geoRglm : a package for generalised linear
spatial models
introductory session

Ole F. Christensen & Paulo J. Ribeiro Jr.
Last update: July 4, 2007

The objective of this page is to introduce the reader to the geoRglm
commands and show how they can be used. The commands used here are
basic examples of the package handling, where we typically use default ar-
guments for the function calls. We encourage the user also to inspect other
function arguments.

For further details on the functions included in geoRglm, we refer to
the geoRglm documentation.

1 STARTING A SESSION AND LOADING
DATA

After starting an R session, we first load geoR and geoRglm with the
commands:

> library(geoR)
> library(geoRglm)

If the installation directories for the packages are not the default locations
for R packages, type:

library(geoR, lib.loc = "PATH_TO_geoR")
library(geoRglm, 1lib.loc = "PATH_TO_geoRglm")

where PATH_TO_geoR and PATH_TO_geoRglm are the paths to the directories
where geoR and geoRglm are installed, respectively. If geoRglm is
correctly loaded the following message will be displayed:

geoRglm - a package for generalised linear spatial models
geoRglm version 0.8-21 (2007-07-04) is now loaded

Helpfiles are available for geoRglm. For getting help on the function
glsm.mcme, just type:

> help(glsm.mcmc)

2 DATA AND MODELS

Spatial generalised linear mixed models are GLM’s with spatially correlated
random effects. The two interesting types of data are Poisson and Binomial
data.

Typically, data are stored as an object (a list) of class "geodata" (see
the geoR introductory session for more details on this). For the data sets
considered here, the object will sometimes include a vector units.m consisting
of, observation times or size of area for the Poisson distribution, or number
of trials for the binomial distribution.

We use the data sets b50 and p50 included in the geoRglm distribution
for the examples presented in this document. These data sets can be loaded

by typing:
> data(b50)
> data(p50)

To gain an understanding of the Poisson model, we will here generate a
simulation from such a models as follows. First we use the geoR function
grf to generate a simulation from a Gaussian random field.

> sim.g <- grf(grid = expand.grid(x = seq(1, 10, 1 = 10),
+ y = seq(1, 10, 1 = 10)), cov.pars = c(0.1, 0.2))

Assume that we wish to simulate from a Poisson model with log-link, and
assume that the observation times (or observation areas) vary between the
locations. A simulation from the model is obtained by simulating from the
Poisson distribution with the appropriate condtitional mean.

> sim <- list(coords = sim.g$coords, units.m = c(rep(1,

+ 50), rep(5, 50)))

> attr(sim, "class") <- "geodata"

> sim$data <- rpois(100, lambda = sim$units.m * exp(sim.g$data))
Observe that the upper half of the figure corresponds to observation times

equal to 5, where the simulated counts are larger.

> plot(sim$coords[, 1], sim$coords[, 2], type = "n")
> text(sim$coords[, 1], sim$coords([, 2], format(sim$data))

10
1
~

11 9 6 8 5 2 13 7 12

sim$coords|, 2]

1 1 1 1 1 2 0 0 0 3
T T T T T

6
sim$coords][, 1]

Figure 1: Simulated data

Exercise Generate a simulation from a spatial binomial-logit model.

3 MCMC SIMULATION

The core part of geoRglm consist of generating MCMC simulations from
the conditional distibution of the random effects at the data locations given
the actual observed data. Such a simulation algorithm is needed for any
likelihood inference in generalised linear spatial models (prediction, Bayesian
inference and parameter estimation). Here we consider the fixed parameter
case, which is implemented in the function glsm.mcmc.

The function uses a Langevin-Hastings MCMC algorithm for simulating
from the conditional distribution. The nugget effect parameter (microscale
variation) in the underlying Gaussian field can be set to a fixed value. The
same applies for the smoothness and anisotropy parameters. Options for
taking covariates (trends) into account are also included.

An example for Poisson data where we assume a logarithmic link, and
where all parameters are fixed is shown below (for illustration purposes, some
parameter values are just taken).

