
A User’s Guide to the R library “ddesolve”
Version 1.00 – July 17, 2007

Jon Schnute, Alex Couture-Beil, and Rowan Haigh

1. Introduction

 The R library ddesolve generates numerical solutions for systems of delay differential
equations (DDEs) and ordinary differential equations (ODEs). The numerical routines come
from Simon Wood’s program solve95 (http://www.maths.bath.ac.uk/~sw283/simon/dde.html,
file: solv95.zip), originally written in C for the Microsoft Windows operating systems. With
ddesolve, a user can write the gradient code for a system of DDEs or ODEs in the R language,
rather than C. The code will then run on all platforms supported by R, and the results can be
inspected using R’s extensive graphics capabilities. Simon has very generously given us
permission to publish ddesolve (including his embedded routines) under the GNU GENERAL
PUBLIC LICENSE Version 2.

 For more information about Simon and his work at the University of Bath (Bath, United
Kingdom), see his home page http://www.maths.bath.ac.uk/~sw283/index.html. He has recently
published a book about Generalized Additive Models (GAMs; Wood 2006) with two supporting
R libraries gamair and mgcv, both available on the Comprehensive R Archive Network (CRAN,
http://cran.r-project.org/). The first example in his book presents data from the Hubble Space
Telescope and an analysis from Hubble’s law that suggests the universe is about 13 billion years
old. If this example piques your interest, install gamair from CRAN, and run the R code:

require(gamair)
data(hubble)
plot(hubble)

to see the distance x and velocity y relative to the earth for each of 24 galaxies. The relationship
y xβ= determines Hubble’s constant 1/ Aβ = , where A is the age of the universe. See Simon’s
book for further details about this interesting estimation problem.

 We originally noticed the solv95 program in the context of a Python implementation
(PyDDE, http://seis.bris.ac.uk/~bzzbjc/python/PyDDE/) by Ben Cairns at the School of
Biological Sciences, University of Bristol (Bristol, UK). For more information about Ben, see his
website at http://seis.bris.ac.uk/~bzzbjc/. We have designed ddesolve from solv95 to perform
similarly to the earlier R library odesolve, written by R. Woodrow Setzer with Fortran
algorithms (notably lsoda) by Linda Petzold and Alan Hindmarsh at the Lawrence Livermore
National Laboratory in Livermore, California.

 The history of ddesolve illustrates the advantages of open source software. Jon (author
JTS above) wanted to use R to solve delay differential equations. He knew about another
implementation in the commercial package Matlab® (http://www.mathworks.com/), based on the

 – 2 –

function dde23 (Shampine and Thomson 2000). Our programming wizard Alex (author ACB)
looked at the code and thought it might be tricky to implement in R, partly because dde23 was
in Fortran and we knew more about the interface between R and C. Then Alex discovered
PyDDE and solv95, and he obtained Simon’s permission (and encouragement) to implement it
in R. Based on his experience with another package PBSmodelling (Schnute et al. 2006), Alex
quickly altered calls in the solv95 C code to get values of the gradient from an R function.
When Ben tried our initial R library, he liked it, but he wanted to obtain solutions at specified
times, rather than the slightly irregular times generated by Simon’s code. So Ben changed the C
source code, using Simon’s interpolation algorithms to get interpolated values at definite times.
As a final touch, Alex implemented another feature of Simon’s code called “switches”, discussed
below.

 The demos included with ddesolve require PBSmodelling version 1.50 or later
(http://cran.r-project.org/src/contrib/Descriptions/PBSmodelling.html). Although the numerical
routines in ddesolve work without this extra package, PBSmodelling adds user interfaces that
make it easier to experience and understand the operation of ddesolve.

2. Defining DDEs

 To define a system of DDEs, a user must supply an R function that calculates the gradient
of each variable in the system with respect to time. This gradient function must have one of the
following two forms:

gradfunc(t,y) or gradfunc(t,y,parms)

where t = the current time of integration;
 y = a vector of estimated state values at time t;
 parms = an optional R object (such as a vector, list, or data frame) of additional

 input parameters for the DDE system.

