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Abstract

In this document the Rpackage ghyp is described in detail. Basically, the density
functions of the generalized hyperbolic distribution and its special cases and the fitting
procedure. Some code chunks indicate how the package ghyp can be used.
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3 2 DEFINITION

1 Introduction

The origin of this package goes back to the first authors’ years at RiskLab, when he worked
together with Alexander McNeil to develop an algorithm for fitting multivariate generalized
hyperbolic distributions. Accordingly, the functionality of this package largely overlaps Mc-
Neil’s library QRMlib [2]. However, there are quite some differences in the implementation.
From the user’s point of view, one of the most important may be that one can choose between
different parametrizations. In addition, with the present library it is possible to fit multivari-
ate as well as univariate generalized hypberbolic distributions and not only the special cases.

2 Definition

Facts about generalized hyperbolic (GH) distributions are cited according to [1] chapter 3.2.

The random vector X is said to have a multivariate GH distribution if

X := µ+Wγ +
√
WAZ (2.1)

where

(i) Z ∼ Nk(0, Ik)

(ii) A ∈ Rd×k

(iii) µ, γ ∈ Rd

(iv) W ≥ 0 is a scalar-valued random variable which is independent of Z and has a Gener-
alized Inverse Gauss distribution (see appendix C).

2.1 Expected value and variance

The expected value and the variance are given by

E(X) = µ+ E(W )γ (2.2)

cov(X) = E(cov(X|W )) + cov(E(X|W )) (2.3)

= var(W )γγ′ + E(W )Σ

where Σ = AA′.
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2.2 Linear transformations

The GH class is closed under linear operations:
If X ∼ GHd(λ, χ, ψ, µ,Σ, γ) and Y = BX + b, where B ∈ Rk×d and b ∈ Rk , then Y ∼
GHk(λ, χ, ψ,Bµ+ b, BΣB′, Bγ).

2.3 Density

Since the conditional distribution of X given W is gaussian with mean µ+Wγ and variance
WΣ the GH density can be found in the following way.

fX(x) =
∫ ∞

0
fX|W (x|w) fW (w) dw (2.4)

=
∫ ∞

0

e(x−µ)′Σ−1γ

(2π)
d
2 |Σ|

1
2w

d
2

exp
{
−Q(x)

2w
− γ′Σ−1γ

2/w

}
fW (w)dw

=
(
√
ψ/χ)λ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ|

1
2 Kλ(

√
χψ)

×
Kλ− d

2
(
√

(χ+ Q(x))(ψ + γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

(χ+ Q(x))(ψ + γ′Σ−1γ))
d
2
−λ

where the relation (B.2) of the modified bessel function of the third kind Kλ(·) (B.1) is used
and Q(x) denotes the mahalanobis distance Q(x) = (x − µ)′Σ−1(x − µ). The domain of
variation of the parameters λ, χ and ψ is given in appendix C.

3 Parametrization

There are several alternative parametrizations for the GH distribution. In this package the
user can choose between two of them, the (λ, χ, ψ, µ,Σ, γ)-parametrization and the (λ, α, µ,Σ, γ)-
parametrization. Have a look at appendix G.1 to see how both of these parametrizations can
be used.

3.1 (λ, χ, ψ, µ,Σ, γ)-Parametrization

The (λ, χ, ψ, µ,Σ, γ)-parametrization is straight forward but has a drawback of an identifica-
tion problem. Indeed, the distributions GHd(λ, χ, ψ, µ,Σ, γ) and GHd(λ, χ/k, kψ, µ, kΣ, kγ)
are identical for any k > 0. Therefore, an identifying problem occurs when we start to fit
the parameters of a GH distribution. This problem can be solved by introducing a suitable
contraint. One possibility is to require the determinant of the covariance matrix to be 1.
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3.2 (λ, α, µ,Σ, γ)-Parametrization

There is a more elegant way to eliminate the degree of freedom. We simply constrain the
expected value of the mixing variableW to be 1. This makes the interpretation of the skewness
parameters γ easier and in addition, the fitting procedure becomes faster (see 4.1).
We define [3]

E(W ) =
√
χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

= 1. (3.1)

and set
α =

√
χψ. (3.2)

It follows that

ψ = α
Kλ+1(α)
Kλ(α)

and χ =
α2

ψ
= α

Kλ(α)
Kλ+1(α)

. (3.3)

The drawback of the (λ, α, µ,Σ, γ)-parametrization is that it does not exist in the case α = 0
and λ ∈ [−1, 0]. This is the case of a student-t distribution with non-existing variance. Note
that the (λ, α, µ,Σ, γ)-parametrization yields to a slightly different parametrization for the
special case of a student-t distribution. See section (D.1) for details.

