burn in:

**xGROW** @depth 0: [0,0.424242], n=(43,57)
**xGROW** @depth 1: [0,0.252525], n=(26,19)
**xGROW** @depth 2: [0,0.131313], n=(14,13)
r=1000 d=[0] [0] [0] [0]; n=(11,19,17,53)
r=2000 d=[0] [0] [0] [0]; n=(11,17,19,53)

Sampling @ nn=99 pred locs:

r=1000 d=[0] [0] [0] [0]; mh=3 n=(15,14,18,53)
r=2000 d=[0] [0] [0] [0]; mh=4 n=(14,14,19,53)
r=3000 d=[0] [0] [0] [0]; mh=4 n=(12,16,19,53)
r=4000 d=[0] [0] [0] [0]; mh=4 n=(13,16,18,53)
r=5000 d=[0] [0] [0] [0]; mh=4 n=(13,15,19,53)
Grow: 0.8403%, Prune: 0%, Change: 36.3%, Swap: 84}

MCMC progress indicators show successful grow and prune operations as they
happen, and region sizes n every 1,000 rounds. Specifying verb=3, or higher
will show echo more successful tree operations, i.e., change, swap, and rotate.

Figure 7 shows the resulting posterior predictive surface (top) and trees (bot-
tom). The MAP partition (7) is also drawn onto the surface plot (Zop) in the
form of vertical lines. The treed LM captures the smoothness of the linear re-
gion just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP because it can be
both smooth and wiggly.

> sin.btgp <- btgp(X = X, Z = Z, XX = XX, verb = 0)

Figure 8 shows the resulting posterior predictive surface (top) and MAP T with
height=2.

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[15], since half of the response surface is very smooth, or linear. This is not
shown here since the results are very similar to those above, replacing btgp
with btgpllm. Each of the models fit in this section is a special case of the
treed GP LLM, so a model comparison is facilitated by fitting this more general
model. The example in the next subsection offers such a comparison for 2-d
data. A followup in Appendix B.1 shows how to use parameter traces to extract
the posterior probability of linearity in regions of the input space.

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [—2,6] X [—2, 6].
The true response is given by

2(x) = x1 exp(—23 — 23). (17)
A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-

mensionality, a key difference between this data set and the last one is that
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> plot(sin.btlm, main = "treed LM,", layout = "surf")
> lines(X, Ztrue, col 4, 1ty = 2, lwd = 2)

treed LM, z mean

o
S
0
& -
N o
S A
0
O‘ —
T
o
‘_i —
|
I I I I I
0 5 10 15 20
x1

> tgp.trees(sin.btlm)

height=3, log(p)=60.319 height=4, log(p)=60.5183
X1 <> 5.45455 X1 <>2.22222
@ x1 <>9.29293
0.0147
12 obs
X1 <> 2.0202 X1 <>9.29203
X1 <> 5.45455 @
0.0058
53 obs
@ 2 3 @ 2 3
0.0106 0.0045 0.0128 0.0037 0.0045 0.0076
11 obs 17 obs 19 obs 53 obs 16 obs 19 obs

Figure 7: Top: Posterior predictive distribution using btlm on synthetic sinusoidal data: mean

and 90% pointwise credible interval, and MAP partition (7). The true mean is overlayed with
a dashed line. Bottom: MAP trees for each height encountered in the Markov chain showing

&2 and the number of observation n, at each leaf.

it is not defined using step functions; this smooth function does not have any
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Figure 8: Posterior predictive distribution using btgp on synthetic sinusoidal data: mean and
90% pointwise credible interval, and MAP partition (7) . The true mean is overlayed with a
dashed line.

artificial breaks between regions. The tgp package provides a function for data
subsampled from a grid of inputs and outputs described by (17) which concen-
trates inputs (X) more heavily in the first quadrant where the response is more
interesting. Predictive locations (XX) are the remaining grid locations.

