
Mixed stock analysis in R: getting started with the

mixstock package

Ben Bolker

February 1, 2007

1 Introduction

The mixstock package is a set of routines written in the R language [7]
for doing mixed stock analysis using data on markers gathered from source
populations and from one or more mixed populations. The package was de-
veloped for analyzing mitochondrial DNA (mtDNA) markers from sea tur-
tle populations, but should be applicable to any case with discrete sources,
discrete mixed populations, and discrete markers. (However, I do refer to
sources as “rookeries” and markers as “haplotypes” throughout this docu-
ment.) The package is intended to be self-contained, but some familiarity
with R or S-PLUS will be helpful. (Some familiarity with your computer’s
operating system, which is probably Microsoft Windows, is also assumed.)
The statistical methods implemented in the package are described in [1] and
[6].

This package is in the public domain (GNU General Public
License), is©2007 Ben Bolker and Toshinori Okuyama, and comes
with NO WARRANTY. Please suggest improvements to me (Ben
Bolker) at bolker@zoo.ufl.edu.

If you are feeling impatient and confident, turn to “Quick Start” (sec-
tion 6).

2 Installation

You can skip this section if you are reading this file via the vignette() com-
mand in R— that means you’ve already successfully installed the package.

To get started, you will have to download and install the R package,
a general-purpose statistics and graphics package, from http://cran.us.

1

r-project.org/bin/windows/base/ if you are in the US (or see http:
//www.r-project.org/mirrors.html for a list of alternative “mirror sites”
closer to you). You will download a file called R-x.y.z-win32.exe which
will install R for you, when executed; x.y.z stands for the current version
of R 2.4.1 as of February 1, 2007).

The following installation instructions assume you are using a “modern”
Microsoft Windows system (tested on 2000 and XP); it is possible to use R,
and the mixstock package, on other operating systems — please contact the
authors for more information. (The package has been developed under Linux
and runs under Windows; most of it should run under MacOS as well, but it
is not as well supported and you will have to build the package from sources.
To run hierarchical models using WinBUGS, you need to have WINE set
up on Linux; I’m not sure about MacOS.) The setup file is about 17M,
and R takes up about 40M of disk space. If you are running an antivirus
package that is configured to check the signatures of executable files before
they run, make sure you turn it off or register the new files installed by R
before proceeding. You may also have some difficulty downloading packages
if you have a firewall running on your computer — if you have trouble, you
may want to (temporarily, at your own risk!) disable it.

Once you have downloaded and installed R, start the R program. The
setup program should have asked whether you want to add a shortcut to the
desktop or the Start menu: if you didn’t, you will have to search for a file
called Rgui.exe, which probably lives somewhere like Program Files
R
R-2.4.1
bin depending on what version of R you are using and where you decided
to install it. R will open up a window for you with a command prompt (>),
at which you can type R commands. (Don’t panic.)

You can exit R by selecting File/Exit from the menus, or by typing
q() at the command prompt. In general, if you want help on a particular
command (e.g. uml) you can type a question mark followed by the command
name (e.g. ?uml)

You will next need to install the mixstock package and two other aux-
iliary packages, over the WWW, from within R (you will need to maintain
a connection to the internet for this piece, although it is also possible to do
this step off-line). Within R, at the command prompt, type the following
commands:

> install.packages("mixstock")

> install.packages("plotrix")

2

> install.packages("coda")

> install.packages("abind")

> install.packages("R2WinBUGS")

In each case, answer y to whether you want to delete the source files;
you won’t need them again. The first command specifies the location of
the mixstock package (the other packages all come from the default source
for R packages). The install.packages commands download and install
packages.

(If you don’t have a convenient internet connection, you can also down-
load the .zip files corresponding to the different packages and install them
by going to the Packages menu within R and choosing Install from local
zip file.)

3 Loading the mixstock package and reading in
data

Start every session with the mixstock package by typing

> library(mixstock)

at the command prompt; this loads the mixstock and auxiliary packages.
The package can read plain text data files that are separated by white

space (spaces and/or tabs) or commas. If your data are in Microsoft Excel,
you should export them as a comma-separated (CSV) file. If they are in
Word, save them as plain text. The expected data format is that each
row of data represents a haplotype, each column except the last represents
samples from a particular rookery, and the last column is the samples from
the mixed population. Each row and column should be named; your life will
be simpler if the names do not have spaces or punctuation other than periods
in them (a common convention in R is to replace spaces with periods, e.g.
North.FL for ”North FL”). Do not label the haplotype column; R detects
the presence of column names by checking whether the first row has one
fewer item than the rest of the rows in the file.