4 Fitting generalized hyperbolic distributions to data

Numerical optimizers can be used to fit univariate GH distributions to data by means of
maximum likelihood estimation. Multivariate GH distributions can be fitted with algorithms
based on the expectation-maximazion (EM) scheme.

4.1 EM-Scheme

Assume we have iid data x1, . . . ,xn and parameters represented by Θ = (λ, α, µ,Σ, γ). The
problem is to maximize

lnL(Θ;x1, . . . ,xn) =
n∑

i=1

ln fX(xi; Θ). (4.1)

This problem is not easy to solve due to the number of parameters and necessity of maximizing
over covariance matrices. We can proceed by introducing an augmented likelihood function

ln L̃(Θ;x1, . . . ,xn, w1, . . . , wn) =
n∑

i=1

ln fX|W (xi|wi;µ,Σ, γ) +
n∑

i=1

ln fW (wi;λ, α) (4.2)
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and spend the effort on the estimation of the latent mixing variables wi coming from the
mixture representation of (2.1). This is where the EM algorithm comes into play.

E-step: Calculate the conditional expectation of the likelihood function (4.2) given the data
x1, . . . ,xn and the current estimates of parameters Θ[k]. This results in the objective
function

Q(Θ;Θ[k]) = E(ln L̃(Θ;x1, . . . ,xn, w1, . . . , wn)|x1, . . . ,xn; Θ[k]). (4.3)

M-step: Maximize the objective function with respect to Θ to obtain the next set of estimates
Θ[k+1].

Alternating between these steps yields to the maximum likelihood estimation of the parame-
ter set Θ.

In practice, performing the E-Step means maximizing the second summand of (4.2) numeri-
cally. The log density of the GIG distribution (see C.1) is

ln fW (w) =
λ

2
ln(ψ/χ)− ln(2Kλ

√
χψ) + (λ− 1) lnw − χ

2
1
w
− ψ

2
w. (4.4)

When using the (λ, α)-parametrization this problem is of dimension two instead of three as
it is in the (λ, χ, ψ)-parametrization As a consequence the performance increases.
Since the wi’s are latent one has to replace w, 1/w and lnw with expected values in order to
maximize the log likelihood function. Let

η
[k]
i := E(wi |xi; Θ[k]), δ[k]

i := E(w−1
i |xi; Θ[k]), ξ[k]

i := E(lnwi |xi; Θ[k]). (4.5)

We have to find the conditional density of wi given xi to be able to calculate these quantities
(see (E.1)).

4.2 MCECM estimation

In the R implementation we employ a modified EM scheme which is called multi-cycle, ex-
pectation, conditional estimation (MCECM) algorithm ([1], [2]). The different steps of the
MCECM algorithm are sketched as follows:

(1) Select reasonable starting values for Θ[k]. For example λ = 1, α = 1, µ is set to the
sample mean, Σ to the sample covariance matrix and γ to a zero skewness vector.
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(2) Calculate χ[k] and ψ[k] as a function of α[k] using (3.3).

