees of freedom for t-tests
	Sigma squared
	System options

	Wrapper function systemfitClassic
	Testing linear restrictions
	Hausman test

	Testing reliability
	Kmenta (1986): Example on p. 685 (food market)
	Greene (2003): Example 15.1 (Klein's model I)
	Theil (1971): Example on p. 295 (General Electric and Westinghouse)
	Greene (2003): Example 14.1 (Grunfeld's investment data)

	Summary and outlook