For example, a plain text file (with haplotype labels H1 and H2 and
rookery labels R1–R3) could look like this:

R1 R2 R3 mix
H1 1 2 3 4
H2 3 4 5 6

3

Or a comma-separated file could look like this:

R1,R2,R3,mix
H1,1,2,3,4
H2,3,4,5,6

If you have data from multiple mixed stocks, either put those data in a
separate file or run them all together as columns of the same table (you will
get a chance to specify how many sources and how many mixed populations
there are):

R1,R2,R3,mix1,mix2
H1,1,2,3,4,7
H2,3,4,5,6,0

To read in your data, you first need to make sure that R knows how
to find them. The best thing to do is to use the File/Change working
directory option under the file menu to move to a directory you will use for
analysis, which should contain the data files you want to use and will contain
R’s working files. Once you have changed to the appropriate directory, you
can read in your data files and assign the data to a variable (for example)
mydata:

> mydata <- read.table("lahanas98.dat")

if you are using space-separated data, or

> mydata <- read.csv("myturtles.csv")

if you have comma-separated values.
Here I’ll use the lahanas98raw data that comes with the package:

> data(lahanas98raw)

> mydata <- lahanas98raw

To make sure that everything came out OK, type the name of the variable
alone at the command prompt: e.g.

> mydata

to print out the data, or

> head(mydata)

4

FL
MEXI

CR
AVES

SURI
BRAZ

ASCE
AFRI

CYPR
Mixed

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

I
II
III
IV
V
VI

VII
VIII
IX
X
XI
XII

XIII
XIV
XV
XVI
XVII
XVIII

XIX
XX
XXI

Figure 1: Basic plot of turtle mtDNA haplotype data.

FL MEXI CR AVES SURI BRAZ ASCE AFRI CYPR feed
I 11 7 0 0 0 0 0 0 0 2
II 1 0 0 0 0 0 0 0 0 0
III 12 5 40 3 0 0 0 0 0 62
IV 0 0 1 0 0 0 0 0 0 0
V 0 1 0 27 13 0 0 0 0 10
VI 0 0 0 0 1 0 0 0 0 0

to print out just the first few lines, as shown above.
Next, convert your data to a form that the mixstock package can use

with the as.mixstock.data command:

> mydata <- as.mixstock.data(mydata)

Once your data are converted to mixstock.data form, you can produce
a summary plot of the data with plot(mydata) (Figure 1).

5

The default plot is a barplot, with the proportions of each haplotype
sampled in each rookery represented by a separate bar; the mixed population
data are shown as the rightmost bar.1

Before proceeding, you will need to “condense” your data set by (1) ex-
cluding any haplotype samples that are found only in the mixed population
(which will break some estimation methods, and provide no useful infor-
mation on turtle origins) and (2) lumping together all haplotypes that are
found only in a single rookery and the mixed population (distinguishing
among such haplotypes provides no extra information in our analyses, and
may slow down estimation). You can do this by typing

> mydata <- markfreq.condense(mydata)

(To examine the condensed form of the data, you can print them by typing
mydata at the command prompt, head(mydata) to see just the first few
lines, or plot(mydata) to see the graphical summary [Figure 2].)

Some data are already entered in the package in the condensed format;
you can access them using the data() command.

> data(lahanas98)

makes the haplotype frequency data from Lahanas et al. 1998 [5] available
as variable lahanas98.

> data(bolten98)

gives you the loggerhead data from Bolten et al. 1998 [3] available as
bolten98, already converted and condensed: bolten98raw gives you the
raw table.

4 Stock analysis

Various methods of stock analysis are available.

4.1 Conditional and unconditional maximum likelihood

You can do standard conditional maximum likelihood (CML) analysis using
cml(mydata). If you want to save the results, you can save them as a variable
that you can then print, plot, etc. (Figure 3)

1you can change from the default colors by specifying a colors= argument: e.g. if you
have 10 haplotypes, colors=topo.colors(10) or colors=gray((0:9)/9). See ?gray or
?rainbow for more information.