(3) Use (4.5), (C.2) and (E.1) to calculate the weights η[k]
i and δ[k]

i . Average the weights to
get

η̄[k] =
1
n

n∑
i=1

η
[k]
i and δ̄[k] =

1
n

n∑
i=1

δ
[k]
i . (4.6)

(4) If an asymmetric model is to be fitted set γ to 0, else set

γ[k+1] =
1
n

∑n
i=1 δ

[k]
i (x̄− xi)

η̄[k]δ̄[k] − 1
. (4.7)

(5) Update µ and Σ:

µ[k+1] =
1
n

∑n
i=1 δ

[k]
i (xi − γ[k+1])
δ̄[k]

(4.8)

Σ[k+1] =
1
n

n∑
i=1

δ
[k]
i (xi − µ[k+1])(xi − µ[k+1])′ − η̄[k]γ[k+1]γ[k+1] ′. (4.9)

(6) Set Θ[k,2] = (λ[k], α[k], µ[k+1],Σ[k+1], γ[k+1]) and calculate weights η[k,2]
i , δ[k,2]

i and ξ
[k,2]
i

using (4.5), (C.3) and (C.2).

(7) Maximise the second summand of (4.2) with respect to λ, χ and ψ to complete the
calculation of Θ[k,2] and go back to step (2). Note that the objective function must
calculate χ and ψ in dependence of λ and α using relation (3.3).

5 Special cases of the generalized hyperbolic distribution

The GH distribution contains several special cases known under special names [1].

� If λ = d+1
2 the name generalized is dropped and we have a multivariate hyperbolic

distribution. The univariate margins are still GH distributed. Inversely, when λ = 1 we
get a multivariate GH distribution with hyperbolic margins.

� If λ = −1
2 the distribution is called Normal Inverse Gauss (NIG).

� If α = 0 and λ > 0 one gets a limiting case which is known amongst others as Variance
Gamma (VG) distribution.
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� If α = 0 and λ < −2 one gets a limiting case which is known as a skewed student-t
distribution.

All the necessary formulas to fit the special cases can be found in the appendix.

A Shape of the univariate generalized hyperbolic distribution

ghyp, 2007, Institute of Data Analysis and Process Design, GPL
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Figure A.1: The shape of the univariate generalized hyperbolic density drawn with different
shape parameters (λ, α). The location and scale parameter µ and σ are set to 0 and 1,
respectively. The skewness parameter γ is 0 in the left column and −1 in the right column of
the graphics array.
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B Modified Bessel function of the third kind

The modified bessel function of the third kind appears in the GH as well as in the GIG density
(2.4, C.1). This function is defined as

Kλ(x) :=
1
2

∫ ∞

0
wλ−1 exp

{
−1

2
x

(
w + w−1

)}
dw , x > 0. (B.1)

By means of the following relation the GH density (2.1) can be written in the closed form.

∫ ∞

0
wλ−1 exp

{
−1

2

(χ
w

+ wψ
)}

dw = 2
(
χ

ψ

)λ
2

Kλ(
√
χψ) (B.2)

When calculating the densities of the special cases of the GH density we can use the asymtotic
relations

Kλ(x) ∼ Γ(λ) 2λ−1x−λ as x→ 0 + and λ > 0 (B.3)

and
Kλ(x) ∼ Γ(−λ) 2−λ−1xλ as x→ 0 + and λ < 0. (B.4)

(B.4) follows from (B.3) and the observation that the Bessel function is symmetric with respect
to the index λ.
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Figure B.1: The modified Bessel function of the third kind drawn with different indices λ.
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C Generalized Inverse Gaussian distribution

The density of a Generalized Inverse Gaussian (GIG) distribution is given as

fGIG(w) =
(
ψ

χ

)λ
2 wλ−1

2Kλ(
√
χψ)

exp
{
−1

2

(χ
w

+ ψw
)}

, (C.1)

with parameters satisfying

χ > 0, ψ ≥ 0, λ < 0
χ > 0, ψ > 0, λ = 0
χ ≥ 0, ψ > 0, λ > 0 .

The GIG density contains the Gamma (Γ) and Inverse Gamma (IΓ) densities as limiting cases.
If χ = 0 and λ > 0 then X is gamma distributed with parameters λ and 1

2ψ (Γ(λ, 1
2ψ)).

If ψ = 0 and λ < 0 then X has an inverse gamma distribution with parameters −λ and 1
2χ

(IΓ(−λ, 1
2χ)).

The n-th moment of a GIG distributed random variable can be found to be

E(Xn) =
(
χ

ψ

)n
2 Kλ+n(

√
χψ)

Kλ(
√
χψ)

. (C.2)

Furthermore
E(lnX) =

dE(Xα)
dα α=0

. (C.3)

Numerical calculations may be performed with the integral representation as well. In the R

package ghyp the derivative construction is implemented.