The length n of the vector y 1(, ,)ny y= … corresponds to the number of states in the system,
where 1n ≥ .

 The function gradfunc must calculate the derivative /idy dt for each variable iy
(1,i n= …) and return the derivative values in one of the following two formats:

(1) a vector of n derivatives /idy dt , or
(2) a list in which the first element comprises a vector of n derivatives, and the second element

comprises a numeric vector with additional values (of interest to the user) calculated within
gradfunc at time t.

Consistent with the idea of delay differential equations, gradfunc can also depend on state
values and their derivatives at times prior to the current time t. These must be accessed with calls
to pastvalue() and pastgradient(). Both functions take a single argument, a time lagt
in the range 0 lagt t t≤ < , where 0t is the starting time of integration and t is the current time. The

 – 3 –

functions return a numeric vector of length n, where pastvalue(tlag) and
pastgradient(tlag)have the components lag()iy t and lag() /idy t dt , respectively, for

1, ,i n= … . Usually, lagt t k= − is calculated as a fixed offset k back from the current time t; and a
typical call might have the form pastvalue(t-k). The calculation of gradfunc can
involve numerous past values and gradients at various different time lags.

 Wood (1999) also introduced the concept of switches that allow the DDE system to
produce discontinuous changes in the state vector y. To implement k switches (i.e., k conditions
in which the state vector can be discontinuous) with 1k ≥ , a user needs to define two functions:

switchfunc(t,y) or switchfunc(t,y,parms), which returns a numeric vector of
length k; and

mapfunc(t,y,sid) or mapfunc(t,y,sid,parms), which depends on a switch id
number (1≤ sid k≤) and returns a numeric vector of length n.

These functions specify, respectively, the circumstances that trigger a switch and the behaviour
of the system when a switch occurs. Think of switchfunc defined by a vector of k functions

(,)js t y with 1, ,j k= … . Switch j takes place when js vanishes due to a change from positive to
negative values (mathematically 0js = and / 0js t∂ ∂ < , where the symbol ∂ denotes partial
differentiation). At a time t when switch j is triggered, dde automatically calls mapfunc with
sid = j. Our “ice cream” demo in Section 4 below illustrates the process of writing code that
includes switches.

3. Solving DDEs

 Simon Wood’s (1999) numerical routines produce the core functionality of ddesolve. The
function

dde(y, times, func, parms=NULL, switchfunc=NULL, mapfunc=NULL,
tol=1e-08, dt=0.1, hbsize=10000)

invokes the C routines used to numerically solve systems of DDEs, where

y = a vector of initial values for the states (this also determines n);
times = a numeric vector of explicit times at which the solution should be obtained;
func = a gradient function written to the specifications of gradfunc in Section 2;
parms = an optional vector of parameters to pass to func;
switchfunc = an optional function that determines conditions when the DDE system

experiences switches, as describe in Section 2;
mapfunc = an optional function associated with switchfunc that describes how the

DDE system changes (possibly discontinuously) at switch times;
tol = a scalar that sets the maximum error tolerated in the solution;
dt = the maximum initial time step used in constructing the numerical solution;
hbsize = history buffer size required for retaining lagged state variable values;

 – 4 –

For consistency with the package odesolve, the argument name func corresponds to the system
gradient function.

The return value of dde depends on the output format of the gradient, i.e., options (1) or
(2) for the output of gradfunc in Section 2. With format (1), dde returns a data frame with

1n + columns and default column names t, y1, y2,..., yn. The first column represents the times
at which the solution is reported (times , plus any additional times specified by switchfunc)
and the remaining n columns contain the components of y estimated at these times. The default
column names for these n columns are overridden by names(y) if the initial vector y has a
names attribute. If gradfunc has format (2), then the data frame returned by dde is extend by
an additional m columns, where m is the length of the vector of additional values reported by
gradfunc. By default, these have column names extra1, extra2,..., extram. The names
can be overridden by assigning a names attribute to the vector of additional information
returned by gradfunc, i.e., the second component of the list output from gradfunc.