6

FL
MEXI

CR
AVES

SURI
BRAZ

ASCE
AFRI

CYPR
Mixed

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

I
II
III
IV

V
VI/VII
VIII
IX

X
XI/XII
XIII/XIV
XV/XVI/XVII/XVIII

Figure 2: Condensed haplotype data from Lahanas 1998

7

> mydata.cml <- cml(mydata)

> mydata.cml

Estimated input contributions:
FL MEXI CR AVES SURI BRAZ

5.463021e-02 9.453698e-05 7.833919e-01 1.485493e-01 1.333410e-06 1.333277e-06
ASCE AFRI CYPR

1.333144e-06 1.332877e-02 1.333010e-06

Estimated marker frequencies in sources:
(cml: no estimate)

method: cml

> plot(mydata.cml)

When you print CML results, R will tell you there is no estimate for the
rookery frequencies, because CML assumes that the true rookery frequencies
are equal to the sample rookery frequencies, rather than estimating the
rookery frequencies independently.

The default plot for estimation results plots points specifying the esti-
mated proportions of the mixed population contributed by each rookery (to
plot this with a logarithmic scale for the vertical axis, use plot(mydata.cml,log="y")).

Standard unconditional maximum likelihood analysis (UML) takes a lit-
tle longer, but is equally straightforward:

> mydata.uml <- uml(mydata)

UML estimates also include estimates of the true haplotype frequencies
in each rookery, which are printed with the contribution estimates (print
these results by typing mydata.uml on a line by itself). As with CML, you
can plot the results with plot(mydata.uml); by default this plot includes
just the rookery contribution information. You can include the estimated
haplotype frequencies in the rookeries in the graphical summary as follows:

> par(ask = TRUE)

> plot(mydata.uml, plot.freqs = TRUE)

> par(ask = FALSE)

(The par commands tell R to wait for user input, or not, between successive
plots.)

8

●

●

●

●

● ● ●
●

●

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

0.
0

0.
2

0.
4

0.
6

0.
8

FL MEXI CR AVES BRAZ AFRI

Figure 3: CML estimates for Lahanas 1998 data

9

4.2 Confidence intervals: CML and UML bootstrapping

> mydata.umlboot <- genboot(mydata, "uml")

will generate standard (nonparametric) bootstrap confidence intervals for
a UML fit to mydata, by resampling the data with replacement 1000 times
(by default). This is fairly slow with a realistic size data set. (You can ignore
warnings about singular matrix, returning equal contribs, Error in
qr.solve, etc..) You can find out the results by typing

> confint(mydata.umlboot)

2.5% 97.5%
contrib.FL 1.000000e-04 1.937642e-01
contrib.MEXI 8.172321e-05 9.999000e-05
contrib.CR 6.184032e-01 8.854842e-01
contrib.AVES 6.292138e-02 2.483440e-01
contrib.SURI 1.179836e-09 3.125456e-02
contrib.BRAZ 5.111485e-10 1.780757e-05
contrib.ASCE 1.598620e-13 2.008738e-05
contrib.AFRI 1.036273e-13 4.000358e-02
contrib.CYPR 1.779165e-13 2.142360e-05

4.3 Markov Chain Monte Carlo estimation

> mydata.mcmc <- tmcmc(mydata)

> mydata.mcmc

Estimated input contributions:
contrib.FL contrib.MEXI contrib.CR contrib.AVES contrib.SURI contrib.BRAZ
0.055518267 0.009706668 0.777704826 0.105769897 0.036445990 0.003427765
contrib.ASCE contrib.AFRI contrib.CYPR
0.004219192 0.005680010 0.001527386

Estimated marker frequencies in sources:
NULL

method: mcmc
prior strength: 0.1147742

10

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●

●

●

●

● ● ●
●

●0.
0

0.
2

0.
4

0.
6

0.
8

1 2 3 4 5 6 7 8 9

Figure 4: UML estimates with bootstrap confidence limits for Lahanas 1998
data

11

> confint(mydata.mcmc)

2.5% 97.5%
contrib.FL 2.009853e-11 0.23823757
contrib.MEXI 1.726347e-17 0.07512486
contrib.CR 5.956080e-01 0.89165907
contrib.AVES 3.616006e-10 0.22608667
contrib.SURI 7.363441e-16 0.17303709
contrib.BRAZ 1.664703e-16 0.02785796
contrib.ASCE 8.067783e-17 0.03001117
contrib.AFRI 3.820586e-15 0.03642586
contrib.CYPR 9.118769e-18 0.01506706

> plot(mydata.mcmc)

do the standard things: print the results, show confidence intervals, plot
the results. (By default the information on haplotype frequencies in rookeries
is not saved — it tends to be voluminous — and so this does not show up
in the MCMC results.)

