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1 Introduction

The mfp package is a collection of R [3] functions targeted at the use of fractional polynomials (FP) for
modelling the influence of continuous covariates on the outcome in regression models, as introduced
by Royston & Altman (1994) [4] and modified by Sauerbrei & Royston (1999) [6]. The model may
include binary, categorical or further continuous covariates which are included in the variable selection
process but without need of FP transformation. It combines backward elimination with a systematic
search for a ‘suitable’ transformation to represent the influence of each continuous covariate on the
outcome. An application of multivariable fractional polynomials (MFP) in modelling prognostic and
diagnostic factors in breast cancer is given by [6]. The stability of the models selected is investigated
in [5]. Briefly, fractional polynomials models are useful when one wishes to preserve the continuous
nature of the covariates in a regression model, but suspects that some or all of the relationships
may be non-linear. At each step of a ‘backfitting’ algorithm MFP constructs a fractional polynomial
transformation for each continuous covariate while fixing the current functional forms of the other
covariates. The algorithm terminates when no more covariate is excluded and the functional forms of
the continuous covariates do not change anymore.

2 Inventory of functions

mfp.object is an object representing a fitted mfp model. Class mfp inherits from either glm or
coxph depending on the type of model fitted. In addition to the standard glm/coxph components the
following components are included in an mfp object

x the final FP transformations that are contained in the design matrix x. The covariate ”z” with 4 df
(second-degree FP) has corresponding columns ”z.1” and ”z.2” in x. A first-degree FP covariate
”z” would have one column ”z.1”.
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powers a matrix containing the best FP powers for each covariate. If a covariate has less than two
powers NAs will fill the appropriate cell of the matrix.

pvalues a matrix containing the P-values from the ”closed test procedure” together with the best
powers chosen. Briefly p.null is the P-value for the test of inclusion (see mfp), p.lin corresponds
to the test of nonlinearity and p.FP the test of simplification by comparing first degree (FP1)
and second degree (FP2) transformations. The best first degree FP power (power2) and best
second degree FP powers (power4.1 and power4.2) are also given. The numbers 2 and 4 describe
the corresponding degrees of freedom.

scale all covariates are shifted and rescaled before being power transformed if nonpositive values are
encountered or the range of values of the covariates is reasonably large. If x’ would be used
instead of x where x’ = (x+a)/b the parameters a (shift) and b (scale) are contained in the
matrix scale.

df.initial a vector containing the degrees of freedom allocated to each covariate corresponding to the
degree of FP (m=4 for second degree FP, m=2 for first degree FP).

df.final a vector containing the degrees of freedom of each covariate at convergence of the backfitting
algorithm (m=4 for second degree FP, m=2 for first degree FP, m=1 for untransformed variable,
m=0 if covariate was excluded).

dev the deviance of the final model.

dev.lin the deviance of the model that uses the linear predictor of untransformed covariates.

dev.null the deviance of the null model.

fptable the table of the final fp transformations.

fit a call of the corresponding glm or cox model using the selected and (possibly) FP transformed
variables of the final model.

3 Usage in R

Start with

>library(mfp)

An mfp.object will be created by application of function mfp.
A typical call of an mfp model has the form response ∼ terms where response is the (numeric)
response vector and terms is a series of terms, separated by + operators, which specifies a linear
predictor for response provided by the formula argument of the function call.

>str(mfp)

function (formula = formula(data), data = parent.frame(), family = gaussian,
method = c("efron", "breslow"), subset = NULL, na.action = na.omit,
init = NULL, alpha = 0.05, select = 1, maxits = 20, keep = NULL,
rescale = TRUE, verbose = FALSE, x = TRUE, y = TRUE)
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Fractional polynomial terms are indicated by fp.
For binomial models the response can also be specified as a factor. If a Cox proportional hazards
model is required then the outcome need to be specified using the Surv() notation.
The argument family describes the error distribution and link function to be used in the model. This
can be a character string naming a family function, a family function or the result of a call to a family
function.
Argument alpha sets the global FP selection level for all covariates. Different selection levels for
individual covariates can be chosen by using the fp function. The variable selection level for all
covariates is set by select. Values for individual fractional polynomials may be set using the fp
function.
The function fp defines a fractional polynomial object for a single input variable.

>str(fp)

function (x, df = 4, select = NA, alpha = NA, scale = TRUE)

In addition to alpha and select the scale argument of the fp function denotes the use of pre-
transformation scaling to avoid possible numerical problems or for variables with non-positive values.