 In summary, an application of ddesolve can include three user-defined functions:

• myGrad(t,y) or myGrad(t,y,parms),
• mySwitch(t,y) or mySwitch(t,y,parms),
• myMap(t,y,sid) or myMap(t,y,sid,parms),

as well as a call to dde:

• dde(y, times, func=myGrad, parms, switchfunc=mySwitch,
mapfunc=myMap, tol=1e-08, dt=0.1, hbsize=10000)

The gradient function must be defined, but the switch and map functions are optional (either both
or neither). Similarly, the code may or may not involve an R object parms of parameters kept
constant during the integration. The gradient function can call the predefined functions
pastvalue(tlag) and pastgradient(tlag) to obtain lagged values of the state
variables and their derivatives.

Remember that the gradient, switch, and map functions are called internally by dde;
consequently, the argument list must precisely correspond to one of the prototypes listed at the
start of the previous paragraph. Values of the arguments, t, y, sid, and parms will be set by
dde when these functions are called. By default, parms=NULL, so that the user’s functions
should not depend on parms unless a value of parms is explicitly specified in the call to dde.
Typically, parms might be a vector or list with named components.

4. Demos

 The ddesolve library currently includes four demos that illustrate simple applications. As
mentioned in Section 1, these require the R library PBSmodelling (version 1.50 or later) to
create graphical user interfaces (GUIs) that aid model testing and exploration. Once
PBSmodelling is installed and loaded with require(PBSmodelling), call the function

 – 5 –

runDemos(), select ddesolve, and then choose one of the available demos. Alternatively, run
R’s native demo() function in lieu of runDemos().

4.1. Cooling - Newton’s Law of Cooling (ODE Example)

Figure 1. Newton’s Law of Cooling demonstration.

 This demo illustrates how to set up and solve a single ODE with ddesolve. For historical
background, see http://en.wikipedia.org/wiki/Heat_conduction#Newton.27s_law_of_cooling.
Imagine a hot cup of coffee that cools toward room temperature, where a constant ρ determines
the rate of cooling. Newton’s Law of Cooling suggests a simple differential equation to
determine the coffee temperature ()y t at time t:

()env
dy y T
dt

ρ= − − ,

where envT is the ambient room temperature. If cup(0)y T= denotes the initial temperature of the
coffee, then this equation has the analytical solution

()env cup env() ty t T T T e ρ−= + − ,

where cup()y t T= when 0t = and env()y t T→ as t →∞ . The GUI in Figure 1 displays the code
when you press the “R Code” button, as long as R-files (*.r) are associated with a suitable text
editor on your system. Similarly, “Docs” displays documentation and “Window” displays the
script used to produce the GUI. In this example, two key lines of the code are:
myGrad <- function(t, y) {return(-rho*(y[1]-Tenv)}
dde(y=Tcup, func=myGrad, times=seq(t0,t1,length=100), hbsize=0)

 – 6 –

The parameters rho, Tenv, Tcup, t0 (the start time), and t1 (the end time) come from the
GUI. This ordinary differential equation does not need a history buffer, so hbsize=0.

4.2 Blowflies – (DDE Example)

0 50 100 150 200 250 300

0
10

00
20

00
30

00

Adult Blowfly Population

Time
P

op
ul

at
io

n
(y

)

0 50 100 150 200 250 300

-6
00

-4
00

-2
00

0
20

0
40

0
60

0
Rate of Change of Adult Population

Time

de
lta

 P
op

ul
at

io
n

(d
y)

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exp(-theta*ylag[1] / A0)

Time

ex
p

va
lu

e

Figure 2. Nicholson’s blowflies model demonstration (included in Simon Wood’s Solv95 User
Manual as an example of solving a DDE).

