
Performing equity investment simulations with

the portfolioSim package

Kyle Campbell, Jeff Enos, and David Kane

October 2, 2007

Abstract

The portfolioSim package provides a flexible system for back-testing
the performance of investment strategies using historical data. The pack-
age is designed to take into account the limitations of day-to-day trading,
so that a simulation’s performance will resemble as closely as possible the
performance that a given strategy would actually have achieved over a
given period of time.

1 Introduction

Note: this document is unfinished and is a work-in-progress.

Whatever investment strategy one uses to manage a portfolio, perhaps the
most basic and most important question one can ask of it is: “How well does
my strategy work?” Whenever one uses a systematic model to make financial
decisions, one would like to have some assurance that the model will yield posi-
tive returns on an investment. Unfortunately, due to the unpredictability of the
market, no estimates of a model’s performance will ever be absolutely certain.
The only sure indicator of an investment’s value is the returns one can measure
after the fact.

Therefore, barring the ability to foresee the future course of the market,
the best way to guage a model’s accuracy is to examine its track record. Using
historical data, it is possible to calculate how much money one would have made
or lost had one invested according to a given strategy over some past period
of time. This technique, known as “backtesting,” is widely used by financial
professionals to test investment strategies. By making the assumption that there
is at least some correlation between a model’s past and future performance,
investors can use the results of a backtest to make an informed decision on
whether to use a strategy in their future investments.

The portfolioSim package is intended to give investors the tools to make
such a decision. It does so by simulating a changing portfolio of investments over

1

2 RUNNING A SIMULATION 2

some period in the past. The simulator makes use of the portfolio package1

to manage the portfolio. The simulator takes historical market data supplied
by the user and follows an investment strategy, also provided by the user, to
determine which stocks to trade and when to trade them. At the end of the
simulation, the user is provided with detailed information on the portfolio’s
performance over that period. From this information, the user can determine
whether or not the investment strategy was effective.

The backtest package2 can be used to conduct one specific type of simple
backtest for a single type of portfolio, specifically, a long-short portfolio formed
from the highest and lowest ranked stocks of an input signal. The portfolioSim
package, in contrast, is much more flexible, allowing the user to specify virtually
any criteria for constructing and maintaining a portfolio.

In addition to being far more flexible in both the input it can receive and the
output it returns, the portfolioSim package has several major advantages over
the backtest package. One of the most important is its ability to step through
time, period by period, making investments based on many market variables
as they stood at some point in the past. The backtest package reduces the
problem of forming a portfolio to a single ranking variable, buying the highest
ranked stocks and shorting the lowest. But in reality, there are often many
other factors that an investor must take into account. It may take several days
to trade to a desired portfolio, and by the time all the selected stocks are actually
acquired the prices may have changed and the stocks may no longer be desirable.
The cost of making trades must be taken into account as well, along with the
turnover in the portfolio.

The backtest package ignores all of these complications, and thus the results
it reports, while useful for gauging the accuracy of a stock ranking, do not
accurately reflect the returns one could expect to gain from actual investments.
The portfolioSim package, on the other hand, is so named because it tries to
simulate, as closely as possible, the day-to-day trading process as it occurs in
reality. It allows the user to take into account daily trading volume, stock prices,
trade-cost adjustment, portfolio equity, and many other such considerations that
the backtest package ignores.

2 Running a simulation

At its core, the portfolioSim package is a very simple machine for maintaining
a representation of a changing portfolio over some span of time. At any moment,
this portfolio consists of holdings such as:

id shares

1 A 10

1See Enos and Kane, Analysing equity portfolios in R, for an introduction to the portfolio
package.

2See Campbell, Enos, Gerlanc, and Kane, Conducting Backtests in R, for more information
on the backtest package.

2 RUNNING A SIMULATION 3

2 B 20

3 C -10

Changes to a portfolio can be made in the form of “trades”.

trade: A transaction which changes the current holdings of the portfolio by
means of buying, selling, shorting, or covering stocks.

Consider the follow list of trades:

id side shares

1 B S 20

2 C C 5

3 D B 10

4 E X 20

Applying these four trades to the holdings above would transform the port-
folio into a new set of holdings, shown below:

id shares

1 A 10

2 C -5

3 D 10

4 E -20

Essentially, running a simulation consists of exposing a portfolio to different
sets of trades at different points in time and observing the results. The duration
of time over which the simulation is conducted is divided up by the user into
discrete“periods”, at each of which a new set of trades is performed. The manner
in which trades are selected for a given period is how we define an investment
strategy. This strategy is supplied by the user in the form of an interface passed
to the simulator.