3.1 Model selection

The original Stata implementation of mfp uses two different selection procedures for a single continuous
covariate x, a sequential selection procedure and a closed testing selection procedure (ra2, [1] ). In
the R implementation only the ra2 algorithm is used which is also the default in the Stata and SAS
implementations of mfp.
The ra2 algorithm is described in [1] and [7]. It uses a closed test procedure [2] which maintains
approximately the correct Type I error rate for each component test. The procedure allows the
complexity of candidate models to increase progressively from a prespecified minimum (a null model)
to a prespecified maximum (an FP) according to an ordered sequence of test results.
The algorithm works as follows:

1. Perform a 4 df test at the α level of the best-fitting second-degree FP against the null model. If
the test is not significant, drop x and stop, otherwise continue.

2. Perform a 3 df test at the α level of the best-fitting second-degree FP against a straight line. If
the test is not significant, stop (the final model is a straight line), otherwise continue.

3. Perform a 2 df test at the α level of the best-fitting second-degree FP against the best-fitting
first-degree FP. If the test is significant, the final model is the FP with m = 2, otherwise the FP
with m = 1.

The tests in step 1, 2 and 3 are of overall association, non-linearity and between a simpler or more
complex FP model, respectively.

4 Example

4.1 Cox proportional hazards model

We use the dataset GBSG which contains data from a study of the German Breast Cancer Study Group
for patients with node-positive breast cancer.

>data(GBSG)

>str(GBSG)
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'data.frame': 686 obs. of 11 variables:
$ id : int 1 2 3 4 5 6 7 8 9 10 ...
$ htreat : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 2 1 1 1 ...
$ age : int 70 56 58 59 73 32 59 65 80 66 ...
$ menostat: Factor w/ 2 levels "1","2": 2 2 2 2 2 1 2 2 2 2 ...
$ tumsize : int 21 12 35 17 35 57 8 16 39 18 ...
$ tumgrad : Factor w/ 3 levels "1","2","3": 2 2 2 2 2 3 2 2 2 2 ...
$ posnodal: int 3 7 9 4 1 24 2 1 30 7 ...
$ prm : int 48 61 52 60 26 0 181 192 0 0 ...
$ esm : int 66 77 271 29 65 13 0 25 59 3 ...
$ rfst : int 1814 2018 712 1807 772 448 2172 2161 471 2014 ...
$ cens : int 1 1 1 1 1 1 0 0 1 0 ...

The response variable is recurrence free survival time (Surv(rfst, cens)). Complete data on 7
prognostic factors is available for 686 patients. The median follow-up was about 5 years, 299 events
were observed for recurrence free survival time. We use a Cox proportional hazards regression to
model the hazard of recurrence by the 7 prognostic factors of which 5 are continuous, age of the
patients in years (age), tumor size in mm (tumsize), number of positive lymphnodes (posnodal),
progesterone receptor in fmol (prm), estrogen receptor in fmol (esm); one is binary, menopausal status
(menostat); and one is ordered categorical with three levels, tumor grade (tumgrad). The additional
variable htreat describes if a hormonal therapy was applied and is used as stratification variable.
We use mfp to build a model from the initial set of 7 covariates using the backfitting model selection
algorithm. We set the global variable selection level to 0.05 and use the default FP selection level.
By using fp() in the model formula a fractional polynomial transformation with possibly pre-transformation
scaling is estimated. This is done here for tumsize, posnodal, prm, and esm. Otherwise a linear form
of the unscaled variable is used, as for age. Categorical factors are included without transformation.
Hormonal therapy (htreat) was used as stratification variable.
By verbose=TRUE the process of FP and variable selection is printed.

>f <- mfp(Surv(rfst, cens) ~ strata(htreat) + age + fp(tumsize) +

+ fp(posnodal) + fp(prm) + fp(esm) + menostat + tumgrad, family = cox,

+ data = GBSG, select = 0.05, verbose = TRUE)