 As an example with a delay, Wood (1999) suggested a blowfly population model for
adults ()A t at time t:

0

0
() /

0

() , ;
() () , ;A t A

A t t tdA
PA t e A t t tdt θ τ

δ τ
τ δ τ− −

− < +⎧
= ⎨ − − ≥ +⎩

,

0 0()A t A= .

Here τ is the development time from egg to adult, P is the net production rate determined by
adult fecundity and egg survival to adulthood, θ is a parameter determining how quickly
fecundity declines with an increasing adult population, δ is the adult death rate, and 0t is the
initial time when ()A t starts with the value 0A . We assume that () 0A t = for 0t t< . In our

 – 7 –

formulation, the differential equation also includes the parameter 0A , so that θ becomes
dimensionless. Essentially, 0A sets the scale for ()A t .

The GUI in Figure 2 allows the four parameters (, , ,Pτ θ δ) to be adjusted, along with the
initial conditions 0 0(,)t A and the final time 1t . The graph at the left shows three panels: ()A t ,

() /dA t dt , and 0() /A t Ae θ τ− − . In this case, a key portion of the R code is:
myGrad <- function(t, y) {
 if (t-t0 >= tau) ylag <- pastvalue(t-tau)
 else ylag <- 0
 yexp <- exp(-theta*ylag[1]/A0)-delta*y[1]
 yp <- P*ylag[1]*yexp
 return(list(yp, c(dy=yp, exp=yexp))) }

where values of tau, P, theta, delta, t0, and A0 come from the GUI.

4.3 Lorenz – (ODE Example)

Figure 3. The Lorenz model demonstrates chaotic behaviour in the solution of thee linked
differential equations.

 – 8 –

 The Lorenz model (http://planetmath.org/encyclopedia/LorenzEquation.html) consists of
three ordinary differential equations for a three-dimensional state vector y:

1
2 1()dy y y

dt
σ= − ,

2
1 3 2()dy y y y

dt
τ= − − ,

3
1 2 3

dy y y y
dt

ρ= − ,

with three parameters (, ,)σ τ ρ . This demonstration includes a GUI for adjusting the parameters
and initial conditions to see results from integrating the Lorentz model. It also allows the solution
to be obtained with either ddesolve or odesolve. The choice of numerical solver should not affect
the results of the plot, even though these two packages use different underlying algorithms for
estimating the solution. Tests indicate that both solvers return comparable results, a result that
gives us some confidence that ddesolve performs correctly.

4.4 Ice Cream Parlor – Raiders of the Lost Cone (Switches)

0 20 40 60 80 100

7
8

9
10

11
12

13

DDE with two switches

days

ic
e

cr
ea

m

0 20 40 60 80 100

-1
.0

-0
.5

0.
0

0.
5

1.
0

Switch function and corresponding map function call

days

y

Figure 4. The ice cream parlor receives deliveries (switch 1, green) and experiences theft
(switch 2, red).

 – 9 –

 To illustrate switches, Alex (author ACB) suggested an ice cream parlor that gets
restocked periodically. But Jon (author JTS) wanted at least two switches, so he suggested that
thieves might occasionally raid the parlor and steal some of the stock. Comments in Alex’s code
soon suggested a snappy title: Raiders of the Lost Cone. Rowan (author RH) and Alex quickly
agreed that the parlor should have a flashing sign with the logo “Papa Schnutio’s” that puts an
Italian twist on Jon’s Germanic last name. Jon hesitated, but he once lived in Italy for a year and
couldn’t resist the idea of Italian ice cream (gelato). So he agreed to an establishment named

