
> plot(lin.gpllm, main = "GP LLM,", layout = "surf")

> abline(1, 2, lty = 4, col = "blue")
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Figure 5: Posterior predictive distribution using bgpllm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

To see the proportion of time the Markov chain spent in the LLM requires
the gathering of traces (Appendix B.1). For example

> lin.gpllm.tr <- bgpllm(X = X, XX = 0.5, Z = Z, pred.n = FALSE,

+ trace = TRUE, verb = 0)

> mla <- mean(lin.gpllm.tr$trace$linarea$la)

> mla

[1] 0.96

shows that the average area under the LLM is 0.96. Progress indicators are
suppressed with verb=0. Alternatively, the probability that input location xx

= 0.5 is under the LLM is given by

> 1 - mean(lin.gpllm.tr$trace$XX[[1]]$b1)

[1] 0.96

This is the same value as the area under the LLM since the process is stationary
(i.e., there is no treed partitioning).

3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx

5

)

+ 1

5
cos

(

4πx

5

)

x < 10
x/10− 1 otherwise

(16)
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The R code below obtains N = 100 evenly spaced samples from this data
in the domain [0, 20], with noise added to keep things interesting. Some evenly
spaced predictive locations XX are also created.

> X <- seq(0, 20, length = 100)

> XX <- seq(0, 20, length = 99)

> Ztrue <- (sin(pi * X/5) + 0.2 * cos(4 * pi * X/5)) *

+ (X <= 9.6)

> lin <- X > 9.6

> Ztrue[lin] <- -1 + X[lin]/10

> Z <- Ztrue + rnorm(length(Ztrue), sd = 0.1)

By design, the data is clearly nonstationary in its mean. Perhaps not know-
ing this, a good first model choice for this data might be a GP.

> sin.bgp <- bgp(X = X, Z = Z, XX = XX, verb = 0)

> plot(sin.bgp, main = "GP,", layout = "surf")

> lines(X, Ztrue, col = 4, lty = 2, lwd = 2)
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Figure 6: Posterior predictive distribution using bgp on synthetic sinusoidal data: mean and
90% pointwise credible interval. The true mean is overlayed with a dashed line.

Figure 6 shows the resulting posterior predictive surface under the GP. Notice
how the (stationary) GP gets the wiggliness of the sinusoidal region, but fails
to capture the smoothness of the linear region. The true mean (16) is overlayed
with a dashed line.

So one might consider a Bayesian treed linear model (LM) instead.

> sin.btlm <- btlm(X = X, Z = Z, XX = XX)
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burn in:

**GROW** @depth 0: [0,0.424242], n=(43,57)

**GROW** @depth 1: [0,0.252525], n=(26,19)

**GROW** @depth 2: [0,0.131313], n=(14,13)

r=1000 d=[0] [0] [0] [0]; n=(11,19,17,53)

r=2000 d=[0] [0] [0] [0]; n=(11,17,19,53)

Sampling @ nn=99 pred locs:

r=1000 d=[0] [0] [0] [0]; mh=3 n=(15,14,18,53)

r=2000 d=[0] [0] [0] [0]; mh=4 n=(14,14,19,53)

r=3000 d=[0] [0] [0] [0]; mh=4 n=(12,16,19,53)

r=4000 d=[0] [0] [0] [0]; mh=4 n=(13,16,18,53)

r=5000 d=[0] [0] [0] [0]; mh=4 n=(13,15,19,53)

Grow: 0.8403%, Prune: 0%, Change: 36.3%, Swap: 84%

MCMC progress indicators show successful grow and prune operations as they
happen, and region sizes n every 1,000 rounds. Specifying verb=3, or higher
will show echo more successful tree operations, i.e., change, swap, and rotate.

Figure 7 shows the resulting posterior predictive surface (top) and trees (bot-
tom). The MAP partition (T̂ ) is also drawn onto the surface plot (top) in the
form of vertical lines. The treed LM captures the smoothness of the linear re-
gion just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP because it can be
both smooth and wiggly.

> sin.btgp <- btgp(X = X, Z = Z, XX = XX, verb = 0)

Figure 8 shows the resulting posterior predictive surface (top) and MAP T̂ with
height=2.

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[15], since half of the response surface is very smooth, or linear. This is not
shown here since the results are very similar to those above, replacing btgp

with btgpllm. Each of the models fit in this section is a special case of the
treed GP LLM, so a model comparison is facilitated by fitting this more general
model. The example in the next subsection offers such a comparison for 2-d
data. A followup in Appendix B.1 shows how to use parameter traces to extract
the posterior probability of linearity in regions of the input space.

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1 − x2

2). (17)

A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-
mensionality, a key difference between this data set and the last one is that
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