
The cacheSweave Package

Roger D. Peng

Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health

May 16, 2007

1 Introduction

The Sweave system of Leisch (2002) is a literate programming tool based on ideas of Knuth (1984)
and is currently part of the core R installation. Specifically, Sweave is a system for processing
documents that mix LATEX document formatting with R code. R code can be interspersed within
the LATEX markup by indicating “code chunks”. These code chunks are evaluated by the Sweave

function in R and the code is replaced with the results of the evaluation. For example, the code for
fitting a linear model and summarizing the estimated regression coefficients might be replaced by a
formatted table of estimated regression coefficients along with standard errors and p-values. Another
possibility is for the code to replaced by a plot which shows the data and the fitted regression line.
In either case, the author writes the code to generate the output and Sweave runs the code and
places the output in the final document.

Given a file written in the Noweb format (Ramsey, 1994), one can generate a LATEX file by
running in R

> Sweave("foo.Rnw")

where “foo.Rnw” contains both LATEX markup and R code. Calling Sweave in this manner results in
a the file “foo.tex” being created, which can subsequently be processed by standard LATEX tools. In
particular, the tools package contains the R function texi2dvi which calls the system’s texi2dvi

program if it is available.
Sweave has many potential uses, but it is particularly useful for creating statistical documents

that are reproducible, where the results of computation can be reproduced by executing the original
code using the original data. Since the code used for analysis is embedded directly into the relevant
document, there is a tighter correspondence between the descriptive text and the computational
results and a decreased potential for mismatches between the two. In addition, Sweave’s ability to
recompute results to reflect changes or updates to the datasets and analytic code is a great benefit
to authors who must maintain statistical documents. With Sweave, all of the relevant text and code
reside in a master document from which different outputs can be derived by either “weaving” to
create a human-readable document or “tangling” to produce a machine-readable code file.

One aspect of Sweave’s default mode of operation is that all code chunks are evaluated whenever
the document is read/processed by the Sweave function in R (except when an authors explicitly
indicates that a code chunk should not be evaluated). While this is generally considered a feature, it
can be cumbersome during the development of a document if the code chunks contain calculations
that are lengthy or resource intensive. In particular, changes to text portions of the document require

1



that the entire document be re-Sweaved so that the resulting LATEX file can reflect the changes to
the text. In such cases, it might be desirable for the code chunks to either not be evaluated or to be
cached in some manner so that subsequent evaluations take less time.

One approximate solution to the problem described above is to indicate that code chunks should
not be evaluated (i.e. by setting eval=false as an option for each code chunk) so that the Sweave

function will skip over them and create the LATEX file. However, such an approach is probably not
desirable since then no results can be displayed in the document. Another approach is to separate
out the code chunks that contain lengthy computations into a separate file and then include the
resulting file via LATEX’s \input directive. This way, the file with the expensive code chunks can be
Sweaved once while the text can be modified independently in a separate file. This approach has
merit and can also benefit greatly from the use of the make utility, but it also breaks the principle
of including all of the text and code in a single file. The need to manage multiple files has the
potential to lead to the same problems that Sweave and other literate programming tools were (in
part) designed to solve.

Consider the following code chunk.

> set.seed(1)

> x <- local({

+ Sys.sleep(10)

+ rnorm(100)

+ })

> results <- mean(x)

Admittedly, this code chunk is not very interesting or realistic but it is useful for demonstrating
the basic approach of the cacheSweave package. In the code chunk, we (1) set the random number
generator seed; (2) generate 100 standard Normal random numbers after sleeping for 10 seconds;
and (3) calculate the mean of the Normal random numbers. After executing the code chunk, there
are two objects in the user’s workspace (i.e. the global environment): x and results (there is also
a hidden object .Random.seed that is created by set.seed).

On a modern computer executing the code chunk above should take about 10 seconds since the
operations other than the call to Sys.sleep use a negligible amount of wall clock time. Although
the use of Sys.sleep here is artificial, one can imagine replacing it with a call to a function that
executes a complex or resource intensive statistical calculation. For the purposes of the task at hand,
we may only be interested in the mean of the vector x, but we have to spend a reasonable amount
of time getting there. Repeated evaluation of this code chunk may be neededlessly time consuming
if the code and data do not change after the first evaluation.

The cacheSweave package allows users to cache the results of evaluating a Sweave code chunk. In
the above example, the basic approach would be to cache the objects x and results in a key-value
database with the key being the object name and the value being the R object itself. On future
evaluations of this code chunk (assuming the code has not changed otherwise), we could load x from
the database rather than wait the 10 seconds as we did on the first evaluation. Using the cached
value of x we could compute various summary statistics. If we were interested in the mean of x

we could simply load the cached value of results from the database (although in this case direct
recalculation of the mean would not take much time).