First we need to tune the algorithm by scaling the proposal variance so
that acceptance rate is approximately 60 percent (optimal acceptance rate
for Langevin-Hastings algorithm). This is done by trial and error.

> model2 <- list(cov.pars = c(1, 1), beta = 1, family = "poisson")
> mcmc2.test <- mcmc.control(S.scale = 0.2, thin = 1)
> test2.tune <- glsm.mcmc(p50, model = model2, mcmc.input

mcmc2. test)

iter. numb. 1000 : Acc.-rate = 0.877
MCMC performed: n.iter. = 1000 ; thinning = 1 ; burn.in = 0

After a few tryouts we decide to use S.scale = 0.5.

> mcmc2.tune <- mcmc.control(S.scale = 0.5, thin = 1)

> test2.tune <- glsm.mcmc(p50, model = model2, mcmc.input = mcmc2.tune)

iter. numb. 1000 : Acc.-rate = 0.57
MCMC performed: n.iter. = 1000 ; thinning = 1 ; burn.in = 0

We also need to study convergence of the chain and how well the chain is
mixing. For this we use the functions in the coda package. We first load
coda and then create a mcmc object to be used. Only a glimpse of the
functionallity in coda is shown here, we encourage the reader to investigate
further.

> library(coda)
> test2.tune.c <- create.mcmc.coda(test2.tune, mcmc.input = mcmc2.tune)

We encourage the user to always make traceplots and autocorrelation
plots for all variables (in this case all 50 random effects). But in order to
not to clutter this introduction with a large number of plots, we will present
these plots for only one variable.

> test2.tune.c <- create.mcmc.coda(test2.tune$simulations[45,

+], mcmc.input = list(S.scale = 0.5, thin = 1))

> par(mfrow = c(1, 2))

> plot(test2.tune.c, density = FALSE, ask = FALSE, auto.layout = FALSE)
> autocorr.plot(test2.tune.c, ask = FALSE, auto.layout = FALSE)

Trace of varl

25
1.0

2.0
1
0.5

15

Autocorrelation
0.0

1.0
1
-0.5
|

0 200 400 600 800 1000 0 5 10 15 20 25 30
Iterations Lag

Figure 2: Results from glsm.mcmc for one variable.

To reduce the autocorrelation of the samples we decide to subsample every
10 iterations (default); when working with larger data sets we may need to
make a more extensive subsampling, say, storing only every 100 iterations.

> mcmc2 <- mcmc.control(S.scale = 0.5)
> test2 <- glsm.mcmc(p50, model = model2, mcmc.input = mcmc2)

iter. numb. 1000 : Acc.-rate = 0.596
iter. numb. 2000 : Acc.-rate = 0.607
iter. numb. 3000 : Acc.-rate = 0.602
iter. numb. 4000 : Acc.-rate = 0.61
iter. numb. 5000 : Acc.-rate = 0.611
iter. numb. 6000 : Acc.-rate = 0.595
iter. numb. 7000 : Acc.-rate = 0.611
iter. numb. 8000 : Acc.-rate = 0.615
iter. numb. 9000 : Acc.-rate = 0.61
iter. numb. 10000 : Acc.-rate = 0.625
MCMC performed: n.iter. = 10000 ; thinning = 10 ; burn.in = O

Exercise Produce traceplots and autocorrelation plots using the coda
functions above (where you probably want to use default values of the argu-
ments ask and auto.layout) for the MCMC output contained in test2.

3

4 SPATIAL PREDICTION

For the model and data above we now consider spatial prediction, assum-
ing that parameters are fixed. Full Bayesian prediction methods are also
implemented and will be presented in Section 5.