Because there are no restrictions on how the user sets up an investment
strategy, it is possible that the trades interface will return a set of trades that
cannot be performed for one reason or another. For example, if a stock has
an average daily trading volume of one thousand shares and one of the trades
returned by the trades interface is to buy two thousand shares of that stock, the
simulator will have to know that it can only expect to fill part of this trade in
a single period.

In order to check for such limitations, the simulator needs to have access to
a fair amount of information on all the securities that might be traded in each
period. Specifically, the simulator needs to know the daily trading volume for
each security, the price of each security at the start and the close of the trading
day, and the returns from each security over the given period. All of this data
must be supplied by the user, in the form of another interface passed to the
simulator. This interface is queried at the start of every period, and provides
the simulator with all the data it will need during that period.

These two interfaces, along with a list of periods, are the primary forms
of input the simulator requires from the user. When a simulation is run, the
simulator goes period by period, processing the following steps at each period:

2 RUNNING A SIMULATION 4

1. Query data interface: First, the simulator retrieves all the data pertain-
ing to the period. This includes the price, volume, and return information
noted above, as well as any other information that might be required by
the interfaces. For example, the trades interface may require some addi-
tional information to help it determine the set of trades to make. Where
this data is stored depends entirely on the data interface. It could be saved
in the interface itself, in a local database, or over a network.

2. Clean up current holdings: Next, the simulator compares the holdings
currently in the portfolio to the new data returned by the data interface.
If there are any holdings which are no longer in the investable universe
(for example, holdings in delisted securities), then the simulator attempts
to remove those holdings from the portfolio.

3. Query trades interface: Next, the trades interface is used to obtain a
list of desirable trades. All the details of trade selection that affect which
trades receive priority, such as trade-cost adjustment, must be handled
within the trades interface. The simulator will change the trades returned
from the interface only if the number of shares to be traded exceeds some
set percentage of the daily trading volume. All other considerations must
be dealt with by the interface itself. The stiFromSignal interface included
in the portfolioSim package is a highly flexible interface that takes into
account many of considerations one would use to make real trades, includ-
ing trade-cost adjustment, target equity, and trading volume (see section
4 for more details).

4. Save start data: For each period, the simulator saves three types of
results: data on the portfolio at the start of the period, data on the trades
made during the period, and data on the portfolio at the end of the period.
The user has some flexibility about which types of data should be saved,
but the most basic type of results for the starting portfolio consists of
the long and short equity and the size of the long and short sides of the
portfolio.

5. Save period data: After the results for the start portfolio are saved,
the simulator saves the results for the period itself. This consists of the
turnover in the portfolio, the turnover in the universe of investable stocks,
and the performance of the portfolio during this period. The performance
is calculated based on the returns of the stocks in the portfolio at the start
of the period. In other words, the performance for the portfolio resulting
from trades in one period is calculated during the following period. In ad-
dition, the user can select to save details on the performance of individual
stocks, and/or the list of trades to be performed during this period.

6. Perform trades: Once the start and period results have been saved, the
simulator exposes the portfolio to the final list of trades for the period.
First, the trades are checked to makes sure they do not exceed the fixed fill
volume percentage; any trades that do are adjusted to match the maximum

2 RUNNING A SIMULATION 5

allowed percentage of the daily trading volume. Then the holdings in the
portfolio are transformed according to the list of trades.

7. Save end data: Finally, the simulator saves the results for the portfolio
at the end of the period. Again, this consists primarily of saving the size
and equity of both sides of the portfolio.

These steps are repeated for each period in the simulation, with the portfolio
carrying over from one period to the next. After all the periods have been
processed, the simulator is left with summary information on each step of the
portfolio’s history, from which it is easy to calculate the overall performance of
the portfolio.

2.1 A simple example

Consider a basic simulation conducted over four periods in a market with only
four stocks: “A”, “B”, “C”, and “D”. The prices of these stocks remain constant
over the course of the simulation, and the daily trading volume is 100 shares for
each stock. For the purposes of this example, we ignore the implementation of
the data and trades interfaces. We begin the simulation with no holdings.

First, the simulator gets the data for the first period:

period id ret start.price end.price volume universe

1 1 A 0 10 10 100 TRUE

2 1 B 0 10 10 100 TRUE

3 1 C 0 10 10 100 TRUE

4 1 D 0 10 10 100 TRUE

Since the current portfolio is empty, we have no holdings to compare to the
data. Next, the simulator gets a list of trades from the trades interface:

id side shares

1 A B 10

2 B X 10

For the first period, we want to perform two very simple trades: buying 10
shares of stock“A”and shorting 10 shares of stock“B”. Both of these amounts are
lower than the maximum fill volume percentage (15 percent), so the simulator
can carry out the complete list of trades. Our new holdings after the first period
are thus:

id shares

1 A 10

2 B -10

The simulator then proceeds to the next period after saving out the summary
data for the first period. New data and a new set of trades are retrieved from the
interfaces. We now have a slightly more complex set of trades to be performed:

2 RUNNING A SIMULATION 6

id side shares

1 B C 5

2 C B 5

3 A X 10

4 A S 10

During this period, we want to cover some of the shares of stock “B” which
we had shorted in the previous period; we want to buy into stock “C”, and we
want to switch our holdings of stock “A” from the long side to the short side of
the portfolio. Again, all of these trades are less than 15 shares, so the simulator
can fill them all. Our holdings after the second period are:

id shares

1 A -10

2 B -5

3 C 5

In the trades for the third period, however, not all of the trades can be filled
during a single period:

id side shares

1 B C 5

2 D B 20

The trades interface has returned a list of trades that includes buying 20
shares of stock “D”. However, the daily trading volume for this stock is 100
shares, of which the simulator will fill a maximum of 15%. Therefore, only 15
shares of stock “D” will be bought during this period.

id shares

1 A -10

3 C 5

4 D 15

Note also that we have covered the rest of our shares in stock “B”, so it no
longer appears in our holdings.

Finally, in the last period, the trades interface returns only one trade: the
remaining 5 shares we had intended to buy of stock“D”. Note that the simulator
does not automatically process left over trades during the following period, but
this is something that a good trades interface will take into account.

id side shares

1 D B 5

Looking at the data for period 4, we see that stock “C” is no longer in the
universe of investable stocks:

period id ret start.price end.price volume universe

13 4 A 0 10 10 100 TRUE

14 4 B 0 10 10 100 TRUE

15 4 C 0 10 10 100 FALSE

16 4 D 0 10 10 100 TRUE

3 OVERVIEW OF THE PORTFOLIOSIM PACKAGE 7

Because our current holdings include shares of stock “C”, the simulator will
attempt to remove these shares from the portfolio before processing the trades
for this period. Therefore, our updated portfolio before we perform the final set
of trades contains these holdings:

id shares

1 A -10

4 D 15

Finally, we buy the remaining 5 shares of stock “D”. There are no more
periods, so the simulation is finished. Our final holdings are:

id shares

1 A -10

2 D 20

This example covers only the most basic functionality of the simulator. There
are many other features built into the portfolioSim package, including the abil-
ity to calculate exposures and contributions across different variables. Most im-
portantly, the implementation of the different interfaces allows the user include
build many custom features into the simulator.

3 Overview of the portfolioSim package

Of the classes contained in the portfolioSim package, the user interacts pri-
marily with objects of the portfolioSim class, used to conduct the simulation,
and objects of the simResult class, used to store and analyze the results of
the simulation. In addition, there are three interface classes which the user can
choose to implement in order to customize the simulation to meet specific needs.

3.1 The portfolioSim class

When beginning a new simulation, the first step is to construct an object of class
portfolioSim which will contain all the information required by the simulator.
An instance of class portfolioSim represents a unique simulation, which can
then be run at any time by calling the runSim method. This allows the user
to make changes to the simulator after a run and, over repeated simulations, to
see how those changes affect the results.

A portfolioSim object contains the following slots:

� periods: A data frame listing the periods to be used in the simulation.
Each period represents a single iteration of the simulator, in which a new
set of trades is calculated and carried out. The periods data frame must
have columns period, start, and end. The period column contains labels
which are used throughout the simulator to represent each period. The
start and end columns are used to differentiate between saved data from
before and after the trades are performed in each period. Generally, these
columns should contain the actual dates corresponding to each period.

3 OVERVIEW OF THE PORTFOLIOSIM PACKAGE 8

period start end

1 1 2006-01-01 09:30:00 2006-03-31 16:00:00

2 2 2006-04-01 09:30:00 2006-06-30 16:00:00

3 3 2006-07-01 09:30:00 2006-09-30 16:00:00

4 4 2006-10-01 09:30:00 2006-12-31 16:00:00

� freq: The annual frequency of the periods listed in the periods slot. For
example, the frequency corresponding to the periods data frame shown
above is be 4. When running a simulation with monthly periods, the
frequency should be 12. With daily periods, it should be 252, the total
number of trading days in a year.

� data.interface: A data interface object of some class containing the vir-
tual class simDataInterface. The data interface serves to transform the
raw data used in the simulation into an object of class simData, containing
information on a single period.

� trades.interface: A trades interface object of some class containing
the virtual class simTradesInterface. The trades interface represents
the implementation of the trading stategy to be tested in the simulation.
Based on the current portfolio and the data available for a given period,
the trades interface contains some mechanism for determining a set of
trades to make. These trades are encapsulated in a simTrades object
which the interface returns to the simulator. The default trades interface
is an object of class stiFromSignal, which uses some signal to rank stocks
and form a portfolio based on those rankings.