2



2 Expression caching mechanism

A simple code chunk in a Sweave document might appear as follows.

<<FitLinearModel>>=

library(datasets)

library(stats)

data(airquality)

fit <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)

@

This code chunk loads the airquality dataset from the datasets package and fits a linear model
using the lm function from the stats package. In this case, two objects are created in the workspace:
the airquality data frame and the fit object containing the output from the lm call.

To make use of the caching mechanism provided in cacheSweave, the user must set the option
cache=true in the code chunk declaration. The modified code chunk would be

<<FitLinearModel,cache=true>>=

library(datasets)

library(stats)

data(airquality)

fit <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)

@

The user must also modify the standard invocation of Sweave by using the cacheSweaveDriver

function instead of the default RweaveLatex driver function. If the above code chunk were contained
in the file “foo.Rnw”, then one would call

> library(cacheSweave)

> Sweave("foo.Rnw", driver = cacheSweaveDriver)

to process the file with the caching mechanism.
On the first evaluation the cacheSweaveDriver function does a number of computations in

addition to the standard Sweave processing:

1. For each code chunk, a key-value database is created, by default, in the current working
directory for storing data objects. The database implementation comes from the stashR pack-
age. The name of the database is derived from the name of the code chunk and an MD5
digest (Rivest, 1992) of the entire code chunk. Users can change the location of the key-value
database by calling the setCacheDir function and providing a path.

2. Within each code chunk, there may be multiple expressions and the each expression is handled
separately. For each expression:

(a) The MD5 digest of the expression is taken and looked up in the key-value database. If
the digest does not exist, then the expression is evaluated in a temporary environment
that has the global environment as a parent.

(b) After evaluation, the names of the objects created as a result of the evaluation are stored
in the key-value database as a character vector with the digest expression as the key.

(c) The objects created as a result of the evaluation are then stored separately in the database
using their own names as keys.

3



(d) The objects are then lazy-loaded (see e.g. Ripley, 2004) into the global environment via
the dbLazyLoad function from the filehash package (Peng, 2006).

3. A “map file” is created which is a text file that contains metadata about the code chunks and
any resulting databases or figures produced.

The result of running Sweave with the cacheSweaveDriver function is a LATEX file, a collection of
stashR databases either in the current directory or in a directory specified by setCacheDir, and a
map file which contains information about each of the code chunks.

On a subsequent evaluation, the processing is slightly different. Namely, for each expression in a
code chunk:

1. The MD5 digest of the expression is taken and looked up in the key-value database. If the
digest exists (indicating that the same expression has been evaluated previously), the names
of the objects associated with this expression are retrieved.

2. Given the names of the objects associated with this expression, the objects are then lazy-loaded
into the global environment via the dbLazyLoad function.

In this situation, the evaluation of a cached expression is replaced by the lazy-loading of the objects
associated with that expression into the global environment.

If a future expression (either within the same code chunk or in a subsequent code chunk) requires
an object created in a previous code chunk, then that object will be automatically loaded into the
global environment via the lazy-loading mechanism.

3 Lazy-loading of objects

The lazy-loading of objects into the global environment once they have been cached is a useful
feature of the cacheSweave package when large objects are used in a code chunk. For example, one
code chunk might read in a large dataset and calculate a summary statistic based on that dataset,
e.g.

<<loadLargeDataset,cache=true>>=

data <- readLargeDataset("datafile")

x <- computeSummaryStatistic(data)

@

With caching turned on for this code chunk, the objects data and x are stored in the cached
computation database for this code chunk. A future code chunk then might simply print the summary
statistic x, for example,

<<printX>>=

print(x)

@

If the primary interest is in the summary statistic x, then on future evaluations of both of these
code chunks, the object data is never needed. It is only needed on the first evaluation so that the
summary statistic can be calculated and stored in the object x. When data is lazy-loaded in future
Sweave runs, it is never accessed and hence never actually loaded from the database. Therefore,
code can be written in the manner shown above and there is no need to worry about the data object
being loaded repeatedly into R when it is not actually needed.

4



4 Construction of cacheSweaveDriver

The construction of the cacheSweaveDriver function is modeled on the RweaveLatex function from
the utils package. The cacheSweaveDriver function returns a list of five functions:

1. setup, creates a list of available options. We add an extra option cache for indicating whether
a code chunk should be cached. We also add the name of the map file so that it can be updated
after evaluating each code chunk.

2. runcode, based on the RweaveLatexRuncode function in the utils package, this function ex-
ecutes code in each code chunk and saves objects to stashR databases. While much of the origi-
nal code is retained, we replace the call to RweaveEvalWithOpt with our own cacheSweaveEvalWithOpt

function, which handles the evaluation of the expression, creation of the stashR database, and
the saving of objects to the database. We also add a call to the function writeChunkMetadata

which writes out information to the map file.

