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Abstract

The utilization of the functions contained in the package ‘vars’ are ex-
plained by employing a data set of the Canadian economy. The package’s
scope includes functions for estimating vector autoregressive (henceforth:
VAR) and structural vector autoregressive models (henceforth: SVAR). In
addition to the two cornerstone functions VAR() and SVAR() for estimat-
ing such models, functions for diagnostic testing, estimation of restricted
VARs, prediction of VARs, causality analysis, impulse response analysis
(henceforth: IRA) and forecast error variance decomposition (henceforth:
FEVD) are provided too. In each section, the underlying concept and/or
method is briefly explained, thereby drawing on the exhibitions in Lütke-
pohl [2006], Lütkepohl, Krätzig, Phillips, Ghysels & Smith [2004], Lütke-
pohl & Breitung [1997], Hamilton [1994] and Watson [1994].

The package’s code is purely written in R and S3-classes with methods
have been utilized. It is shipped with a NAMESPACE and a ChangeLog
file. It has dependencies to MASS (see Venables & Ripley [2002]) and
strucchange (see Zeileis, Leisch, Hornik & Kleiber [2002]).
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1 Introduction

Since the critique of Sims [1980] in the early eighties of the last century,
VAR analysis has evolved as a standard instrument in econometrics for an-
alyzing multivariate time series. Because statistical tests are highly used
in determining interdependencies and dynamic relationships between vari-
ables, it became soon evident to enrich this methodology by incorporating
non-statistical a priori information, hence SVAR models evolved which try
to bypass these shortcomings. At the same time as Sims jeopardized the
paradigm of multiple structural equation models laid out by the Cowles
Foundation in the forties and fifties of the last century, Granger [1981]
and Engle & Granger [1987] endowed econometricians with a powerful
tool for modeling and testing economic relationships, namely, the concept
of integration and and co-integration. Nowadays these traces of research
are unified in the form of vector error correction and structural vector
error correction models. Although these latter topics are left out in this
vignette, the interested reader is referred to the monographes of Lütke-
pohl [2006], Hendry [1995], Johansen [1995], Hamilton [1994], Banerjee,
Dolado, Galbraith & Hendry [1993] and Pfaff [2006] for an exhibition of
unit root tests and co-integration analysis in R.

To the author’s knowledge, currently only functions in the base dis-
tribution of R and in the CRAN-packages dse (package bundle, see Gilbert
1993, 1995, 2000) and fMultivar (Würtz 2006) are made available for
estimating ARIMA and VARIMA time series models. Though, the CRAN-
package MSBVAR (Brandt 2006) provides methods for estimating frequentest
and Bayesian Vector Auto-regression (BVAR) models, the methods and
functions provided in the package vars try to fill a gap in the econometrics’
methods landscape of R by providing the ‘standard’ tools in the context
of VAR and SVAR analysis.

The vignette is structured as follows: the next section is entirely de-
voted to VARs (definition, estimation, restrictions, diagnostic testing,
forecasting, IRA and FEVD). In the ensuing section the topic of SVAR
is elucidated (definition, estimation, IRA and FEVD). Finally, the trans-
formation of a VECM to a VAR in levels is exhibited with its associated
methods and functions.

2 VAR: Vector autoregressive models

2.1 Definition

In its basic form, a VAR consists of a set of K endogenous variables
yt = (y1t, . . . , ykt, . . . , yKt) for k = 1, . . .K. The VAR(p)-process is then
defined as:

yt = A1yt−1 + . . .+Apyt−p + ut , (1)

with Ai are (K × K) coefficient matrices for i = 1, . . . , p and ut is a
K-dimensional white noise process with time invariant positive definite
covariance matrix E(utu

′
t) = Σu.1

par One important characteristic of a VAR(p)-process is its stability. This

1Vectors are assigned by small bold letters and matrices by capital letters. Scalars are
written out as small letters. which are possibly subscripted.
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means that it generates stationary time series with time invariant means,
variances and covariance structure, given sufficient starting values. One
can check this by evaluating the reverse characteristic polynomial:

det(IK −A1z − . . .−Apzp) 6= 0 for |z| ≤ 1 . (2)

If the solution of the above equation has a root for z = 1, then either
some or all variables in the VAR(p)-process are integrated of order one,
i.e. I(1). It might be the case, that co-integration between the variables
does exist. This instance can be better analyzed in the context of a vector-
error-correction model (VECM). The reader is referred to the monograph
of Johansen [1995] for a theoretical exposition and to Pfaff [2006] for an
implementation with the CRAN-package ‘urca’ in R.