� summary.interface: An optional summary interface object of a class
containing the virtual class simSummaryInterface. The summary inter-
face allows the user to specify information to be saved out during the
simulation beyond that supported by the result classes instantData and
periodData.

� start.holdings: A portfolio object representing the portfolio at the start
of the simulation. If this slot is not specified, the simulator starts with
an empty portfolio. See the documentation in the portfolio package for
information on constructing a portfolio.

� fill.volume.pct: The maxiumum percentage of the daily trading volume
of a stock that the simulator is allowed to trade in a single period. The
default is 15.

� exp.var: A character vector of additional variables to be used when ana-
lyzing the exposures for each period. See section 7 for more information.

� contrib.var: A character vector of additional variables to be used when
analyzing the contributions for each period. See section 7 for more infor-
mation.

3 OVERVIEW OF THE PORTFOLIOSIM PACKAGE 9

� out.loc: The location of a directory, relative to the current working direc-
tory, to which the simulator will save out the results. The runSim method
will also return the full simResult object, but for large simulations it is
more efficient to let the simulator save out to a directory and then load in
the desired results after the simulation has finished.

� out.type: A character vector specifying what kind of information the
simulator should remember from each period. There are five basic types,
any combination of which can be specified:

– basic: Saves information on the equity and size of the portfolio,
the turnover in both the portfolio and the universe, and summary
information on the portfolio’s performance for each period.

– detail: Saves performance details for all stocks in the portfolio at
each period.

– exposures: Saves exposures for each period.

– contributions: Saves contributions for each period.

– trades: Saves the list of trades performed for each period.

In addition, there are three preset configurations of these types that can
be specified in the out.type slot:

– all: Saves all five types of data.

– default: Saves the basic result information and the trades for each
period. This mode also saves exposures if an exp.var has been spec-
ified and contributions if a contrib.var has been specified. This is
the default behavior for the simulator.

– lean: Same as the “default” type above, except trades are not saved.

3.2 Interfaces

The flexibility of the portfolioSim package stems from three virtual classes
which serve as interfaces that the user can implement to create a customized
simulation. Each of these interfaces deals with a different part of the simulator,
but multiple interfaces can be designed to work together. The first two interfaces
deal with the two primary types of input required by the simulator.

� simDataInterface: All the raw data used in the simulation is accessed
through the data interface. This is interface is supplied to the simulator by
the user, and must be an object containing the virtual class simDataIn-
terface. The actual data can be stored in as an R object in the interface
itself, or the interface can query some outside database to obtain infor-
mation on a given period. An implementation of the simDataInterface
class must contain the method getSimData, whose purpose it is to retrieve
the raw data and transform it into a simData object.

3 OVERVIEW OF THE PORTFOLIOSIM PACKAGE 10

A simData object contains all the information the simulator will need
during a single period. This informationo is stored as a data frame, with
each row representing a unique security. The simulator itself requires every
simData object to include the following columns:

– period: The period to which the data in this simData object corre-
sponds. Since a simData object contains data from only one period,
all the values for period should be identical. This value should also
match one of the periods in the periods slot of the portfolioSim
object.

– id: A unique identifier for each security.

– start.price: The price of this security at the beginning of the pe-
riod.

– end.price: The price of this security at the end of the period.

– ret: Total return for this period.

– universe: A logical vector indicating whether securities are in the
universe of investable stocks for this period.

– volume: The daily trading volume of this security.

Since the simulator requires all this data, it must either be included in the
raw data retrieved by the simDataInterface, or the interface must have
some means of calculating it. The other interfaces used in a simulation
might require additional columns to appear in the simData object. For
example, the trades interface included with the portfolioSim package,
stiFromSignal, requires some “signal” column in the data (see section 4).
When designing multiple interfaces together, it can be useful to require
additional columns in simData objects.

A very simple data interface, the sdiDf class, is included with the port-
folioSim package. This interface stores all the raw data in a data frame,
and the getSimData method simply subsets the data frame by period.
Because the interface performs no additional work to format the data, all
the columns required throughout the simulation must be included in the
raw data when using the sdiDf interface.

� simTradesInterface: The trades interface respresents the investment
strategy the simulator uses to select trades. This interface, stored in the
trades.interface slot of the simulator, determines the trades to per-
form at each period and returns them as an object of class simTrades.
The process by which these trades are determined takes place entirely
within the getSimTrades method of the interface, so the possible trading
strategies are limitless. The only requirement is that the method return
a simTrades object. This class is basically a wrapper for an object of
the trades class contained in the portfolio project. A trades object is
simply a data frame with columns id, side, and shares indicating which

3 OVERVIEW OF THE PORTFOLIOSIM PACKAGE 11

stock to trade, how to trade it (buy, sell, short, or cover), and how much
of it to trade.