> exp2d.data <- exp2d.rand()
> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- exp2d.data$xX

The treed LM is clearly just as inappropriate for this data as it was for the
sinusoidal data in the previous section. However, a stationary GP fits this data
just fine. After all, the process is quite well behaved. In two dimensions one has
a choice between the isotropic and separable correlation functions. Separable is
the default in the tgp package. For illustrative purposes here, I shall use the
isotropic power family.

> exp.bgp <- bgp(X = X, Z = Z, XX = XX, corr = "exp",
+ verb = 0)

Progress indicators are suppressed. Figure 9 shows the resulting posterior pre-
dictive surface under the GP in terms of means (left) and variances (right) in the
default layout. The sampled locations (X) are shown as dots on the right image
plot. Predictive locations (XX) are circles. Predictive uncertainty for the sta-
tionary GP model is highest where sampling is lowest, despite that the process
is very uninteresting there.

A treed GP seems more appropriate for this data. It can separate out the
large uninteresting part of the input space from the interesting part. The result
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> plot(exp.bgp, main = "GP,")

GP, zmean GP, z quantile diff (error)

x1

Figure 9: Left: posterior predictive mean using bgp on synthetic exponential data; right image
plot of posterior predictive variance with data locations X (dots) and predictive locations XX
(circles).

is speedier inference and region-specific estimates of predictive uncertainty.

> exp.btgp <- btgp(X = X, Z = Z, XX = XX, corr = "exp",
+ verb = 0)

Figure 10 shows the resulting posterior predictive surface (top) and trees (bot-
tom). Typical runs of the treed GP on this data find two, and if lucky three,
partitions. As might be expected, jumping to the LLM for the uninteresting,
zero-response, part of the input space can yield even further speedups [15]. Also,
Chipman et al. recommend restarting the Markov chain a few times in order
to better explore the marginal posterior for 7 [5]. This can be important for
higher dimensional inputs requiring deeper trees. The tgp default isR = 1, i.e.,
one chain with no restarts. Here two chains—one restart—are obtained using R
= 2.

> exp.btgpllm <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",
+ R=2)

burn in:

**xGROW** @depth 0: [0,0.45], n=(58,22)

**GROW** @depth 1: [1,0.45], n=(48,14)

r=1000 d=0.0218383 0(0.743906) 0(1.25691); n=(50,10,20)
r=2000 d=0.0222512 0.00696964 0(1.01303); n=(48,15,17)

Sampling @ nn=361 pred locs:

r=1000 d=0.0233355 0(0.0162573) 0(1.05867); mh=3 n=(50,10,20)
r=2000 d=0.0201525 0.0323228 0.735674; mh=3 n=(48,15,17)
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> plot(exp.btgp, main = "treed

treed GP, z mean

> tgp.trees(exp.btgp)

height=2, log(p)=204.743

X2<>1.6

@ 2

.0119 5e-0¢
7 obs 23 ob

x2

treed GP, z quantile diff (error)

0000000000

0000000000

0000000000

height=3, log(p)=259.932

x1<>2

X2 <>2 @
0
18 ob

) @

.0196 0
0 obs 12 obs

Figure 10: Top-Left: posterior predictive mean using btgp on synthetic exponential data; top-
right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles). Bottom: MAP trees of each height encountered in the Markov chain
with 62 and the number of observations n at the leaves.

r=3000 d=0.0212731 0.00712512 0.214455; mh=3 n=(48,14,18)
r=4000 d=0.0235209 0(0.696318) 0(0.0374696); mh=3 n=(50,10,20)
r=5000 d=0.019617 0(0.840593) 0.0798781; mh=3 n=(50,12,18)
Grow: 0.5882%, Prune: 0%, Change: 36.02%, Swap: 44.1%

finished repetition 1 of 2



removed 3 leaves from the tree

burn in:

**xGROW** @depth 0: [1,0.5], n=(60,20)
**xGROW** @depth 1: [0,0.45], n=(45,12)
**xPRUNE** @depth 1: [0,0.45]

r=1000 d=0.0230657 1.17737; mh=3 n=(57,23)
r=2000 d=0.0171015 1.02635; mh=3 n=(57,23)

