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1 Example

Here is a quick example of the function rateratio.test. Suppose you have two rates that
you assume are Poisson and you want to test that they are different. Suppose you observe
2 events with time at risk of n = 17877 in one group and 9 events with time at risk of
m = 16660 in another group. Here is the test:

> rateratio.test(c(2, 9), c(n, m))

Exact Rate Ratio Test, assuming Poisson counts

data: c(2, 9) with time of c(n, m), null rate ratio 1

p-value = 0.05011

alternative hypothesis: true rate ratio is not equal to 1

95 percent confidence interval:

0.02177406 1.00054910

sample estimates:

Rate Ratio Rate 1 Rate 2

0.2070941557 0.0001118756 0.0005402161

The result is barely non-significant at the 0.05 level. This example was chosen to make a
point, that is why the p-value is so close to 0.05. See Section 5 below.

2 Assumptions and Notation

Assume that Y ∼ Poisson(nλy) and X ∼ Poisson(mλx). We are interested in the rate ratio,
θ = λy/λx. The parameters n and m are assumed known and represent the time spent in the
Poisson process with the given rates. For example, n could the the number of person-years
at risk associated with Y . We wish to test one of the three following hypotheses:

less

H0 : θ ≥ ∆

H1 : θ < ∆

greater

H0 : θ ≤ ∆

H1 : θ > ∆
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two-sided

H0 : θ = ∆

H1 : θ 6= ∆

For the tests using the rate ratios, we can use the uniformly most powerful (UMP)
unbiased test. This test is based on conditioning on the sum X + Y (see e.g., Lehmann and
Romano, 2005, p. 125 or p. 152 of Lehmann, 1986). We modify Lehmann’s presentation by
allowing the constants m and n, representing the time in the Poisson process. We have that

Y |X + Y = t ∼ Binomial (t, p(θ))

where

p(θ) =
nλy

nλy +mλx
=

nθ

nθ +m
. (1)

3 Confidence Intervals

Since p(θ) is a monotonic increasing function of θ, if we have exact confidence intervals
for p(θ), then we can transform them to exact confidence intervals for θ. The R function
binom.test gives exact intervals for binomial observations (see Clopper and Pearson, 1934 or
Leemis and Trivedi, 1996). We write the 100(1− α)% one-sided lower confidence limit for p
as Lp(Y ;α) and the 100(1−α)% one-sided upper confidence limit for p as Up(Y ;α). For the
100(1 − α)% two-sided cofidence interval, binom.test and Clopper and Pearson (1934) use
the central confidence interval defined as [Lp(Y ;α/2), Lp(Y ;α/2)]. The central confidence
interval guarantees that

Pr[p < Lp(Y ;α/2)|p, t] ≤ α/2 for all p and t

and
Pr[p > Up(Y ;α/2)|p, t] ≤ α/2 for all p and t

For shorter exact intervals which are not central see Blaker (2000) and the references therein.
To obtain confidence intervals for θ we set

Lp(Y ;α) =
nLθ(Y ;α)

nLθ(Y ;α) +m
,

and perform some algebra to get

Lθ(Y ;α) =
mLp(Y ;α)

n{1− Lp(Y ;α)}
.

Similarly,

Uθ(Y ;α) =
mUp(Y ;α)

n{1− Up(Y ;α)}
.
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4 P-values

Just as in the last section, we can use results from the tests of p and translate them to tests
of θ. Thus, for example the one-sided p-value of the test with the alternative hypothesis that
θ > ∆ is equivalent to the one-sided p-value of the test that p > p(∆). For the two-sided
p-value we use the minimum of 1 or twice the minimum of the two one-sided p-values. There
are other ways to define the two-sided p-value but they do not give equivalent inferences
with the confidence intervals described above (see Section 5 below).

5 Relationship to Other Tests

In the R function binom.test (as least up until Version 2.5.0) the two-sided p-value is
calculated by defining more extreme responses as those values with binomial density functions
less than or equal to the observed density. This is a valid and reasonable way of defining
two-sided p-values but it does not match with the two-sided confidence intervals. Returning
to our example from Section 1 but using binom.test we can match the confidence intervals
by using equation 1.

> n <- 17877

> m <- 16674

> rateratio.test(c(2, 9), c(n, m))$conf.int

[1] 0.02179236 1.00138990

attr(,"conf.level")

[1] 0.95

> b.ci <- binom.test(2, 2 + 9, p = n/(n + m))$conf.int

> theta.ci <- m * b.ci/(n * (1 - b.ci))

> theta.ci

[1] 0.02179236 1.00138990

attr(,"conf.level")

[1] 0.95

However, the p-values do not match for a two-sided test of p(1) = n/(n+m).

> R.Version()$version.string

[1] "R version 2.5.0 (2007-04-23)"

> rateratio.test(c(2, 9), c(n, m))

Exact Rate Ratio Test, assuming Poisson counts

data: c(2, 9) with time of c(n, m), null rate ratio 1

p-value = 0.05027
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alternative hypothesis: true rate ratio is not equal to 1

95 percent confidence interval:

0.02179236 1.00138990

sample estimates:

Rate Ratio Rate 1 Rate 2

0.2072681844 0.0001118756 0.0005397625

> binom.test(2, 2 + 9, p = n/(n + m))

Exact binomial test

data: 2 and 2 + 9

number of successes = 2, number of trials = 11, p-value = 0.03315

alternative hypothesis: true probability of success is not equal to 0.517409

95 percent confidence interval:

0.0228312 0.5177559

sample estimates:

probability of success

0.1818182

The p-values for rateratio.test are internally consistent, i.e., if the two-sided p-value is
less than α then the 100(1− α/2)% confidence interval does not contain ∆. In contrast the
p-values for binom.test are not internally consistent as shown by the example. A similar
internal inconsistency happens with fisher.test.

> fisher.test(matrix(c(2, 9, n - 2, m - 9), 2, 2))

Fisher's Exact Test for Count Data

data: matrix(c(2, 9, n - 2, m - 9), 2, 2)

p-value = 0.03312

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.02178155 1.00121047

sample estimates:

odds ratio

0.2072015
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