3. writedoc, handles writing of output LATEX file; we import the RweaveLatexWritedoc function
from utils.

4. finish, closes the output connection and prints some final messages; we import the RweaveLatexFinish
function from utils.

5. checkopts, checks that code chunk options are valid; we import the RweaveLatexOptions

function from utils.

The bulk of the work is done in the runcode function, which handles the evaluation of the
expressions in each code chunk. The code in that function is based on the code from R version
2.5.0 (R Development Core Team, 2007).

5 Expressions with side effects

Simple expressions, such as assignments, will typically result in a single object being created in the
global environment. For example, the expression

> x <- 1:100

results in an object named x being created in the global environment whose value is an integer
sequence from 1 to 100.

However, there are other types of expressions which can result in either multiple objects being
created in the user’s workspace or no objects being created. For example, the source function
is often used to load objects from an R code file. Unless the local argument is set to TRUE, these
objects will by default be created in the global environment. When the cacheSweaveDriver function
evaluates an expression that contains a call to source, there will be objects created outside of the
temporary environment in which the expression is evaluated (again, unless the argument local

= TRUE is specified in the call to source). The set.seed function behaves in a similar way by
modifying (or creating) the .Random.seed object in the global environment.

In order to handle the effects of functions like source the function evalAndDumpToDB, which
evalutes an expression and saves the results to the stashR database, first obtains a character vector
of the names of all the objects in the global environment. After evaluating the expression in a
temporary environment, a check is made to see if any new objects have been created or modified

5



in the global environment. If so, those objects are saved to the database as well as any objects
that were created in the temporary environment. Note that we currently make a special case of the
global environment. If the code being evaluated creates objects in some other environment, then
cacheSweave will not be able to cache those objects.

Another example of a function with side effects is the plot function (and related functions) from
the graphics package. Since plot does not create any objects in the global environment, but rather
creates a plot on a graphics device, there is nothing for cacheSweaveDriver to cache. Currently, it
is not clear what is the best way to handle this behavior and so calls to plotting functions cannot
be cached using the cacheSweave package. In the future, we may attempt to detect the creation of
a graphics file (e.g. a PDF or EPS file) and store that file along with the cached computations.

There are many other types of expressions that have side effects and do not result in the creation
of objects in the global environment. Expressions such as calls to system or functions which write out
files (e.g. save, save.image, write.table, dput, etc.) all result in objects being created outside of
R. In general, these expressions cannot yet take advantage of the caching mechanism in cacheSweave

and must be executed every time Sweave is run.
When caching is used, it is useful to divide the code into chunks which setup the data and results

(and can use caching) and chunks that present or display the results (and cannot use caching). For
example, with the linear model example from the previous section, one might have one code chunk
for loading the data and fitting the model

<<FitLinearModel,cache=true>>=

library(datasets)

library(stats)

data(airquality)

fit <- lm(Ozone ~ Temp + Solar.R + Wind, data = airquality)

@

and another code chunk for summarizing the results in a standard table of regression coefficients.

<<LinearModelTable,results=tex>>=

library(xtable)

print(xtable(fit))

@

Here, we use the xtable package to create a formatted LATEX table of the regression output. A similar
approach could be used for plots by separating out the code that generates the plot, e.g.

\begin{figure}

\centering

<<LinearModelDiagnosticPlot,fig=true>>=

par(mfcol = c(2, 2))

plot(fit)

@

\caption{Linear model diagnostic plots}

\end{figure}

References

Knuth DE (1984). “Literate Programming.” Computer Journal, 27(2), 97–111.

6



Leisch F (2002). “Sweave: Dynamic generation of statistical reports using literate data analysis.”
In W Härdle, B Rönz (eds.), “Compstat 2002 — Proceedings in Computational Statistics,” pp.
575–580. Physika Verlag, Heidelberg, Germany. ISBN 3-7908-1517-9.

Peng RD (2006). “Interacting with data using the filehash package.” R News, 6(4), 19–24.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.

R-project.org.

Ramsey N (1994). “Literate Programming Simplified.” IEEE Software, 11(5), 97–105.

Ripley BD (2004). “Lazy Loading and Packages in R 2.0.0.” R News, 4(2), 2–4. URL http:

//CRAN.R-project.org/doc/Rnews/.

Rivest RL (1992). The MD5 Message-Digest Algorithm. RFC 1321.
http://tools.ietf.org/html/rfc1321.

7

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

	Introduction
	Expression caching mechanism
	Lazy-loading of objects
	Construction of cacheSweaveDriver
	Expressions with side effects