For computational reasons we consider prediction at only two locations
here. Minimal mean square error prediction of the intensity at the two lo-
cations (0.5, 0.5) and (1, 0.4). Here we use the object test2 created in the
previous section

> out2 <- output.glm.control(sim.predict = TRUE)
> pred.test2 <- glsm.krige(test2, locations = cbind(c(0.5,
+ 0.5), c(1, 0.4)), output = out2)

glsm.krige: Prediction for a generalised linear spatial model

The output is a list including the predicted values (pred.test2$predict),
the prediction variances (pred.test2$krige.var) and the estimated Monte
Carlo standard errors on the predicted values (pred.test2$mcmc.error). Print-
ing out the predicted values and the associated Monte Carlo standard errors:

> cbind(pred.test2$predict, pred.test2$mcmc.error)

[,1] [,2]
[1,] 5.503865 0.04906689
[2,] 4.934100 0.04225835

we see that the Monte Carlo standard errors (the errors due to the MCMC-
simulation) are small compared to predicted values, which is very satisfactory.

By specifying sim.predict = TRUE, simulations are drawn from the pre-
dictive intensity at the two prediction locations (pred.test2$simulations).
These simulations are plotted in Figure 3.

Exercise Make prediction on a 40 by 40 regular grid, and afterwards visu-
alise predictions using the geoR function image. We suggest to consult the
section about prediction in the geoR introduction before starting.

Exercise Binomial data can be specified by family="binomial" in glsm.mcmc.
The exercise consist in repeating the commands above for the binomial data
set b50.

(0.5, 0.5) (1,0.4)

o —_—
S 4
(=] o
S 4
©
8
re] 8 |
n
8
1 o
< _
9 0§
Lo [
[[
S | =
3 L
(=] o
S g
o -~ o -
T T T T T 1 T T T T T T T 1
0 10 20 30 40 50 0 5 10 15 20 25 30 35
pred.test2$simulations[1,] pred.test2$simulations[2,]

Figure 3: Histograms for simulations from the predictive distribution for two
locations.

Remark In the classical Gaussian model there exist different kriging flavours
: simple kriging, ordinary kriging, etc. The prediction above for a GLSM cor-
responds to simple kriging because all parameters are fixed. Ordinary and
Universal kriging in the Gaussian model corresponds to using a uniform flat
prior on the beta parameter. For a GLSM, the corresponding prediction
method is not implemented in the functions above. However, a uniform flat
prior on 3 parameter is considered in the next section on Bayesian inference,
and in addition it is also implemented for fixed covariance parameters in the
two functions pois.krige and binom.krige.

5 BAYESIAN ANALYSIS

Bayesian analysis for the Poisson-log normal model and the binomial-logit
model is implemented by the functions pois.krige.bayes and binom.krige.bayes,
respectively. Model parameters can be treated as fixed or random.

As an example consider first a model without nugget and including uncer-
tainty in the 3 and o parameters (mean and variance of the random effects
S, respectively). A Bayesian analysis is made by typing commands like:

> prior5 <- prior.glm.control(phi.prior = "fixed", phi = 0.1)
> mcmceb. tune <- mcmc.control(S.scale = 0.01, thin = 1)
> testb5.tune <- pois.krige.bayes(p50, prior = prior5, mcmc.input = mcmch.tune)

pois.krige.bayes: model with mean being constant
iter. numb. 1000 ; Acc.-rate = 0.98

MCMC performed: n.iter. = 1000 ; thinning = 1 ; burn.in = 0
Only Bayesian estimation of model parameters

Now chose S.scale (Acc-rate=0.60 is preferable). After having adjusted
the parameters for the MCMC algorithm and checking the output we run an
analysis (where we here omit the printing of the messages from the MCMC
iterations for brevity).

> mcmc5 <- mcmc.control(S.scale = 0.075, thin = 100)

> outb <- output.glm.control (threshold = 10, quantile = c(0.05,
+ 0.99))

> testb <- pois.krige.bayes(p50, locations = t(cbind(c(2.5,

+ 3), c(-6050, -3270))), prior = priorb5, mcmc.input = mcmc5,
+ output = outb)

The output is a list which contains the five arguments posterior, predic-
tive, model, prior and mcmc.input. The posterior contains information on
the posterior distribution of the parameters, and the conditional simulations
of the signal g~!(S) at the data locations. The predictive contains infor-
mation on the predictions, where predictive$median is the predicted signal
and predictive$uncertainty is the associated uncertainty. The threshold
= 10 argument gives probabilities of the predictive distribution of the sig-
nal being less than 10 (test5$predictive$probability). The quantiles =
c(0.05,0.99) gives the 0.05 and 0.99 quantiles of the predictive distribution
of the signal (test5¢$predictive$quantiles).