In practice, the stability of an empirical VAR(p)-process can be ana-
lyzed by considering the companion form and calculating the eigenvalues
of the coefficient matrix. A VAR(p)-process can be written as a VAR(1)-
process as:

ξt = Aξt−1 + vt , (3)

with:

ξt =

264 yt
...

yt−p+1

375 , A =

2666664
A1 A2 · · · Ap−1 Ap
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

3777775 , vt =

26664
ut
0
...
0

37775 , (4)

whereby the dimensions of the stacked vectors ξt and vt is (Kp× 1) and
of the matrix A is (Kp ×Kp). If the moduli of the eigenvalues of A are
less than one, then the VAR(p)-process is stable. The calculation of the
eigenvalues is made available with the function roots(). The function has
an argument ‘modulus’ of type logical that returns by default the moduli
of the eigenvalues, otherwise a vector of complex numbers is returned (for
an application see section 2.2 below).

2.2 Estimation

For a given sample of the endogenous variables y1, . . .yT and sufficient
presample values y−p+1, . . . ,y0, the coefficients of a VAR(p)-process can
be estimated efficiently by least-squares applied separately to each of the
equations.

Before considering the implementation in the package ‘vars’, let us
briefly discuss the utilized data set and plot the series (see figure 1). The
original time series are published by the OECD and the transformed series,
as described in the help page to Canada are provided with JMulti (see
Lütkepohl et al. [2004]). The sample range is from the 1stQ 1980 until
4thQ 2000.

> library(vars)

> data(Canada)

> layout(matrix(1:4, nrow = 2, ncol = 2))

> plot.ts(Canada$e, main = "Employment", ylab = "", xlab = "")

> plot.ts(Canada$prod, main = "Productivity", ylab = "", xlab = "")

> plot.ts(Canada$rw, main = "Real Wage", ylab = "", xlab = "")

> plot.ts(Canada$U, main = "Unemployment Rate", ylab = "", xlab = "")
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Figure 1: Canada: Macroeconomic series

The variable e is used for employment; prod is a measure of labor produc-
tivity; rw assigns the real wage and finally U is the unemployment rate.
The function for estimating a VAR is VAR(). It consists of three argu-
ments: the data matrix object y (or an object that can be coerced to a
matrix), the integer lag-order p and the type of deterministic regressors
to include into the VAR(p). An optimal lag-order can be determined ac-
cording to an information criteria or the final prediction error of a VAR(p)
with the function VARselect(). Its arguments are exhibited in the code
snippet below.

> args(VAR)

function (y, p = 1, type = c("const", "trend", "both", "none"),

season = NULL, exogen = NULL, lag.max = NULL, ic = c("AIC",

"HQ", "SC", "FPE"))

NULL

> args(VARselect)

function (y, lag.max = 10, type = c("const", "trend", "both",

"none"), season = NULL, exogen = NULL)

NULL

> VARselect(Canada, lag.max = 5, type = "const")

$selection

AIC(n) HQ(n) SC(n) FPE(n)

3 2 2 3
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$criteria

1 2 3 4 5

AIC(n) -5.817851996 -6.35093701 -6.397756084 -6.145942174 -5.926500201

HQ(n) -5.577529641 -5.91835677 -5.772917961 -5.328846166 -4.917146309

SC(n) -5.217991781 -5.27118862 -4.838119523 -4.106417440 -3.407087295

FPE(n) 0.002976003 0.00175206 0.001685528 0.002201523 0.002811116

The VARselect() enables the user to determine an optimal lag length
according to an information criteria or the final prediction error of an
empirical VAR(p)-process. Each of these measures are defined in the
function’s help file. The function returns a list object with the optimal
lag-order according to each of the criteria, as well as a matrix containing
the values for all lags up to lag.max. According to the more conservative
SC(n) and HQ(n) criteria, the empirical optimal lag-order is 2. Please
note, that the calculation of these criteria is based upon the same sample
size, and hence the criteria might take slightly different values whence a
VAR for the chosen order is estimated.

In a next step, the VAR(2) is estimated with the function VAR() and
as deterministic regressors a constant is included.