C.1 Gamma distribution

When χ = 0 and λ > 0 the GIG distribution reduces to the gamma distribution defined as

fW (w) =
βα

Γ(α)
wα−1 exp {−βw} .

The expected value and the variance are E(X) = β/α and var(X) = α/β2, respectively. The
expected value of the logarithm is E(lnX) = ψ(α)−ln(β) where ψ(·) is the digamma function.
We will see that this value is not needed to fit a multivariate variance gamma distribution
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(see E.3).

C.2 Inverse gamma distribution

When ψ = 0 and λ < 0 the GIG distribution reduces to the gamma distribution defined as

fW (w) =
βα

Γ(α)
w−α−1 exp

{
− β
w

}
.

The expected value and the variance are E(X) = β/(α−1) and var(X) = β2/((α−1)2(α−2)),
and exist provided that α > 1 and α > 2, respectively. The expected value of the logarithm
is E(lnX) = ln(β) − ψ(α). This value is required in order to fit a symmetric multivariate
student-t distribution by means of the MCECM algorithm (see E.2).
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Figure C.1: The density and the log-density of the generalized inverse gaussian distribution
drawn with different shape parameters (λ, α). See (3.3) for the transformation from α to
(χ, ψ).
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D Densities of the special cases of the GH distribution

As mentioned in section 5 the GH distribution contains several special cases. In what follows
the densities of the special cases are derived. In the case of a hyperbolic or normal inverse
gaussian distribution we simply fix the parameter λ either to (d+ 1)/2 or −0.5.

D.1 Student-t distribution

With relation (B.4) it can be easily shown that when ψ → 0 and λ < 0 the density of a GH
distribution results in

fX(x) =
χ−λ(γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ|

1
2 Γ(−λ)2−λ−1

×
Kλ− d

2
(
√

(χ+ Q(x))γ′Σ−1γe(x−µ)′Σ−1γ

(
√

(χ+ Q(x))γ′Σ−1γ)
d
2
−λ

. (D.1)

We switch to the student-t parametrization and set the degree of freedom ν = −2λ 1. Because
ψ = 0 the transformation of α to χ and ψ (see 3.3) reduces to

χ = α
Kλ(α)

Kλ+1(α)
α→0−→ 2 (−λ− 1) = ν − 2. (D.2)

Putting it all together the density is calculated to be

fX(x) =
(ν − 2)

ν
2 (γ′Σ−1γ)

ν+d
2

(2π)
d
2 |Σ|

1
2 Γ(ν

2 )2
ν
2
−1

×
K ν+d

2
(
√

(ν − 2 + Q(x))γ′Σ−1γ) e(x−µ)′Σ−1γ

(
√

(ν − 2 + Q(x))γ′Σ−1γ)
ν+d
2

. (D.3)

When γ → 0 we observe the symmetric multivariate t distribution

fX(x) =
(ν − 2)

ν
2 Γ(ν+d

2 )

π
d
2 |Σ|

1
2 Γ(ν

2 )(ν − 2 + Q(x))
ν+d
2

. (D.4)

1Note that the (λ, α, µ, Σ, γ) parametrization yields to a slightly different student-t parametrization: In
this package the parameter Σ denotes the variance in the multivariate case and the standard deviation in the
univariate case. Thus, set σ =

p
ν/(ν − 2) in the univariate case to get the same results as with the standard

R implementation of the student-t distribution.
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D.2 Variance gamma distribution

Relation (B.3) can be used again to show that for χ → 0 and λ > 0 the density of the GH
distribution results in

fX(x) =
ψλ(ψ + γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ|

1
2 Γ(λ)2λ−1

×
Kλ− d

2
(
√

Q(x)(ψ + γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

Q(x)(ψ + γ′Σ−1γ))
d
2
−λ

. (D.5)

In the case of a variance gamma distribution the transformation of α to χ and ψ (see 3.3)
reduces to

ψ = α
Kλ+1(α)
Kλ(α)

= 2λ (D.6)