The trades interface stiFromSignal is included in the portfolioSim
package. This class is designed to take full advantage of the tradelist
features found in the portfolio package. It can be used to test the effec-
tiveness of any kind of signal one might use to make investments, anything
from professional stock analyses to one-day returns. See section 4 for a
detailed introduction to using the stiFromSignal interface.

The third interface allows the user to customize the output of the simulator.
The out.type slot of the portfolioSim class allows for a considerable amount
of flexibility in the type of data the simulator can return. However, in some cases
the user might want to save out some information beyond what the five basic
result types allow. The summary interface gives the user this ability. Because
the output types built into the result classes are sufficient for the most common
types of simulations, this interface is optional.

� simSummaryInterface: The summary interface is the most open-ended
of the interfaces. At each period, the simulator passes to the summary
interface a snapshot of the current portfolio, along with the simData and
simTrades objects for the period. What the summary interface does with
this data is entirely up to the user. Generally, the interface will save some
sort of statistical data on the portfolio at the current period. This data
can either be stored in the interface itself, or it can be saved out like the
other simulation results. The updateSummary method is responsible for
computing whatever summary data the user wants to keep and storing it
to be accessed later.

The summary interface requires a second method, called the summary
method. This method is called from within the summary method of the
simResult class, and is responsible for accessing and displaying whatever
data the interface is storing. Other accessor or helper methods for the
interface can be provided at the user’s discretion.

3.3 Classes for storing simulator results

The runSim method of class portfolioSim stores the results of the simulation in
a hierarchy of results classes, outlined below. The user most often interacts with
objects of the simResult class, which provides methods for displaying statistical
and summary information on the simulation.

� instantData: Stores information about the portfolio at a single point in
time. Specifically, this class stores information on the current holdings
in the portfolio, the size and equity of the long and short sides of the
portfolio, and any exposures if the simulator has some exp.var specified.

� periodData: Stores information on a single period in the simultion. This
includes turnover in the portfolio and in the universe, all the trades done

4 USING THE STIFROMSIGNAL INTERFACE 12

in a given period, the performance of the portfolio during that period, and
contributions to that performance if a contrib.var is specified.

� simResultSinglePeriod: For each period in the periods slot of the sim-
ulator, one object of class simResultSinglePeriod is created. This class
contains one slot for an object of class periodData, and two slots for ob-
jects of class instantData, one representing the portfolio at the start of
the period and one at the end.

� simResult: Stores information on the simulation as a whole, including
annual frequency of the periods, the type of results stored, and any error
messages that occured during the simulation. Most importantly, sim-
Result objects contain a list of the simResultSinglePeriod objects for
each period in the simulation. In addition, it stores the final version of
the summary interface, if one is specified.

For more information on accessing the results of a simulation, see section 6.

4 Using the stiFromSignal interface

The stiFromSignal trades interface included in the portfolioSim package re-
quires some numeric ranking of stocks. It then generates trades intended to
maintain a portfolio with the highest ranked stocks on the long side and the
lowest ranked stocks on the short side. This is only one trading strategy, but
it is very useful for testing the accuracy of any model that makes quantifiable
predictions of a stock’s future performance. Testing such models is one of the
most common reasons for conducting a backtest.

The core of the stiFromSignal interface is in the generation of a tradelist
object, part of the portfolio package. The mechanism by which tradelist
calculates trades lies beyond the scope of this article.3 This section is intended
to allow a user unfamiliar with tradelists to use the stiFromSignal interface
to conduct simulations.

An object of class stiFromSignal has the following slots:

� in.var: A variable to be used as the “signal” by which stocks are ranked.
The in.var must be a column of the data frame stored in the simData
objects that the data interface returns.

� type: The type of weight formation to be used when forming the portfo-
lio (see the documentation for the portfolio package for details). The
default is “equal”, which results in an equal-weighted portfolio.

� size: The size of the portfolio to be formed; can either specify the number
of securities per side, or can be relative to the total number of securities.
The default is “quintile”, meaning each side of the portfolio will consist of
one fifth of the stocks for which the in.var provides rankings.

3For a detailed introduction to tradelist, see Enos, Gerlanc, and Kane, Trading with the
portfolio package.

4 USING THE STIFROMSIGNAL INTERFACE 13

� sides: The sides to be contained in the portfolio. Can be “long”, “short”,
or c(“long”, “short”).

� equity: The total equity of the portfolio.

� target: An environment in which the interface stores its target port-
folio between periods. Because of the restrictions placed on trades by
tradelist, very often it is not possible to attain the portfolio specified by
the signal during a single trading period. Therefore, the target portfolio
is saved so that the interface will continue trading towards that target in
subsequent periods.