4.4 Convergence diagnostics for MCMC

When you are running MCMC analyses, you have to check that the Markov
chains have converged (i.e. that you’ve run everything long enough for a
reliable estimate).

4.4.1 Raftery and Lewis

The command

> diag1 = calc.RL.0(mydata)

runs Raftery and Lewis diagnostics on your data set: these criteria at-
tempt to determine how long a single chain has to be in order for it to
give “sufficiently good” estimates. This function actually runs an iterative
procedure, repeating the chain until the R&L criterion is satisfied.

The results consist of two parts:

� diag1$current gives the diagnostics for the last chain evaluated. These
diagnostics consist of the predicted required length of the “burn-in”
period (a transient that is discarded); the total number of iterations

12

Source

E
st

im
at

ed
 s

ou
rc

e
co

nt
rib

ut
io

ns

●

●

●

●

●

● ● ● ●0.
0

0.
2

0.
4

0.
6

0.
8

contrib.FL contrib.CR contrib.SURI contrib.AFRI

Figure 5: MCMC estimates with confidence limits for Lahanas 1998 data

13

required; a lower bound on the total number required; and a “depen-
dence factor” that tells how much correlation there is between subse-
quent values in the chain (see ?raftery.diag for more information).
Here are the first few lines of diag1$current:

> head(diag1$current)

Burn-in Total Lower bound Dependence factor
contrib.FL 18 1521 235 6.47
contrib.MEXI 14 926 235 3.94
contrib.CR 28 1804 235 7.68
contrib.AVES 4 312 235 1.33
contrib.SURI 15 1230 235 5.23
contrib.BRAZ 5 367 235 1.56

� diag1$suggested gives the history of how long each suggested chain
was as we went along: the iterations stop once suggested >current,
but note that there is a lot of variability in the results.

> diag1$history

iteration Current Suggested
1 500 647
2 647 3882
3 3882 1804

4.4.2 Gelman and Rubin

The command

> diag2 = calc.GR(mydata)

tests the Gelman-Rubin criterion, which starts multiple chains from widely
spaced starting points and tests to ensure that the chains “overlap” — i.e.,
that between-chain variance is small relative to within-chain variance. The
general rule of thumb is that the criterion should be below 1.2 for all pa-
rameters in order for the chain to be judged to have converged properly.
[4].

14

5 Hierarchical models

To install WinBUGS, go to http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/
contents.shtml and follow the instructions there to download and install
WinBUGS version 1.4 and get a license key. Then make sure that you’ve
installed the R2WinBUGS package.

You can use the pm.wbugs() command (with the same syntax as tmcmc
above) to run basic mixed stock analysis. Use mm.wbugs() to run many-to-
many analyses.

5.1 Many-to-many analysis

The simmixstock2 command does basic simulation of multiple-mixed-stock
systems. At its simplest, it simply generates random uniform values for the
haplotype frequencies in each rookery and the proportional contributions of
each rookery to each mixed stock:

> Z <- simmixstock2(nsource = 4, nmark = 5, nmix = 3, sourcesize = c(4,

+ 2, 1, 1), sourcesampsize = rep(25, 4), mixsampsize = rep(30,

+ 3), rseed = 1001)

> Z

4 sources, 3 mixed stock(s), 5 distinct markers
Sample data:

R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 3 4 1
H3 2 2 11 5 3 6 3
H4 2 2 7 0 4 6 10
H5 5 13 2 6 8 8 7

> plot(Z)

15

R1 R2 R3 R4 M1 M2 M3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

H1
H2

H3
H4

H5

Now try to fit this via mm.wbugs:

> Zfit <- mm.wbugs(Z, sourcesize = c(4, 2, 1, 1))

Or, keeping the run in BUGS format for diagnostic purposes:

> Zfit0 <- mm.wbugs(Z, sourcesize = c(4, 2, 1, 1), returntype = "bugs")

This takes about 18.3 minutes to run with the default settings, which run
4 chains (equal to the number of sources) for 20,000 steps each. (There are
two different versions of the BUGS code that can be used with mm.wbugs;
in this particular case they give relatively similar answers and take about
the same amount of time (bugs.code="BB" took 9.2 minutes), but if you’re
having trouble you might try switching from the default bugs.code="TO"
to bugs.code="BB".