Thus, the density is

fX(x) =
2λλ(2λ+ γ′Σ−1γ)

d
2
−λ

(2π)
d
2 |Σ|

1
2 Γ(λ)

×
Kλ− d

2
(
√

Q(x)(2λ+ γ′Σ−1γ)) e(x−µ)′Σ−1γ

(
√

Q(x)(2λ+ γ′Σ−1γ))
d
2
−λ

. (D.7)

A limiting case arises when Q(x) → 0, that is when x−µ→ 0. As long as λ− d
2 > 0 relation

(B.3) can be used to verify that the density reduces to

fX(x) =
ψλ(ψ + γ′Σ−1γ)

d
2
−λ Γ(λ− d

2)

2d π
d
2 |Σ|

1
2 Γ(λ)

. (D.8)

By replacing ψ with 2λ the limiting density is obtained in the (λ, α, µ,Σ, γ)-parametrization.
2

For λ− d
2 ≤ 0 the density diverges. 3

E Conditional density of the mixing variable W

Performing the E-Step of the MCECM algorithm requires the calculation of the conditional
expectation of wi given xi. In this section the conditional density is derived.

2The numeric implementation in Ruses spline interpolation for the case where λ− d
2

> 0 and Q(x) < ε.
3The current workaround in R simply sets observations where Q(x) < ε to ε when λ− d

2
≤ 0.
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E.1 Generalized hyperbolic, hyperbolic and NIG distribution

The mixing term w is GIG distributed. By using (2.4) and (C.1) the density of wi given xi

can be calculated to be again the GIG density with parameters (λ− d
2 ,Q(x)+χ, ψ+γ′Σ−1γ).

fw|x(w) =
fX,W (x, w)
fX(x)

=
fX|W (x)fGIG(w)∫∞

0 fX|W (x)fGIG(w)dw

=
(
γ′Σ−1γ + ψ

Q(x) + χ

)0.5(λ− d
2
)

×

wλ− d
2
−1 exp

{
−1

2

(Q(x)+χ
w + w (γ′Σ−1γ + ψ)

)}
2Kλ− d

2
(
√

(Q(x) + χ) (γ′Σ−1γ + ψ))
(E.1)

E.2 Student-t distribution

The mixing term w is IΓ distributed. Again the conditional density of wi given xi results
in the GIG density. The equations (2.4) and (C.4) were used. The parameters of the GIG
density are (λ− d

2 ,Q(x) + χ, γ′Σ−1γ). When γ becomes 0 the conditional density reduces to

the IΓ density with parameters (d
2 − λ,

Q(x)+χ
2 ).

fw|x(w) =
fX,W (x, w)
fX(x)

=
fX|W (x)fIΓ(w)∫∞

0 fX|W (x)fIΓ(w)dw

=
(
γ′Σ−1γ

Q(x) + χ

)0.5(λ− d
2
)

×
wλ− d

2
−1 exp

{
−1

2

(Q(x)+χ
w + w γ′Σ−1γ

)}
2Kλ− d

2
(
√

(Q(x) + χ) γ′Σ−1γ)
(E.2)
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E.3 Variance gamma distribution

The mixing term w is Γ distributed. By using (2.4) and (C.4) the density of wi given xi can
be calculated to be again the GIG density with parameters (λ− d

2 ,Q(x), ψ + γ′Σ−1γ).

fw|x(w) =
fX,W (x, w)
fX(x)

=
fX|W (x)fΓ(w)∫∞

0 fX|W (x)fΓ(w)dw

=
(
γ′Σ−1γ + ψ

Q(x)

)0.5(λ− d
2
)

× (E.3)

wλ− d
2
−1 exp

{
−1

2

(Q(x)
w + w (γ′Σ−1γ + ψ)

)}
2Kλ− d

2
(
√

Q(x) (γ′Σ−1γ + ψ))
(E.4)

F Distribution objects

In the package ghyp we follow an object-oriented programming approach and introduce dis-
tribution objects. There are mainly four reasons for that:

1. Unlike most distributions the GH distribution has quite a few parameters which have
to fulfill some consistency requirements. Consistency checks can be performed uniquely
when an object is initialized.