� rebal.on: A vector of periods during which the target portfolio is to be
rebalanced. These periods must correspond to the periods in the periods
slot of the portfolioSim object. Rebalancing is simply the process of
forming a target portfolio from the in.var. The interface rebalances au-
tomatically if there is no saved target. Otherwise, it will continue trading
to the target portfolio until it reaches a rebal.on period.

� trading.style: The style of trading to use. Possible styles are:

– immediate: The default trading style, this style returns trades that
immediately transform the current portfolio into the target portfo-
lio. This style is the simplest, but also the most unrealistic since it
overrides many of the tradelist features intended to simulate actual
trading.

– percent.volume: Returns trades for a maximum of 15 percent of a
stock’s daily trading volume; otherwise the same as “immediate”.

– 15.pct.vol.to.equity: The most realistic trading style, making use
of all the features in tradelist, such as trade-cost adjustment. This
style requires the column md.volume.120.d in the simData object,
and allows for sorts if the column alpha.6 appears.

� chunk.usd: The maximum chunk size, in U.S. dollars, into which tradelist
breaks up possible trades.

� turnover: The maximum turnover allowed in the portfolio per period.
Defaults to infinity, placing no restriction on turnover.

The getSimTrades method of stiFromSignal consists of two basic steps.
First, it generates a target portfolio. If the portfolio is not being rebalanced,
this means simply retrieving the saved target. If the portfolio needs to be
rebalanced, the portfolio package is used to generate a new portfolio from the
in.var. The kind of portfolio created depends on the type, size, sides, and
equity slots. Second, the current portfolio and the target portfolio are used to
create a new tradelist object. What kinds of trades are generated depends
on the trading.style specified, along with the chunk.usd and turnover slots.

5 A MULTI-PERIOD EXAMPLE 14

The interface then returns the trades object contained in the tradelist, and
saves the target portfolio to the target environment to be used in the next
period.

5 A multi-period example

Starmine is a San Fransisco based research company that creates rankings of
stocks based on predicted future earnings. One such ranking is the StarMine
Indicator, which ranks stocks on a scale of 1 to 100, with 100 being the highest.4

We can use the stiFromSignal interface to test the accuracy of the StarMine
Indicator. If there is indeed a positive correlation between StarMine rankings
and returns, we should expect a long-short portfolio formed by buying the high-
est ranked stocks and shorting the lowest ranked stocks to yield high returns.
How well our portfolio performs should give us some idea of whether we wish
to use the StarMine Indicator to make investment decisions.

The data set starmine.sim included in the portfolioSim package contains
StarMine Indicator rankings for stocks from January 31, 1995 to November 30,
1995. In this data set, the rankings are updated monthly. All the other data we
need to run a simulation are also included in the data set.

> data(starmine.sim)

> names(starmine.sim)

[1] "id" "date" "name"

[4] "country" "sector" "cap.usd"

[7] "size" "smi" "fwd.ret.1m"

[10] "fwd.ret.6m" "price.usd" "prior.close.usd"

[13] "volume" "ret.1m"

The first step in constructing our portfolioSim object is to create the pe-
riods data frame. Looking at the date column, we can easily construct a data
frame that looks like this:

> periods <- data.frame(period = sort(starmine.sim$date[!duplicated(starmine.sim$date)]))

> periods$start <- periods$period

> periods$end <- c(periods$start[-1], as.Date("1995-12-31"))

> periods

period start end

1 1995-01-31 1995-01-31 1995-02-28

2 1995-02-28 1995-02-28 1995-03-31

3 1995-03-31 1995-03-31 1995-04-30

4 1995-04-30 1995-04-30 1995-05-31

5 1995-05-31 1995-05-31 1995-06-30

6 1995-06-30 1995-06-30 1995-07-31

7 1995-07-31 1995-07-31 1995-08-31

4See www.starmine.com

5 A MULTI-PERIOD EXAMPLE 15

8 1995-08-31 1995-08-31 1995-09-30

9 1995-09-30 1995-09-30 1995-10-31

10 1995-10-31 1995-10-31 1995-11-30

11 1995-11-30 1995-11-30 1995-12-31

Special attention must be paid to the period column. These are the labels
used at every level of the simulator to identify the current period. Any time the
data or trades interfaces need to refer to a period, it must be identical to one of
the periods in this column. On one other hand, these labels can also be more
abstract than the start and end columns; it is perfectly acceptable to simply
number the periods, so long as the numbering system is consistent throughout
the simulator.