Below we show the simulations from the posterior distribution of the
signal at a few data locations.

3 9,0) 2.2 (5.3)
» ' g _ 1] =
- N
S 4
S — 8 | N
> S hy
c — c c I
S g3 g
5% - g7] g8 -
| T I
o _|
o | s} 2 -
[Te)
o - o - o -
I T T T 1 —r T T 1T 1T 1 1 1 T 1 71 1
0 5 10 15 20 1 2 3 4 5 6 7 0 2 4 6 8 10 12
test5$posterior$simulations[10,] test5$posterior$simulations[23,] test5$posterior$simulations[36,]

Figure 4: Histograms

Now we consider an example with a random correlation scale parameter
phi and a positive nugget for the random effects S. The program is using a

discretised prior for phi, where the discretisation is given by the argument
phi.discrete). The argument tausq.rel = 0.05 gives the relative nugget
for S, i.e. the relative microscale variation.

> mcmc6.tune <- mcmc.control(S.scale = 0.075, n.iter = 2000,

+ thin = 100, phi.scale = 0.01)
> prior6 <- prior.glm.control(phi.prior = "uniform", phi.discrete = seq(0.02,
+ 1, 0.02), tausq.rel = 0.05)

> test6.tune <- pois.krige.bayes(p50, prior = prior6, mcmc.input = mcmc6.tune)

Acc-rate=0.60 , acc-rate-phi = 0.25-0.30 are preferable. After having ad-
justed the parameters for the MCMC algorithm and checking the output we
run an analysis.

WARNING: RUNNING THE NEXT COMMAND CAN BE TIME-
CONSUMING

> mcmc6 <- mcmc.control(S.scale = 0.075, n.iter = 4e+05,

+ thin = 200, burn.in = 5000, phi.scale = 0.12, phi.start = 0.5)
> test6 <- pois.krige.bayes(p50, locations = t(cbind(c(2.5,
+ 3.5), c(-60, -37))), prior = prior6, mcmc.input = mcmc6)

Below we show the posterior distribution of the two covariance parameters
and the beta parameter.

beta sigmasq phi
o M 1—] 1
S - o
< 2 7 § _
] 7 o
> = > >
go 28 4 28 7
[} o< (7]
28 s g3
o e 2R]
[rg | i
o
S ~ 8 -
o - o - o -
T 1T T T T 1 T T T 71 1 T T T T T 1
0.4 0.8 1.2 1.6 0.5 1.5 25 00 02 04 06 08 10
testé$posterior$beta$sample test6$posterior$sigmasg$sample test6$posterior$phi$sample

Figure 5: Samples from the posterior

Exercise Use coda and the function create.mcmc.coda to investigate the
convergence and mixing of the MCMC algorithm for the examples above.

Exercise Construct similar commands as above using the function bi-
nom.krige.bayes on the data set b50 yourself.

9

Remark The Bayesian inferential functions differ from the functions used
in the fixed parameter case in the following two ways : A. there exist two
functions, one for binomial data and for Poisson data. B. the Bayesian infer-
ential procedure has not been split into two functions, a MCMC function and
prediction function, similar to glsm.mcmc and glsm.krige. The main reason
for these differences is historical, the functions glsm.mcmc and glsm.krige
were introduced in geoRglm version 0.8-0 in the spring 2004. A reason for
not restructuring the Bayesian functions similarly has been compatibility
with the geoR function krige.bayes (in addition to the lack of time for
doing so !).

6 ADDITIONAL INFORMATION

Package geoRglm also contain some functions for likelihood inference (MCMC-
MLE). They are relatively slow to use, and have therefore not been included
in this introduction.

We strongly encourage the user to study the relevant literature and also
the geoRglm homepage before starting using the package.

10