2. Once initialized the common functions belonging to a distribution can be called con-
veniently by passing the distribution object. A repeated input of the parameters is
avoided.

3. Distributions returned from fitting procedures can be directly passed to, e.g., the density
function since fitted distribution objects add information to the distribution object and
consequently inherit from the class of the distribution object.

4. Generic method dispatching can be used to provide a uniform interface to, e.g., calculate
the expected value mean(distribution.object). Additionally, one can take advantage
of generic programming since Rprovides virtual classes and some forms of polymorphism.

See appendix G for several examples and G.2 for particular examples concerning the object-
oriented approach.
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G Examples

This section provides examples of distribution objects and the object-oriented approach as
well as fitting to data and portfolio optimization.

G.1 Initializing distribution object

This example shows how GH distribution objects can be initialized by either using the
(λ, χ, ψ, µ,Σ, γ) or the (λ, α, µ,Σ, γ)-parametrization.

> library(ghyp)

> ghyp(lambda = -2, alpha.bar = 0.5, mu = 10, sigma = 5, gamma = 1)

Asymmetric Generalized Hyperbolic Distribution:

Parameters:

lambda alpha.bar mu sigma gamma

-2.0 0.5 10.0 5.0 1.0

> ghyp(lambda = -2, chi = 5, psi = 0.1, mu = 10:11, sigma = diag(5:6),

+ gamma = -1:0)

Asymmetric Generalized Hyperbolic Distribution:

Parameters:

lambda chi psi

-2.0 5.0 0.1

mu:

[1] 10 11

sigma:

[,1] [,2]

[1,] 5 0

[2,] 0 6

gamma:

[1] -1 0
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G.2 Object-oriented approach

First of all a GH distribution object is initialized and a consistency check takes place. The
second command shows how the initialized distribution object is passed to the density func-
tion. Then a student-t distribution is fitted to the daily log-returns of the company Novartis.
The fitted distribution object is passed to the quantile function. Since the fitted distribution
object inherits from the distribution object this constitutes no problem. The generic methods
hist, mean and vcov are defined for distribution objects inheriting from classes ”ghypuv” and
”ghypbase”, respectively.

## Consistency check when initializing a GH distribution object.

## Valid input:

univariate.ghyp.object <- ghyp(lambda=-2, alpha.bar=0.5, mu=10, sigma=5, gamma=1)

## Passing a distribution object to the density function

dghyp(10:14,univariate.ghyp.object)

## Passing a fitted distribution object to the quantile function

fitted.ghyp.object <- fit.tuv(smi.stocks[,"Novartis"], silent = T)

qghyp(c(0.01,0.05), fitted.ghyp.object)

## Generic method dispatching: the histogram method

hist(fitted.ghyp.object,legend.cex=0.7)

## Generic programming:

mean(fitted.ghyp.object) ## fitted.ghyp.object extends "ghypuv"

## which extends "ghypbase"

vcov(univariate.ghyp.object) ## univariate.ghyp.object extends "ghypbase"

G.3 Fitting generalized hyperbolic distributions to data

A multivariate GH distribution is fitted to the daily returns of three swiss blue chips: Credit
Suisse, Nestle and Novartis. A pairs plot is drawn in order to do some graphical diagnostics
of the accuracy of the fit.
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> data(smi.stocks)

> fitted.returns.mv <- fit.ghypmv(data = smi.stocks[, c("CS", "Nestle",

+ "Novartis")], silent = TRUE)

> pairs(fitted.returns.mv, cex = 0.5, legend.cex = 0.5, nbins = 50)
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In the following part daily log-returns of the SMI are fitted to the GH distribution. Again,
some graphical verification is done to check the accuracy of the fit.
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> fitted.smi.returns <- fit.ghypuv(data = smi.stocks[, c("SMI")],

+ silent = TRUE)

> par(mfrow = c(1, 3))

> hist(fitted.smi.returns, ghyp.col = "blue", legend.cex = 0.7)

> hist(fitted.smi.returns, log.hist = T, nclass = 30, plot.legend = F,

+ ghyp.col = "blue")

> qqghyp(fitted.smi.returns, plot.legend = T, legend.cex = 0.7)
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