> var.2c <- VAR(Canada, p = 2, type = "const")

> names(var.2c)

[1] "varresult" "datamat" "y" "type" "p"

[6] "K" "obs" "totobs" "restrictions" "call"

The function returns a list object of class varest and the list elements
are explained in detail in the function’s help file. Let us now focus on two
methods, namely summary and plot.

> summary(var.2c)

> plot(var.2c)

The summary method simply applies the summary.lm method to the lm

objects contained in varresult. The OLS results of the example are
shown in separate tables 1 – 4 below. It turns out, that not all lagged
endogenous variables enter significantly into the equations of the VAR(2).
The estimation of a restricted VAR is the topic of the next section.

Estimate Std. Error t value Pr(>|t|)
e.l1 1.6378 0.1500 10.92 0.0000

prod.l1 0.1673 0.0611 2.74 0.0078
rw.l1 −0.0631 0.0552 −1.14 0.2569
U.l1 0.2656 0.2028 1.31 0.1944
e.l2 −0.4971 0.1595 −3.12 0.0026

prod.l2 −0.1017 0.0661 −1.54 0.1282
rw.l2 0.0038 0.0555 0.07 0.9450
U.l2 0.1327 0.2073 0.64 0.5242

const −136.9984 55.8481 −2.45 0.0166

Table 1: Regression result for employment equation
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Diagram of fit for e
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Figure 2: Employment equation: Diagram of fit, residuals with ACF and PACF

Before we proceed with the estimation of restricted VARs, let us first
look at the plot method for objects with class attribute varest and the
roots() function for checking the VARs stability, that was briefly men-
tioned at the end of the previous section. For each equation in a VAR,
a plot consisting of a diagram of fit, a residual plot, the autocorrelation
and partial autocorrelation function of the residuals are shown. If the plot
method is called interactively, the user is requested to enter <RETURN> for
commencing to the next plot. Currently, the . . . -argument of the plot

method is unused. However, given the information contained in an object
of class varest, it is fairly easy to set up such plots and tailor made them
to her/his needs. The plots of the four equations are shown in the exhibits
2 to 5. Whence, we have estimated a VAR(p), we should check its sta-
bility. Here, stability does not refer to the coefficients’ stability, i.e. the
stability of the regressions, but rather the stability of the system of dif-
ference equations. As pointed out above, if the moduli of the eigenvalues
of the companion matrix are less than one, the system is stable.

> roots(var.2c)

[1] 0.9950338 0.9081062 0.9081062 0.7380565 0.7380565 0.1856381 0.1428889

[8] 0.1428889

Although, the first eigenvalue is pretty close to unity, for the sake of
simplicity, we assume a stable VAR(2)-process with a constant as deter-
ministic regressor.
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Estimate Std. Error t value Pr(>|t|)
e.l1 −0.1728 0.2698 −0.64 0.5239

prod.l1 1.1504 0.1099 10.46 0.0000
rw.l1 0.0513 0.0993 0.52 0.6071
U.l1 −0.4785 0.3647 −1.31 0.1936
e.l2 0.3853 0.2869 1.34 0.1835

prod.l2 −0.1724 0.1188 −1.45 0.1510
rw.l2 −0.1189 0.0998 −1.19 0.2378
U.l2 1.0159 0.3728 2.72 0.0080

const −166.7755 100.4339 −1.66 0.1011

Table 2: Regression result for productivity equation

Estimate Std. Error t value Pr(>|t|)
e.l1 −0.2688 0.3226 −0.83 0.4074

prod.l1 −0.0811 0.1315 −0.62 0.5395
rw.l1 0.8955 0.1188 7.54 0.0000
U.l1 0.0121 0.4361 0.03 0.9779
e.l2 0.3678 0.3431 1.07 0.2872

prod.l2 −0.0052 0.1421 −0.04 0.9710
rw.l2 0.0527 0.1194 0.44 0.6604
U.l2 −0.1277 0.4459 −0.29 0.7754

const −33.1883 120.1105 −0.28 0.7831

Table 3: Regression result for real wage equation

2.3 Restricted VARs

From tables 1-4 it is obvious that not all regressors enter significantly.
With the function restrict() the user has the option to re-estimate the
VAR either by significance (argument method = ’ser’) or by imposing
zero restrictions manually (argument method = ’manual’). In the former
case, each equation is re-estimated separately as long as there are t-values
that are in absolute value below the threshold value set by the function’s
argument thresh. In the latter case, a restriction matrix has to be pro-
vided that consists of 0/1 values, thereby selecting the coefficients to be
retained in the model. The function’s arguments are therefore:

> args(restrict)

function (x, method = c("ser", "manual"), thresh = 2, resmat = NULL)

NULL

> var2c.ser <- restrict(var.2c, method = "ser", thresh = 2)

> var2c.ser$restrictions

e.l1 prod.l1 rw.l1 U.l1 e.l2 prod.l2 rw.l2 U.l2 const

e 1 1 1 1 1 0 0 0 1

prod 0 1 0 0 1 0 1 1 1

rw 0 1 1 0 1 0 0 1 0

U 1 0 0 1 1 0 1 0 1

> B(var2c.ser)
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Diagram of fit for prod
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Figure 3: Productivity equation: Diagram of fit, residuals with ACF and PACF

e.l1 prod.l1 rw.l1 U.l1 e.l2 prod.l2

e 1.7245893 0.07872263 -0.05370603 0.3915061 -0.60070476 0

prod 0.0000000 1.00809918 0.00000000 0.0000000 0.28943990 0

rw 0.0000000 -0.11816412 0.96382332 0.0000000 0.07092345 0

U -0.6954549 0.00000000 0.00000000 0.5600228 0.52253799 0

rw.l2 U.l2 const

e 0.00000000 0.0000000 -128.8945

prod -0.09728839 0.7503647 -240.5605

rw 0.00000000 -0.1930013 0.0000

U 0.05670873 0.0000000 142.6316

> res <- matrix(rep(1, 36), nrow = 4, ncol = 9)

> res[1, 3] <- 0

> res[1, 4] <- 0

> var2c.man <- restrict(var.2c, method = "manual", resmat = res)

> var2c.man$restrictions

e.l1 prod.l1 rw.l1 U.l1 e.l2 prod.l2 rw.l2 U.l2 const

e 1 1 0 0 1 1 1 1 1

prod 1 1 1 1 1 1 1 1 1

rw 1 1 1 1 1 1 1 1 1

U 1 1 1 1 1 1 1 1 1

> B(var2c.man)

e.l1 prod.l1 rw.l1 U.l1 e.l2 prod.l2

e 1.5079689 0.16584386 0.00000000 0.00000000 -0.4043821 -0.095383974
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Diagram of fit for rw
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Figure 4: Real wage equation: Diagram of fit, residuals with ACF and PACF

prod -0.1727658 1.15042820 0.05130390 -0.47850131 0.3852589 -0.172411873

rw -0.2688329 -0.08106500 0.89547833 0.01213003 0.3678489 -0.005180947

U -0.5807638 -0.07811707 0.01866214 0.61893150 0.4098182 0.052116684

rw.l2 U.l2 const

e -0.04593897 0.33088442 -109.20640

prod -0.11885104 1.01591801 -166.77552

rw 0.05267656 -0.12770826 -33.18834

U 0.04180115 -0.07116885 149.78056

In the example above, the third and fourth coefficient of the employment
equation (i.e., the first equation) are set to zero for method = ’manual’.
The function restrict() returns a list object with class attribute varest.
The coefficients of these objects can be displayed conveniently by either
B() (all coefficients, including deterministic coefficients) or by A() (only
coefficients of lagged endogenous variables). The output of the former is
shown in the code snippet above. It should be noted at this point, that a
restricted VAR is estimated by OLS too, instead of employing the EGLS
method (see Lütkepohl [2006] for an exposition).

2.4 Diagnostic testing

In package ‘vars’ the functions for diagnostic testing are arch(), normal-
ity(), serial() and stability(). The former three functions return a
list object with class attribute varcheck for which a plot-method exists.
The plots, one for each equation, include a residual plot, an empirical
distribution plot and the ACFs and PACFs of the residuals and their
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Estimate Std. Error t value Pr(>|t|)
e.l1 −0.5808 0.1156 −5.02 0.0000

prod.l1 −0.0781 0.0471 −1.66 0.1017
rw.l1 0.0187 0.0426 0.44 0.6625
U.l1 0.6189 0.1563 3.96 0.0002
e.l2 0.4098 0.1230 3.33 0.0014

prod.l2 0.0521 0.0509 1.02 0.3095
rw.l2 0.0418 0.0428 0.98 0.3319
U.l2 −0.0712 0.1598 −0.45 0.6574

const 149.7806 43.0481 3.48 0.0009

Table 4: Regression result for unemployment equation

squares. The function stability() returns a list object with class at-
tribute varstabil. The function itself is just a wrapper for the function
efp() from package strucchange. The first element of the returned list
object is itself a list of objects with class attribute efp. Hence, the plot-
method for objects of class varstabil just call the plot-method for ob-
jects of class efp. Let us now turn to each of these functions in more detail.