Other important options when running mm.wbugs are:

� n.iter: the default is 20,000 iterations per chain, with the first half
used as burn-in (n.burnin=floor(n.iter/2)); this may be conserva-
tive, and could take a long time with realistically large data sets. Use

16

CODA’s diagnostics as described above (raftery.diag, gelman.diag,
etc.) to figure out an appropriate number of iterations.

� n.chains: equal to the number of sources by default, which may again
be overkill. ([2] used three chains for an 11-source problem.)

� inittype: "dispersed" starts the chains from a starting point where
95% of the contributions are assumed to come from a single source;
"random" starts the chains from random starting points. If which.init
is specified, these sources will be used as the dominant starting points:
for example, mm.wbugs(...,n.chains=3,inittype="dispersed",which.init=c(1,5,7))
will start 3 chains with dominant contributions from sources 1, 5, and
7. If which.init is unspecified and n.chains is less than the number
of sources, dominant sources will be picked at random.

� returntype: specifies what format to use for the answer. The de-
fault is a mixstock.est object that can be plotted or summarized
like the results from any other mixed-stock analysis. However, for
diagnostic purposes, it may be worth running the code initially with
returntype="bugs" and using as.mcmc.bugs and as.mixstock.est.bugs
to convert the result to either CODA format or mixstock format. Plot-
ting bugs format and CODA format gives different diagnostic plots;
CODA format can also be used to run convergence diagnostics such as
raftery.diag or gelman.diag.

Plots from many-to-many runs:
Plot BUGS format diagnostics (plot not shown):

> plot(Zfit0)

Plot CODA diagnostics (plot not shown):

> plot(as.mcmc.bugs(Zfit0))

Plot results:

> print(plot(Zfit))

17

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

R1 R2 R3 R4

●

●

●

●

M1

R1 R2 R3 R4

●

●
●

●

M2

0.0

0.2

0.4

0.6

0.8

●

●

●

●

M3

Source-centric form:

> print(plot(Zfit, sourcectr = TRUE))

18

C
on

tr
ib

ut
io

n

0.0

0.2

0.4

0.6

0.8

M1 M2 M3 Unk

●

●

●
●

R1

M1 M2 M3 Unk

●
●

● ●

R2

●

●
●

●

R3

0.0

0.2

0.4

0.6

0.8

●

● ●

●

R4

Summary/confidence intervals:

> head(summary(Zfit))

4 sources, 3 mixed stock(s), 5 distinct markers
Sample data:

R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 3 4 1
H3 2 2 11 5 3 6 3
H4 2 2 7 0 4 6 10
H5 5 13 2 6 8 8 7

Estimates:

Mixed-stock-centric:
2.5% 97.5%

M1.R1 0.5473780 0.201795000 0.8366150
M1.R2 0.2235784 0.017553250 0.5286050

19

M1.R3 0.0850429 0.003377650 0.2590050
M1.R4 0.1440014 0.007369775 0.3941075
M2.R1 0.5043251 0.171260000 0.8346125
M2.R2 0.2178163 0.014860500 0.5255300
M2.R3 0.1712309 0.011442625 0.4215025
M2.R4 0.1066277 0.004133800 0.3124100
M3.R1 0.4046099 0.047320750 0.7818925
M3.R2 0.2877887 0.018549000 0.6452925
M3.R3 0.2017308 0.015441500 0.4913425
M3.R4 0.1058681 0.002893225 0.3213625