The next step is to set up the data interface. Note that of the information
we need for our simData objects (id, period, start price, end price, volume,
return, and universe), all except for “universe” are contained in the data set.
However, the column names do not match those required by the simulator. If
we expected to run many simulations with data formatted in this same way, it
would probably be worth our time to write a new simDataInterface which,
as part of its getSimData method, would change all the names for us and add
a universe column. However, for the purposes of this example, it is easier to
simply make these changes manually and use the sdiDf interface included with
the package.

We already have id and volume columns in the data set. Our period column
is clearly date, so we can rename this first.

> starmine.sim$period <- starmine.sim$date

It it important to note that while the periods are spaced at monthly intervals,
most of the columns in the data set refer to single days, not months. We must
therefore consider carefully how we would go about trading in the real world,
if we had only the information contained in this data set. Essentially, we are
only allowed to trade on one day of every period, specifically the last trading
day of the month. We therefore take the closing price of the day before the last
trading day of the month as the start.price, and the closing price for the last
trading day of the month as the end.price.

> starmine.sim$start.price <- starmine.sim$prior.close.usd

> starmine.sim$end.price <- starmine.sim$price.usd

We now need to select a column for the returns the simulator will use to
calculate the portfolo’s performance. The simulator uses the portfolio at the
start of each period, before any trades are made, to calculate the performance
for that period. In other words, we assume that it takes the entire span of
a period for us to trade to a new portfolio. So even though we are trading
on January 31, 1995, the simulator assumes that we do not get the portfolio
resulting from those trades until the end of the period, on February 28, 1995.
This is somewhat counter-intuitive, because we want to use returns from the

5 A MULTI-PERIOD EXAMPLE 16

month of February to calculate the performance of the portfolio that we traded
to at the end of January (remember that we actually do all our trading on
January 31, and then hold that portfolio throughout the rest of the period). To
correct this, we use one month backward returns so that the performance for
the period beginning on February 28 is calculated using the portfolio we formed
on January 31 and the returns from the month of February.

> starmine.sim$ret <- starmine.sim$ret.1m

Finally, we need to add a universe column to the data set. The universe
column is a logical indicating which of the stocks in the simData object the
simulator will be allowed to trade. The data interface can define this flag in any
number of ways. For the purposes of this example, we will assume that all the
stocks for which we have data exist in the investable universe for that period.

> starmine.sim$universe <- TRUE

Now that we have our data correctly formatted, we can create a new object
of class sdiDf to be used as the data interface in our simulation.

> data.interface <- new("sdiDf", data = starmine.sim)

Again, the process of reformatting our input data would quickly become
tedious if we were running multiple simulations like this. It would be quite easy
to create a modified version of sdiDf to do all this work for us.

After the data interface has been created, we move on to the trades interface.
In this example we will use the stiFromSignal interface, which is specifically
designed for testing the accuracy of a numeric ranking such as the StarMine
Indicator.

We set the in.var to be smi, the ranking that the simulator will use to form
the target portfolio. For the sake of simplicity, and because we have a relatively
small number of periods, we want the interface to rebalance the target portfolio
at every period, so we simply pass the period column from the periods data
frame to rebal.on slot. Because of the large number of stocks in our data set,
we set the size of the portfolio to“decile”and the total equity to one million U.S.
dollars. All the other slots keep their default settings. We do not worry about
setting a target environment; the initialize method of stiFromSignal will do
this for us.

> trades.interface <- new("stiFromSignal", in.var = "smi",

+ size = "decile", equity = 1000000, rebal.on = periods$period)

This interface will return trades for creating and maintaining a long-short,
equal-weighted portfolio, with the long side formed from the ten percent of
stocks receiving the highest StarMine Indicator rankings, and the short side
formed from the ten percent receiving the lowest rankings. The total equity
of the portfolio will be kept at $1,000,000. Trades will be selected based on
the “immediate” trading style, meaning that at each period, the list of trades

6 ANALYZING THE SIMULATION RESULTS 17

returned will shift all of our holdings to match the target portfolio. This target
will be rebalanced at each period to match the StarMine Indicator rankings for
that month.

Finally, we are ready to construct a portfolioSim object to contain all these
elements of the simulator:

> ps <- new("portfolioSim", periods = periods, freq = 12, data.interface = data.interface,

+ trades.interface = trades.interface, fill.volume.pct = Inf,

+ out.loc = "out_dir_2", out.type = "lean")

Because we are using monthly periods, we set freq to be 12. Because we
do not specify any start.holdings, the simulator will begin with an empty
portfolio. The fill.volume.pct is set to infinity so that all the trades returned
from the trades interface will be filled. The out.loc can be an existing directory,
or a non-existent directory in which case the simulator will create it. Our
out.type is “lean”, so only the “basic” type of results will be saved out, since
we have no exp.var or contrib.var. We also have no summary interface to
specify, so the simulator will save no additional information.

Once our portfolioSim object is created, we simply call the runSim method
to conduct the simulation.