Sampling @ nn=361 pred locs:

r=1000 d=0.0194236 1.04473; mh=3 n=(60,20)

**GROW** @depth 1: [0,0.45], n=(45,12)

r=2000 d=0.0212965 0.0533747 0(0.998999); mh=3 n=(50,10,20)
r=3000 d=0.0192226 0(0.0149189) 0(1.15603); mh=3 n=(50,12,18)
r=4000 d=0.0234385 0.0988804 1.21228; mh=3 n=(48,14,18)
r=5000 d=0.0216443 0(1.4039) 0.133204; mh=3 n=(50,12,18)
Grow: 0.7072%, Prune: 0.1488), Change: 31.02%, Swap: 46.31%
finished repetition 2 of 2

removed 3 leaves from the tree

> plot(exp.btgpllm, main = "treed GP LLM,")

treed GP LLM, z mean treed GP LLM, z quantile diff (error)

x1

Figure 11: Left: posterior predictive mean using btgpllm on synthetic exponential data; right
image plot of posterior predictive variance with data locations X (dots) and predictive locations

XX (circles).

Progress indicators show where the LLM (corr=0(d) ) or the GP is active. Fig-
ure 11 shows how similar the resulting posterior predictive surfaces are compared
to the treed GP (without LLM). Appendix B.1 shows how parameter traces can
be used to calculate the posterior probabilities of regional and location—specific

linearity in this example.

25



> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(1))

> plot(exp.btgpllm, main = "treed GP LLM,", proj = c(2))

treed GP LLM, z mean treed GP LLM, z quantile diff (error)
< _ o o o8
S | S o
l °
° o
H 60
o~ w0 °
S b ~ =
¢ 5 °
s
s o ° o
£ °
R ETSSILEAALRTARRRTIN Y A
£ o
o 9 i g o o,
& e s $°
o ° o 8
~ 4 8 0080
S o o o ©
T © 8 | oo o
® S le o6 4 °
N N o 8 ° 5,0 o é!so g9
°© o0 °g ., gggoé’e 8
~ oo goo Ho8cBfep
° gg g0 9ggoo0fglo
< 8 goo? ° o 880
? ° 87°lalilislllcoqonnonoc
T T T T 1 S T T T 1
-2 0 2 4 6 -2 0 2 4 6
X1 x1
treed GP LLM, z mean treed GP LLM, z quantile diff (error)
< _ ° ! S o8
s i S R i
oo ; . ;
0o o0 ; ;
cb i ° o
S o ! 84 i
| ' !
o . o !
\ 5 s
e o 9
~ 24 i 6ecsvescee 5 o [° g
£ o] °
oy ! § NET
o [ ! 4 o ° ° '
° g i 0% Lood
o~ o i o o @
S H oo ©
T o + ! & 1o o 69 !
i o 3 °
. ! ° 88055502005
ot ! 8o 285984
Ogs 83538 5
. | ogoggx
e H 889308 H
s ! 6. 5688868
? o ! g /esccceBacpa§seesononne
T T T T 1 S o T T T 1
-2 0 2 4 6 -2 0 2 4 6
x2 x2

Figure 12: 1-d projections of the posterior predictive surface (left) and normed predictive
intervals (right) of the 1-d tree GP LLM analysis of the synthetic exponential data. The top
plots show projection onto the first input, and the bottom ones show the second.

Finally, viewing 1-d projections of tgp-class output is possible by supplying
a scalar proj argument to the plot.tgp. Figure 12 shows the two projections
for exp.btgpllm. In the left surface plots the open circles indicate the mean of
posterior predictive distribution. Red lines show the 90% intervals, the norm of
which are shown on the right.

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [28] is a classic nonstationary data set used in
recent literature [24] to demonstrate the success of nonstationary models. The

26



