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A Implementation notes

The treed GP model is coded in a mixture of C and C++: C++ for the tree data
structure (T ) and C for the GP at each leaf of T . The code has been tested on
Unix (Solaris, Linux, FreeBSD, OSX) and Windows (2000, XP) platforms.

It is useful to first translate and re-scale the input data (X) so that it lies in
an <mX dimensional unit cube. This makes it easier to construct prior distri-
butions for the width parameters to the correlation function K(·, ·). Proposals
for all parameters which require MH sampling are taken from a uniform“sliding
window” centered around the location of the last accepted setting. For exam-
ple, a proposed a new nugget parameter gν to the correlation function K(·, ·) in
region rν would go as

g∗ν ∼ Unif

(

3

4
gν ,

4

3
gν

)

.

Calculating the corresponding forward and backwards proposal probabilities for
the MH acceptance ratio is straightforward.

For more details about the MCMC algorithm and proposals, etc., please see
the original technical report on Bayesian treed Gaussian process models [15].

B Interfaces and features

The following subsections describe some of the ancillary features of the tgp

package such as the gathering and summarizing of MCMC parameter traces,
the progress meter, and an example of how to use the predict.tgp function in
a collaborative setting.

B.1 Parameter traces

Traces of (almost) all parameters to the tgp model can be collected by supplying
trace=TRUE to the b* functions. In the current version, traces for the linear prior
correlation matrix (W) are not provided. I shall illustrate the gathering and
analyzing of traces through example. But first, a few notes and cautions.

35



Models which involve treed partitioning may have more than one base model
(GP or LM). The process governing a particular input x depends on the coordi-
nates of x. As such, tgp records region–specific traces of parameters to GP (and
linear) models at the locations enumerated in the XX argument. Even traces of
single–parameter Markov chains can require hefty amounts of storage, so record-
ing traces at each of the XX locations can be an enormous memory hog. A related
warning will be given if the product of |XX|, (BTE[2]-BTE[1])/BTE[3] and R

is beyond a threshold. The easiest way to keep the storage requirements for
traces down is to control the size of XX and the thinning level BTE[3]. Finally,
traces for most of the parameters are stored in output files. The contents of the
trace files are read into R and stored as data.frame objects, and the files are
removed. The existence of partially written trace files in the current working
directory (CWD)—while the C code is executing—means that not more than
one tgp run (with trace = TRUE) should be active in the CWD at one time.

Consider again the exponential data. For illustrative purposes I chose XX

locations (where traces are gathered) to be (1) in the interior of the interesting
region, (2) on/near the plausible intersection of partition boundaries, and (3) in
the interior of the flat region. The hierarchical prior bprior = "b0" is used to
leverage a (prior) belief the most of the input domain is uninteresting.

> exp2d.data <- exp2d.rand(n2 = 150, lh = 0, dopt = 10)

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- rbind(c(0, 0), c(2, 2), c(4, 4))

We now fit a treed GP LLM and gather traces, and also gather EI and ALC
statistics for the purposes of illustration. Prediction at the input locations X is
turned off to be thrifty.

> out <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",

+ bprior = "b0", pred.n = FALSE, Ds2x = TRUE, R = 10,

+ trace = TRUE, verb = 0)

Figure 19 shows a dump of out$trace which is a "tgptraces"–class object. It
depicts the full set of parameter traces broken down into the elements of a list:
$XX with GP/LLM parameter traces for each XX location (the parameters are
listed); $hier with traces for (non–input–dependent) hierarchical parameters
(listed); $linarea recording proportions of the input space under the LLM;
$parts with the boundaries of all partitions visited; $post containing (log)
posterior probabilities; preds containing traces of samples from the posterior
predictive distribution and adaptive sampling statistics.

Plots of traces are useful for assessing the mixing of the Markov chain. For
example, Figure 20 plots traces of the range parameter (d) for each of the 3
predictive locations XX. It is easy to see which of the locations is in the same
partition with others, and which have smaller range parameters than others.