The implemented tests for heteroscedasticity are the univariate and
multivariate ARCH test (see Engle [1982], Hamilton [1994] and Lütke-
pohl [2006]). The multivariate ARCH-LM test is based on the following
regression (the univariate test can be considered as special case of the
exhibition below and is skipped):

vech(ûtût
′) = β0 +B1vech(ût−1û

′
t−1) + . . .+Bqvech(ût−qû

′
t−q) + vt ,

(5)
whereby vt assigns a spherical error process and vech is the column-
stacking operator for symmetric matrices that stacks the columns from
the main diagonal on downward. The dimension of β0 is 1

2
K(K + 1) and

for the coefficient matrices Bi with i = 1, . . . , q, 1
2
K(K+ 1)× 1

2
K(K+ 1).

The null hypothesis is: H0 := B1 = B2 = . . . = Bq = 0 and the alterna-
tive is: H1 : B1 6= 0 ∩ B2 6= 0 ∩ . . . ∩ Bq 6= 0. The test statistic is defined
as:

V ARCHLM (q) =
1

2
TK(K + 1)R2

m , (6)

with

R2
m = 1− 2

K(K + 1)
tr(Ω̂Ω̂−1

0 ) , (7)

and Ω̂ assigns the covariance matrix of the above defined regression model.
This test statistic is distributed as χ2(qK2(K + 1)2/4).
In the code example below this test is applied to the var.2c object.

> args(arch)

function (x, lags.single = 16, lags.multi = 5, multivariate.only = TRUE)

NULL

> var2c.arch <- arch(var.2c)

> names(var2c.arch)

[1] "resid" "arch.mul"

> var2c.arch
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Diagram of fit for U

Time

0 20 40 60 80

7
9

11
13

Residuals

Time

0 20 40 60 80

−
0.

6
0.

0
0.

6

0 5 10 15

−
0.

2
0.

4
1.

0

Lag

ACF Residuals

5 10 15

−
0.

3
0.

0
0.

2

Lag

PACF Residuals

Figure 5: Unemployment equation: Diagram of fit, residuals with ACF and
PACF

ARCH (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 538.8897, df = 500, p-value = 0.1112

The Jarque-Bera normality tests for univariate and multivariate se-
ries are implemented and applied to the residuals of a VAR(p) as well as
separate tests for multivariate skewness and kurtosis (see Bera & Jarque
[1980], [1981] and Jarque & Bera [1987] and Lütkepohl [2006]). The uni-
variate versions of the Jarque-Bera test are applied to the residuals of each
equation. A multivariate version of this test can be computed by using
the residuals that are standardized by a Choleski decomposition of the
variance-covariance matrix for the centered residuals. Please note, that in
this case the test result is dependent upon the ordering of the variables.

> var2c.norm <- normality(var.2c, multivariate.only = TRUE)

> names(var2c.norm)

[1] "resid" "jb.mul"

> var2c.norm

$JB

JB-Test (multivariate)

data: Residuals of VAR object var.2c
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Chi-squared = 5.094, df = 8, p-value = 0.7475

$Skewness

Skewness only (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 1.7761, df = 4, p-value = 0.7769

$Kurtosis

Kurtosis only (multivariate)

data: Residuals of VAR object var.2c

Chi-squared = 3.3179, df = 4, p-value = 0.5061

> plot(var2c.norm)

The test statistics for the multivariate case are defined as:

JBmv = s23 + s24 , (8)

whereby s23 and s24 are computed according to:

s23 = Tb′1b1/6 (9a)

s24 = T (b2 − 3K)′(b2 − 3k)/24 , (9b)

with b1 and b2 are the third and fourth non-central moment vectors of
the standardized residuals ûst = P̃−(ût − ¯̂ut) and P̃ is a lower triangular
matrix with positive diagonal such that P̃ P̃ ′ = Σ̃u, i.e., the Choleski de-
composition of the residual covariance matrix. The test statistic JBmv is
distributed as χ2(2K) and the multivariate skewness, s23, and kurtosis test,
s24 are distributed as χ2(K). Likewise to ARCH, these tests are returned
in the list elements jb.uni and jb.mul, which consist of objects with class
attribute htest. Hence, the print-method for these objects is employed
in print.varcheck. In the code example above, the null hypothesis of
normality cannot be rejected.