Papa Schnutio’s Gelatteria

Our model assumes an exponential depletion of the ice cream stock ()y t with rate r:

dy ry
dt

= − ,

perhaps because a lower stock would offer fewer choices and thus discourage consumption.
(Sometimes a gelatteria just doesn’t have that perfect flavour you came for. It was there
yesterday, but not today – a great disappointment!) We need two switch functions that we chose
to be the sinusoids

sin 2i i
i

ts a
p

π
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

with offset parameters ia and periods ip for 1, 2i = . Switch 1 triggers restocking

() ()y t y t Y+ = +

and switch 2 triggers theft events

() (1) ()y t f y t+ = − ,

where ()y t+ denotes the value of y after the switch, Y is the fixed amount of ice cream added to
the stock, and f is the fraction of the stock removed by thieves.

 In this example, key features of the code involve the sine wave used for switching
sinWave <- function(t,aa,pp) { sin(2*pi*(aa + (t/pp))) }

the switch function
mySwitch <- function(t,y) {
 c(sinWave(t,a[1],p[1]), sinWave(t,a[2],p[2])) }

the map function
myMap <- function(t,y,swID) {
 if (swID==1) y <- y + Y else y <- (1-f)*y }

the gradient function
myGrad <- function(t,y) { -r*y }

and the call to the main routine

 – 10 –

yout <- dde(y=y0, times=tt, func=myGrad,
 switchfunc=mySwitch, mapfunc=myMap)

where the initial stock y0, the desired output times tt, the consumption rate r, the amount Y
brought by the supplier, the theft fraction f, the offset vector a (of length 2), and the period
vector p (of length 2) correspond to values prescribed by the GUI.

4.5 Fish Population with a Fishery and a Reserve

 Our motivation to produce ddesolve came primarily from biological models of fish
populations that experience recruitment from larval production at an earlier time. (The blowflies
example in Section 4.2 illustrates similar behaviour.) The package PBSmodelling includes a
much more elaborate example (with complete documentation) in which a reserve from fishing
protects a portion of the fish population. The model appears in two versions, with discrete and
continuous time t. This example requires at least versions 1.50 and 1.00 of PBSmodelling and
ddeslove, respectively. After these two packages have been installed, type the following
commands in the R console:
require(PBSmodelling)
runExamples()

In the GUI to “Choose an Example”, press the radio button for the simulation “FishRes”. View
the manual by pressing the “Docs” button, as in the examples discussed above in Sections
4.1-4.4.

5. The Algorithm

 The R library ddesolve provides an interface to Simon Wood’s numerical routines found
in solv95. The algorithm implemented in this package is the same as that in solv95, and is
described by Wood (1999) in his user manual:

“The method used for integration is an embedded RK2(3) scheme due to Fehlberg, and
reported on page 170 of Hairer et al. (1987). Lagged variables (and gradients) are stored
in a ring buffer at each step of the integrator. Interpolation is required to estimate values
of the lagged variables between storage times. For numerical probity it is essential that
the interpolation of lagged variables is of a higher order of approximation than the
integrator, otherwise the assumptions underlying the error estimate from the RK pair will
not be met. The algorithm used in Solv95 uses cubic hermite interpolation (e.g. Burden
and Faires 1987) to achieve this (which is the reason that gradients need to be stored
along with lagged values). The consequences of not using consistent interpolation and
integration schemes are vividly illustrated in Highman (1993). Paul (1992) was also
influential in the design of the method used here, and the step size selection is straight
out of Press et al. (1992) (method, not code!). The RK2(3) pair used is not actually
optimal - it should be possible to derive an improved scheme - see Butcher (1987) for an
explanation of how to go about it.”

 – 11 –

 The original solv95 software requires a user to write C code for a system of DDEs.
This must be compiled and linked with solv95; then the resulting executable file gives a
numerical solution. With ddesolve, a user codes the model in R, rather than C. A compiled
version of the integration algorithm automatically comes with the library, which makes the
numerical C routines compatible with R. Because the output appears as an object in R, a user can
interpret the results using R’s extensive capabilities for analysis and graphics.