> result <- runSim(ps, verbose = FALSE)

The runSim method steps through each period of simulation. If first uses the
data interface to retrieve a simData object containing the data for that period.
Second, the trades interface is called to generate the trades to be conducted for
that period. Finally, the performance and expose methods of the portfolio
class are used to update the holdings based on the trades returned from the
trades interface. A simResultSinglePeriod object is created for each period,
and stored in a master simResult object. The results are also saved out after
each period to the out.loc directory specified in the portfolioSim object.

6 Analyzing the simulation results

The summary method of a simResult object can be used to obtain a quick
summary of the simulation results.

> summary(result)

Simulation summary:

Start: 1995-01-31

End: 1995-11-30

profit return

Total: 228,313 22.5 %

6 ANALYZING THE SIMULATION RESULTS 18

Sharpe: 3.3

Mean return: 1.9 %

Mean return (ann): 22.5 %

Volatility: 1.9 %

Volatility (ann): 6.7 %

Best period: 55,031 6.3 % (1995-10-31)

Worst period: -259 -5.7 bps (1995-05-31)

Worst drawdown: 12,386 1.1 % (1995-04-30 to 1995-05-31)

Mean size: 494

Mean equity: 831,496

Mean gross equity: 1,662,992

Universe turnover: 0

Turnover: 26,258,923

Mean turnover: 2,188,244

Mean turnover (ann): 26,258,923

Holding period (mth): 1.5

Mean NA weights: 10

Mean NA returns: 8

This display summarizes the data saved by the simulator when using the
“basic” out.type. From this summary, we can quickly observe that our invest-
ment strategy based on the StarMine Indicator yielded a profit of $228,313, or
22.5% of our original $1,000,000 investment. Across our monthly periods, the
mean return was 1.9%. The best month for our portfolio was October, while
our worst returns came in May. Overall, it seems like our strategy would have
worked very well during 1995. While such strong returns are encouraging, we
would have to compare these figures to the behavior of the market as a whole
during that year, in order to gauge how well the model performed relative to
the rest of the universe.

If the simulation is conducted with the “detail” out.type, the summary
method prints two lists of the best and worst performing stocks over the entire
simulation. The first list is based on profit, while the second list is based on
contribution.

Simulation summary:

Top/bottom performers by profit:

id profit

799 45031210 -5973

357 16961710 -5127

284 11157210 -3930

1001 52465R10 -3292

1338 64108110 -2618

2414 G2847110 -2557

7 RUNNING PORTFOLIOSIM WITH CONTRIBUTIONS AND EXPOSURES19

317 12738710 4032

372 17275510 4227

68 01877H10 4393

1742 680492 4574

2417 N5424G10 4720

2000 72003530 5322

Top/bottom performers by contribution (%):

id contrib

799 45031210 -0.60

357 16961710 -0.50

284 11157210 -0.40

1001 52465R10 -0.34

2056 75886F10 -0.26

1338 64108110 -0.25

317 12738710 0.40

372 17275510 0.40

68 01877H10 0.43

1742 680492 0.46

2417 N5424G10 0.46

2000 72003530 0.53

The saved results from a previous simulation can be loaded into a new R
session by using the loadIn method of class simResult:

> result <- loadIn(new("simResult"), in.loc = "out_dir_2")

All the analysis methods previously discussed can also be called on a sim-
Result object loaded from previously saved results.

7 Running portfolioSim with contributions and
exposures

Note: this section of the document is unfinished.
The portfolioSim object has two slots, contrib.var and exp.var, for

specifying contribution and exposure variables. These are variables found in the
data slot of simData objects that the interface returns. The simulator can thus
analyze the exposures and contributions to the portfolio across other variables.

For example, suppose we want to look at the exposures to our portfolio from
price and country. We add these two variables, both included in our data set, to
the exp.var slot of the simulator, and change the out.type to“exposures”. (The
“default” or “lean” types will automatically save exposures data if an exp.var
is specified, but in this case we are only interested in looking at exposures.)

Likewise, to see the contributions to our portfolio from different sectors, we
simply specify “sector” as a contrib.var and set out.type to “contributions”.

For an introduction to contributions and exposures, see the documentation
in the portfolio package.

8 CONCLUSION 20

8 Conclusion

Simulating investments over some period in the past is often a time consuming
and data-intensive process. The portfolioSim package automates the process
of running such a simulation, by allowing the user to specify in advance all the
details of the portfolio to be maintained, the investment strategy by which to
maintain it, and the results from the simulation to be saved. The flexibility of
the portfolioSim package stems from its interfaces, which can be customized
to work with virtually any type of input data and any method of investment.
Together with the portfolio package, portfolioSim provides investors with a
powerful and adaptable set of tools for managing their investments.