The mean area under the LLM can be calculated as

> linarea <- mean(out$trace$linarea$la)

> linarea
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> out$trace

This ’tgptraces’-class object contains traces of the parameters

to a tgp model. Access is as a list:

1.) $XX contains the traces of GP parameters for 3 predictive

locations

Each of $XX[[1]] ... $XX[[3]] is a data frame with the

columns representing GP parameters:

[1] index lambda s2 tau2 beta0 beta1 beta2 nug

[9] d b ldetK

2.) $hier has a trace of the hierarchical params:

[1] s2.a0 s2.g0 tau2.a0 tau2.g0 beta0 beta1 beta2

[8] d.a0 d.g0 d.a1 d.g1 nug.a0 nug.g0 nug.a1

[15] nug.g1

3.) $linarea has a trace of areas under the LLM. It is a

data frame with columns:

count: number of booleans b=0, indicating LLM

la: area of domain under LLM

ba: area of domain under LLM weighed by dim

4.) $parts contains all of the partitions visited. Use the

tgp.plot.parts.[1d,2d] functions for visuals

5.) $post is a data frame with columns showing the following:

log posterior ($lpost), tree height ($height), IS

weights ($w), tempered log posterior ($tlpost), inv-temp

($itemp), and weights adjusted for ESS ($wess)

6.) $preds is a list containing data.frames for samples from

the posterior predictive distributions data (X) locations

(if pred.n=TRUE: $Zp, $Zp.km, $Zp.ks2) and (XX) locations

(if XX != NULL: $ZZ, $ZZ.km, $ZZ.ks2), with $Ds2x when

input argument ds2x=TRUE, and $improv when improv=TRUE

Figure 19: Listing the contents of "tgptraces"–class objects.
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> trXX <- out$trace$XX

> ltrXX <- length(trXX)

> y <- trXX[[1]]$d

> for (i in 2:ltrXX) y <- c(y, trXX[[i]]$d)

> plot(log(trXX[[1]]$d), type = "l", ylim = range(log(y)),

+ ylab = "log(d)", main = "range (d) parameter traces")

> names <- "XX[1,]"

> for (i in 2:ltrXX) {

+ lines(log(trXX[[i]]$d), col = i, lty = i)

+ names <- c(names, paste("XX[", i, ",]", sep = ""))

+ }

> legend("bottomleft", names, col = 1:ltrXX, lty = 1:ltrXX)
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Figure 20: Traces of the (log of the) first range parameter for each of the three XX locations

[1] 0.530641

This means that the expected proportion of the input domain under the full LLM
is 0.531. Figure 21 shows a histogram of areas under the LLM. The clumps near
0, 0.25, 0.5, and 0.75 can be thought of as representing quadrants (none, one,
two, and tree) under the LLM. Similarly, we can calculate the probability that
each of the XX locations is governed by the LLM.

> m <- matrix(0, nrow = length(trXX), ncol = 3)

> for (i in 1:length(trXX)) m[i, ] <- as.double(c(out$XX[i,

+ ], mean(trXX[[i]]$b)))

> m <- data.frame(cbind(m, 1 - m[, 3]))

> names(m) = c("XX1", "XX2", "b", "pllm")

> m
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> hist(out$trace$linarea$la)

Histogram of out$trace$linarea$la
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Figure 21: Histogram of proportions of the area of the input domain under the LLM

XX1 XX2 b pllm

1 0 0 1.00000 0.00000

2 2 2 0.64852 0.35148

3 4 4 0.50384 0.49616

The final column above represents the probability that the corresponding XX

location is under the LLM (which is equal to 1-b).
Traces of posterior predictive and adaptive sampling statistics are contained

in the $preds field. For example, Figure 22 shows samples of the ALC statistic
∆σ2(x̃). We can see from the trace that statistic is generally lowest for XX[3,]
which is in the uninteresting region, and that there is some competition between
XX[2,] which lies on the boundary between the regions, and XX[1,] which is
in the interior of the interesting region. Similar plots can be made for the other
adaptive sampling statistics (i.e., ALM & EI).

B.2 Explaining the progress meter

The progress meter shows the state of the MCMC as it iterates through the
desired number of rounds of burn–in (BTE[1]), and sampling (BTE[2]-BTE[1]),
for the requested number of repeats (R-1). The verbosity of progress meter
print statements is controlled by the verb arguments to the b* functions. Pro-
viding verb=0 silences all non–warning (or error) statements. To suppress warn-
ings, try enclosing commands within suppressWarnings(...), or globally set
options(warn=0). See the help file (?options) for more global warning set-
tings.