 The numerical routines have been preserved in the files ddeq.c and ddeq.h. The
interface to dde() has been significantly altered and now appears in the file ddesolve95.c,
which replaces solv95.c. The link between R and C is contained in r_model.c, adapted
from a basic model template in the original solv95 code bundle. This file now has many calls
to the R application programming interface (API).

6. References

Burden, R.L., and Faires, J.D. 1985. Numerical Analysis. Pridle Weber and Schmidt, Boston.

Butcher, J.C. 1987. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta
and General Linear Methods. John Wiley & Sons, Inc. 528 pp.

Hairer, E., Norsett, S.P., and Wanner, G. 1987. Solving Ordinary Differential Equations I.
Springer-Verlag Berlin. 170 pp. RKF2(3)B.

Higman, D.J. 1993. Error control for initial value problems with discontinuities and delays.
Applied Numerical Mathematics 12(4): 315-330.

Paul, C.A.H. 1992. Developing a delay differential equation solver. Applied Numerical
Mathematics 9: 403-414.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1992. Numerical Recipes in
C : The Art of Scientific Computing. Cambridge University Press.

Schnute, J.T., Couture-Beil, A., and Haigh, R. 2006. PBS Modelling 1: user’s guide. Canadian
Technical Report of Fisheries and Aquatic Sciences 2674: viii + 112 pp.
URL: http://cran.r-project.org/src/contrib/Descriptions/PBSmodelling.html

Shampine, L.F., and Thompson, S. 2000. Solving delay differential equations with dde23.
Tutorial: http://www.radford.edu/~thompson/webddes/tutorial.html

Wood, S.N. 1999. Solv95: a numerical solver for systems of delay differential equations with
switches. Saint Andrews, UK. 10 pp.
URL: http://www.maths.bath.ac.uk/~sw283/simon/dde.html, file: solv95.zip
(See solv95-Manual.pdf in the root library directory for ddesolve.)

Wood, S.N. 2006. Generalized Additive Models: An Introduction with R. Chapman &
Hall/CRC. 416 pp.

 – 12 –

Appendix A. R-manual for ddesolve

 This appendix documents the objects (functions) available in ddesolve. Subsequent pages
give indexed technical documentation for every object generated from *.Rd files written for the
R documentation system. The package PBSmodelling includes a directory called PBStools\
that contains useful batch files for building R packages, including the creation of the indexed
manual included here.

Package ‘ddesolve’
July 17, 2007

Version 1.00

Date 2007-07-17

Title Solver for Delay Differential Equations

Author Alex Couture-Beil <alex@mofo.ca>, Jon T. Schnute <SchnuteJ@pac.dfo-mpo.gc.ca>, Rowan
Haigh <HaighR@pac.dfo-mpo.gc.ca>

Maintainer Alex Couture-Beil <alex@mofo.ca>

Depends R (>= 2.4.1)

Description This package solves systems of delay differential equations. by interfacing numerical
routines written by Simon N. Wood <s.wood _at_ bath.ac.uk>, with contributions by Benjamin J.
Cairns <ben.cairns@bristol.ac.uk>. These numerical routines first appeared in Simon Wood’s
solv95 program.

License GPL2

R topics documented:
dde . 13
pastvalue . 16

Index 17

dde Solve Delay Differential Equations

Description

A solver for systems of delay differential equations based off numerical routines from Simon
Wood’s solv95 program. This solver is also capable of solving systems of ordinary differential
equations.

Please see the included demos for examples of how to use dde. To view available demos run
demo(package="ddesolve"). The supplied demos require that the package PBSmodelling
be installed.

13

14 dde

Usage

dde(y, times, func, parms=NULL, switchfunc=NULL, mapfunc=NULL,
tol=1e-08, dt=0.1, hbsize=10000)

Arguments

y vector of initial values of the DDE system. The size of the supplied vector
determines the number of variables in the system.

times numeric vector of specific times to solve.

func a user supplied function that computes the gradients in the DDE system at time
t. The function must be defined using the arguments: (t,y) or (t,y,parms),
where t is the current time in the integration, y is a vector of the current esti-
mated variables of the DDE system, and parms is any R object representing
additional parameters (optional).