Source-centric:
2.5% 97.5%

R1.M1 0.3171615 0.052617250 0.7088300
R1.M2 0.2584727 0.038580500 0.6387150
R1.M3 0.1997042 0.012389250 0.5542900
R1.Unk 0.2246619 0.008175600 0.6225700
R2.M1 0.2492528 0.013269500 0.6460600
R2.M2 0.2118914 0.011240250 0.6314400
R2.M3 0.2626997 0.013295500 0.7239800
R2.Unk 0.2761556 0.010689750 0.7348300
R3.M1 0.1740109 0.005432050 0.5149200
R3.M2 0.2972163 0.020928500 0.6983675
R3.M3 0.3223322 0.026362250 0.7219875
R3.Unk 0.2064394 0.005509450 0.6473575
R4.M1 0.2988757 0.011309500 0.7524525
R4.M2 0.2004035 0.007036625 0.6351050
R4.M3 0.1847740 0.004338375 0.6272475
R4.Unk 0.3159484 0.015142750 0.7827350
$data
4 sources, 3 mixed stock(s), 5 distinct markers
Sample data:

R1 R2 R3 R4 M1 M2 M3
H1 14 8 5 14 12 6 9
H2 2 0 0 0 3 4 1
H3 2 2 11 5 3 6 3
H4 2 2 7 0 4 6 10
H5 5 13 2 6 8 8 7

$fit

20

fitinput.freq
R1 R2 R3 R4

M1 0.5473780 0.2235784 0.0850429 0.1440014
M2 0.5043251 0.2178163 0.1712309 0.1066277
M3 0.4046099 0.2877887 0.2017308 0.1058681

fitsource.freq
NULL

fitsourcectr.freq
M1 M2 M3 Unknown

R1 0.3171615 0.2584727 0.1997042 0.2246619
R2 0.2492528 0.2118914 0.2626997 0.2761556
R3 0.1740109 0.2972163 0.3223322 0.2064394
R4 0.2988757 0.2004035 0.1847740 0.3159484

$resample.sum
mean median sd Q02.5 Q05 Q95 Q97.5

M1.R1 0.5473780 0.553600 0.16110594 0.201795000 0.2595000 0.799230 0.8366150
M1.R2 0.2235784 0.204450 0.13855505 0.017553250 0.0260570 0.474390 0.5286050
M1.R3 0.0850429 0.068225 0.06931447 0.003377650 0.0065684 0.233520 0.2590050
M1.R4 0.1440014 0.126050 0.10132943 0.007369775 0.0140235 0.334100 0.3941075
M2.R1 0.5043251 0.503550 0.16885282 0.171260000 0.2143150 0.782120 0.8346125
M2.R2 0.2178163 0.204700 0.13563086 0.014860500 0.0260610 0.468530 0.5255300
M2.R3 0.1712309 0.154500 0.10862593 0.011442625 0.0224255 0.379490 0.4215025
M2.R4 0.1066277 0.087870 0.08396023 0.004133800 0.0089415 0.272715 0.3124100
M3.R1 0.4046099 0.399100 0.20215962 0.047320750 0.0800140 0.738310 0.7818925
M3.R2 0.2877887 0.274750 0.17065027 0.018549000 0.0354680 0.596360 0.6452925
M3.R3 0.2017308 0.184400 0.12848814 0.015441500 0.0253800 0.435915 0.4913425
M3.R4 0.1058681 0.084805 0.08726567 0.002893225 0.0070214 0.287610 0.3213625
R1.M1 0.3171615 0.292000 0.17826667 0.052617250 0.0752155 0.651575 0.7088300
R1.M2 0.2584727 0.225500 0.16266044 0.038580500 0.0508010 0.574510 0.6387150
R1.M3 0.1997042 0.161000 0.15118056 0.012389250 0.0201575 0.504265 0.5542900
R1.Unk 0.2246619 0.185450 0.17268818 0.008175600 0.0161995 0.551420 0.6225700
R2.M1 0.2492528 0.221400 0.17715397 0.013269500 0.0206450 0.579150 0.6460600
R2.M2 0.2118914 0.175000 0.16305664 0.011240250 0.0201865 0.522395 0.6314400
R2.M3 0.2626997 0.223000 0.19132121 0.013295500 0.0223965 0.634180 0.7239800
R2.Unk 0.2761556 0.241950 0.19892308 0.010689750 0.0219895 0.644830 0.7348300
R3.M1 0.1740109 0.135750 0.14152211 0.005432050 0.0128130 0.451170 0.5149200