39



> trALC <- out$trace$preds$Ds2x

> y <- trALC[, 1]

> for (i in 2:ncol(trALC)) y <- c(y, trALC[, i])

> plot(log(trALC[, 1]), type = "l", ylim = range(log(y)),

+ ylab = "Ds2x", main = "ALC: samples from Ds2x")

> names <- "XX[1,]"

> for (i in 2:ncol(trALC)) {

+ lines(log(trALC[, i]), col = i, lty = i)

+ names <- c(names, paste("XX[", i, ",]", sep = ""))

+ }

> legend("bottomright", names, col = 1:ltrXX, lty = 1:ltrXX)
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Figure 22: Traces of the (log of the) samples for the ALC statistic ∆σ
2(x̃) at for each of the

three XX locations

The default verbosity setting (verb=1) shows all grows and prunes, and a
summary of d–(range) parameters for each partition every 1000 rounds. Higher
verbosity arguments will show more tree operations, e.g., change and swap,
etc. Setting verb=2 will cause an echo of the tgp model parameters and their
starting values; but is otherwise the same as verb=1. The max is verb=4 shows
all successful tree operations. Here is an example grow statement.

**GROW** @depth 2: [0,0.05], n=(10,29)

The *GROW* statements indicate the depth of the split leaf node; the splitting
dimension u and location v is shown between square brackets [u,v], followed
by the size of the two new children n=(n1,n2). *PRUNE* is about the same,
without printing n=(n1,n2).
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Every 1000 rounds a progress indicator is printed. Its format depends on
a number of things: (1) whether parallelization is turned on or not, (2) the
correlation model [isotropic or separable], (3) whether jumps to the LLM are
allowed. Here is an example with the 2-d exp data with parallel prediction under
the separable correlation function:

(r,l)=(5000,104) d=[0.0144 0.0236] [1.047 0/0.626]; mh=2 n=(59,21)

The first part (r,l)=(5000,104) is indicating the MCMC round number
r=5000 and the number of leaves waiting to be ”consumed” for prediction by
the parallel prediction thread. When parallelization is turned off (default), the
print will simply be "r=5000".

The second part is a printing of the d–(range) parameter to a separable
correlation function. For 2 partitions there are two sets of square brackets.
Inside the square brackets is the mX (2 in this case) range parameters for the
separable correlation function. Whenever the LLM governs one of the input
dimensions a zero will appear. I.e., the placement of 0/0.626 indicates the
LLM is active in the 2nd dimension of the 2nd partition. 0.626 is the d–(range)
parameter that would have been used if the LLM were inactive. Whenever all
dimensions are under the LLM, the d-parameter print is simply [0]. This also
happens when forcing the LLM (i.e., for blm and btlm), where [0] appears for
each partition. These prints will look slightly different if the isotropic instead
of separable correlation is used, since there are not as many range parameters.

B.3 Collaboration with predict.tgp

In this section I revisit the motorcycle accident data in order to demonstrate how
the predict.tgp function can be helpful in collaborative uses of tgp. Consider
a fit of the motorcycle data, and suppose that infer the model parameters only
(obtaining no samples from the posterior predictive distribution). The "tgp"-
class output object can be saved to a file using the R–internal save function.

> library(MASS)

> out <- btgpllm(X = mcycle[, 1], Z = mcycle[, 2],

+ bprior = "b0", m0r1 = TRUE, pred.n = FALSE, verb = 0)

> save(out, file = "out.Rsave")

> out <- NULL

Note that there is nothing to plot here because there is no predictive data.
(out <- NULL is set for illustrative purposes.)

Now imagine e–mailing the “out.Rsave” file to a collaborator who wishes to
use your fitted tgp model. S/he could first load in the "tgp"–class object we just
saved, design a new set of predictive locations XX and obtain kriging estimates
from the MAP model.

> load("out.Rsave")

> XX <- seq(2.4, 56.7, length = 200)

> out.kp <- predict(out, XX = XX, pred.n = FALSE)
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