Variable Deviance Power(s)
------------------------------------------------
Cycle 1

posnodal
3135.218
3103.245 1
3081.123 0
3074.213 0.5 3

prm
3095.43
3074.213 1
3067.746 0.5
3066.502 -2 0.5

tumgrad2
3081.253
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3074.213 1

tumgrad3
3082.613
3074.213 1

tumsize
3075.813
3074.213 1
3072.091 -1
3071.882 -1 3

menostat2
3076.922
3075.813 1

age
3076.922
3076.922 1

esm
3077.795
3076.922 1
3073.627 3
3071.028 -0.5 3

Cycle 2
posnodal

3152.737
3108.965 1
3085.051 0
3077.795 0.5 3

prm
3099.562
3077.795 1
3071.74 0.5
3070.548 0 0.5

tumgrad2
3085.024
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3077.795 1

tumgrad3
3086.686
3077.795 1

tumsize
3077.795
3076.471 1
3074.077 -1
3073.759 -0.5 0

menostat2
3077.795
3076.973 1

age
3077.795
3077.737 1

Tansformation
shift scale

posnodal 0 10
prm 1 100
tumgrad2 0 1
tumgrad3 0 1
tumsize 0 10
menostat2 0 1
age 0 1
esm 1 100

Fractional polynomials
df.initial select alpha df.final power1 power2

posnodal 4 0.05 0.05 4 0.5 3
prm 4 0.05 0.05 1 1 .
tumgrad2 1 0.05 0.05 1 1 .
tumgrad3 1 0.05 0.05 1 1 .
tumsize 4 0.05 0.05 0 . .
menostat2 1 0.05 0.05 0 . .
age 1 0.05 0.05 0 . .
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esm 4 0.05 0.05 0 . .

Transformations of covariates:
formula

age .
tumsize .
posnodal I((posnodal/10)^0.5)+I((posnodal/10)^3)
prm I(((prm+1)/100)^1)
esm .
menostat .
tumgrad tumgrad

Deviance table:
Resid. Dev

Null model 3198.026
Linear model 3103.245
Final model 3077.795

After two cycles the final model is selected. Of the possible input variables tumor size (tumsize),
menopausal status (menostat), age and estrogen receptor (esm) were excluded from the model. Only
for variable posnodal a nonlinear transformation was chosen. Prescaling was used for esm, prm and
tumsize.
Details of the model fit are given by summary.

>summary(f)

Call:
mfp(formula = Surv(rfst, cens) ~ strata(htreat) + age + fp(tumsize) +

fp(posnodal) + fp(prm) + fp(esm) + menostat + tumgrad, data = GBSG,
family = cox, select = 0.05, verbose = TRUE)

n= 686
coef exp(coef) se(coef) z p

posnodal.1 5.66e-01 1.762 6.75e-02 8.39 0.0e+00
posnodal.2 -3.25e-05 1.000 1.33e-05 -2.44 1.5e-02
prm.1 -2.13e-03 0.998 5.38e-04 -3.96 7.4e-05
tumgrad2.1 6.16e-01 1.852 2.49e-01 2.48 1.3e-02
tumgrad3.1 7.49e-01 2.115 2.68e-01 2.79 5.2e-03

exp(coef) exp(-coef) lower .95 upper .95
posnodal.1 1.762 0.568 1.544 2.011
posnodal.2 1.000 1.000 1.000 1.000
prm.1 0.998 1.002 0.997 0.999
tumgrad2.1 1.852 0.540 1.137 3.016
tumgrad3.1 2.115 0.473 1.251 3.576

Rsquare= 0.161 (max possible= 0.991 )
Likelihood ratio test= 120 on 5 df, p=0
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Wald test = 116 on 5 df, p=0
Score (logrank) test = 123 on 5 df, p=0

Details of the FP transformations are given in the fptable value of the resulting mfp.object.

>f$fptable

df.initial select alpha df.final power1 power2
posnodal 4 0.05 0.05 4 0.5 3
prm 4 0.05 0.05 1 1 .
tumgrad2 1 0.05 0.05 1 1 .
tumgrad3 1 0.05 0.05 1 1 .
tumsize 4 0.05 0.05 0 . .
menostat2 1 0.05 0.05 0 . .
age 1 0.05 0.05 0 . .
esm 4 0.05 0.05 0 . .

The final model uses a second degree fractional polynomial for the number of positive lymphnodes
with powers 0.5 and 3.
The value fit of the resulting mfp object can be used for survival curve estimation of the final model
fit (1).
The function plot.mfp draws three plots: smoothed martingale based residuals of the null model, the
linear predictor function and a plot of the partial residuals together with a lowess smooth (2).
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Figure 1: Predicted survival curves of the final mfp model for the two strata defined by hormonal
treatment (red line = no hormonal treatment, green line = hormonal treatment).
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Figure 2: Smoothed null model martingale residuals, the plot of the estimated functional form of
the influence of the number of positive lymph nodes (posnodal) on the log relative hazard of tumor
recurrence, and the partial residuals plot for posnodal.
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