21

R3.M2 0.2972163 0.272700 0.18146115 0.020928500 0.0434125 0.629540 0.6983675
R3.M3 0.3223322 0.298150 0.19033388 0.026362250 0.0460470 0.656430 0.7219875
R3.Unk 0.2064394 0.158350 0.17602759 0.005509450 0.0108000 0.571265 0.6473575
R4.M1 0.2988757 0.256650 0.20717218 0.011309500 0.0235090 0.687640 0.7524525
R4.M2 0.2004035 0.150150 0.16932025 0.007036625 0.0121855 0.531450 0.6351050
R4.M3 0.1847740 0.134400 0.16408396 0.004338375 0.0093100 0.520820 0.6272475
R4.Unk 0.3159484 0.269400 0.21798576 0.015142750 0.0292240 0.729235 0.7827350

(check this!)

6 Quick start

� Download and install R from CRAN (find the site closest to you at
http://cran.r-project.org/mirrors.html; go to “Precompiled bi-
nary distributions” and from there to the base package; pick your
operating system; download the setup program; and run the setup
program).

� Start R.

� From within R, download and install the mixstock package and aux-
iliary packages:

> bbcontrib <- "http://www.zoo.ufl.edu/bolker/R/windows"

> install.packages("mixstock", contriburl = bbcontrib)

> install.packages("plotrix")

> install.packages("coda")

> install.packages("abind")

> install.packages("R2WinBUGS")

(This installation procedure needs to be done only once, although the
library command below, loading the package, needs to be done for
every new R session.)

� Load the package: library(mixstock)

� Load data from a comma-separated value (CSV) file, convert to proper
format, and condense haplotypes:

> mydata <- hapfreq.condense(as.mixstock.data(read.csv("myfile.dat")))

� analyze, e.g:

22

> mydata.mcmc <- tmcmc(mydata)

> mydata.mcmc

> intervals(mydata.mcmc)

> plot(mydata.mcmc)

7 To do

� read.csv/read.table + as.mixstock.data combined into a single read.mixstock.data
command? (also incorporate hapfreq.condense as a default option)

� print.mixstock.est could print sample frequencies instead of saying
“no estimate” for CML

� MCMC section could be cleaned up considerably, explained better,
R&L parameters not hard-coded, more efficient — don’t re-run chains
every time

� incorporate rookery sizes in data

� keep CODA objects or potential for CODA plots in MCMC results

� make MCMC convergence process more efficient: more explanation

� add hierarchical models????

� describe fuzz and bounds parameters on CML/UML, E-M algorithm

� plot(...,legend=TRUE) doesn’t work for CML. add unstacked/beside=TRUE
option to plot.mixstock.est

� incorporate source size data as part of data object

� some functions don’t work with uncondensed data: fix or issue warning

� use HPDinterval from CODA for confidence intervals, rather than
quantiles?

References

[1] Benjamin Bolker, Toshinori Okuyama, Karen Bjorndal, and Alan Bolten.
Stock estimation for sea turtle populations using genetic markers: ac-
counting for sampling error of rare genotypes. Ecological Applications,
13(3):763–775, 2003.

23

[2] Benjamin M. Bolker, Toshinori Okuyama, Karen A. Bjorndal, and
Alan B. Bolten. Incorporating multiple mixed stocks in mixed stock
analysis: ’many-to-many’ analyses. Molecular Ecology, 2007. in press.

[3] Alan B. Bolten, Karen A. Bjorndal, Helen R. Martins, Thomas Dellinger,
Manuel J. Biscotio, Sandra E. Encalada, and Brian W. Bowen. Transat-
lantic developmental migrations of loggerhead sea turtles demonstrated
by mtDNA sequence analysis. Ecological Applications, 8(1):1–7, 1998.

[4] A. Gelman, J. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data
analysis. Chapman and Hall, New York, New York, USA, 1996.

[5] P. N. Lahanas, K. A. Bjorndal, A. B. Bolten, S. E. Encalada, M. M.
Miyamoto, R. A. Valverde, and B. W. Bowen. Genetic composition of a
green turtle (Chelonia mydas) feeding ground population: evidence for
multiple origins. Marine Biology, 130:345–352, 1998.

[6] J. Pella and M. Masuda. Bayesian methods for analysis of stock mixtures
from genetic characters. Fisheries Bulletin, 99:151–167, 2001.

[7] R Development Core Team. R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, Austria,
2005. ISBN 3-900051-07-0.

24