The argument func must return one of the two following return types: 1) a
vector containing the calculated gradients for each variable; or 2) a list with
two elements - the first a vector of calculated gradients, the second a vector
(possibly named) of values for a variable specified by the user at each point in
the integration.

parms any constant parameters to pass to func, switchfunc, and mapfunc.

switchfunc an optional function that is used to manipulate state values at given times. The
switch function takes the arguments (t,y) or (t,y,parms) and must return
a numeric vector. The size of the vector determines the number of switches used
by the model. As values of switchfunc pass through zero (from positive to
negative), a corresponding call to mapfunc is made, which can then modify
any state value.

mapfunc if switchfunc is defined, then a map function must also be supplied with
arguments (t,y,switch_id) or t,y,switch_id,parms), where t is
the time, y are the current state values, switch_id is the index of the triggered
switch, and parms are additional constant parameters.

tol maximum error tolerated at each time step (as a proportion of the state variable
concerned)

dt maximum initial time step

hbsize history buffer size required for solving DDEs)

Details

The user supplied function func can access past values (lags) of y by calling the pastvalue
function. Past gradients are accessible by the pastgradient function. These functions can only
be called from func and can only be passed values of t greater or equal to the start time, but less
than the current time of the integration point. For example, calling pastvalue(t) is not allowed,
since these values are the current values which are passed in as y.

dde 15

Value

A data frame with one column for t, a column for every variable in the system, and a column for
every additional value that may (or may not) have been returned by func in the second element of
the list.

If the initial y values parameter was named, then the solved values column will use the same names.
Otherwise y1, y2, ... will be used.

If func returned a list, with a named vector as the second element, then those names will be used
as the column names. If the vector was not named, then extra1, extra2, ... will be used.

See Also

pastvalue

Examples

##
This is just a single example of using dde.
For more examples see demo(package="ddesolve")
the demos require the package PBSmodelling
##

#create a func to return dde gradient
require(ddesolve)
yprime <- function(t,y,parms) {

if (t < parms$tau)
lag <- parms$initial

else
lag <- pastvalue(t - parms$tau)

y1 <- parms$a * y[1] - (y[1]^3/3) + parms$m * (lag[1] - y[1])
y2 <- y[1] - y[2]
return(c(y1,y2))

}

#define initial values and parameters
yinit <- c(1,1)
parms <- list(tau=3, a=2, m=-10, initial=yinit)

solve the dde system
yout <- dde(y=yinit,times=seq(0,30,0.1),func=yprime,parms=parms)

and display the results
plot(yout$t, yout$y1, type="l", col="red", xlab="t", ylab="y",

ylim=c(min(yout$y1, yout$y2), max(yout$y1, yout$y2)))
lines(yout$t, yout$y2, col="blue")
legend("topleft", legend = c("y1", "y2"),lwd=2, lty = 1,

xjust = 1, yjust = 1, col = c("red","blue"))

16 pastvalue

pastvalue Retrieve Past Values (lags) During Gradient Calculation

Description

These routines provides access to variable history at lagged times. The lagged time t must not be
less than t0, nor should it be greater than the current time of gradient calculation. The routine cannot
be directly called by a user, and will only work during the integration process as triggered by the
dde routine.

Usage

pastvalue(t)
pastgradient(t)

Arguments

t access history at time t.

Value

vector of variable history at time t.

See Also

dde

Index

∗Topic math
dde, 13
pastvalue, 16

dde, 13, 16

pastgradient, 14
pastgradient (pastvalue), 16
pastvalue, 14, 15, 16

17

	ddesolve.pdf
	dde
	pastvalue
	Index