For testing the lack of serial correlation in the residuals of a VAR(p),
a Portmanteau test and the LM test proposed by Breusch & Godfrey
are implemented in the function serial(). For both tests small sample
modifications are calculated too, whereby the modification for the LM has
been introduced by Edgerton & Shukur [1999]. Likewise, to the function
normality(), the test statistics are list elements of the returned object
and have class attribute htest.
The Portmanteau statistic is defined as:

Qh = T

hX
j=1

tr(Ĉ′jĈ
−1
0 ĈjĈ

−1
0 ) , (10)

with Ĉi = 1
T

ΣTt=i+1ûtû
′
t−i. The test statistic has an approximate χ2(K2h−

n∗) distribution, and n∗ is the number of coefficients excluding determin-
istic terms of a VAR(p). The limiting distribution is only valid for h
tending to infinity at suitable rate with growing sample size. Hence, the
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trade-off is between a decent approximation to the χ2 distribution and a
loss in power of the test, when h is chosen too large. The small sample
properties of the test statistic:

Q∗h = T 2
hX
j=1

1

T − j tr(Ĉ
′
jĈ
−1
0 ĈjĈ

−1
0 ) (11)

may be better, and is available as the second entry in the list element
pt.mul.

> var2c.pt.asy <- serial(var.2c, lags.pt = 16, type = "PT.asymptotic")

> var2c.pt.asy

Portmanteau Test (asymptotic)

data: Residuals of VAR object var.2c

Chi-squared = 205.3538, df = 224, p-value = 0.8092

> var2c.pt.adj <- serial(var.2c, lags.pt = 16, type = "PT.adjusted")

> var2c.pt.adj

Portmanteau Test (adjusted)

data: Residuals of VAR object var.2c

Chi-squared = 231.5907, df = 224, p-value = 0.3497

> plot(var2c.pt.asy)

The Breusch-Godfrey LM-statistic (see Breusch 1978, Godfrey 1978)
is based upon the following auxiliary regressions:

ût = A1yt−1 + . . .+Apyt−p +CDt +B1ût−1 + . . .+Bhût−h + εt . (12)

The null hypothesis is: H0 : B1 = · · · = Bh = 0 and correspondingly the
alternative hypothesis is of the form H1 : ∃Bi 6= 0 for i = 1, 2, . . . , h. The
test statistic is defined as:

LMh = T (K − tr(Σ̃−1
R Σ̃e)) , (13)

where Σ̃R and Σ̃e assign the residual covariance matrix of the restricted
and unrestricted model, respectively. The test statistic LMh is distributed
as χ2(hK2) and is returned by the function serial() as list element LMh

with class attribute htest.

> var2c.BG <- serial(var.2c, lags.pt = 16, type = "BG")

> var2c.BG

Breusch-Godfrey LM test

data: Residuals of VAR object var.2c

Chi-squared = 92.6282, df = 80, p-value = 0.1581

> var2c.ES <- serial(var.2c, lags.pt = 16, type = "ES")

> var2c.ES

Edgerton-Shukur F test

data: Residuals of VAR object var.2c

F statistic = 1.1186, df1 = 80, df2 = 199, p-value = 0.2648
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Edgerton & Shukur [1999] proposed a small sample correction, which is
defined as:

LMFh =
1− (1−R2

r)
1/r

(1−R2
r)1/r

Nr − q
Km

, (14)

with R2
r = 1 − |Σ̃e|/|Σ̃R|, r = ((K2m2 − 4)/(K2 + m2 − 5))1/2, q =

1/2Km − 1 and N = T − K − m − 1/2(K − m + 1), whereby n is the
number of regressors in the original system and m = Kh. The modi-
fied test statistic is distributed as F (hK2, int(Nr−q)). This test statistic
is returned by serial() as list element LMFh and has class attribute htest.

The stability of the regression relationships in a VAR(p) can be as-
sessed with the function stability(). An empirical fluctuation process
is estimated for each regression by passing the function’s arguments to the
efp()-function contained in the package strucchange. The function sta-

bility()returns a list object with class attribute varstabil. The first
element, stability, is itself a list with objects of class efp. For more
information about efp() see its help file and the cited literature therein.

> args(stability)

function (x, type = c("Rec-CUSUM", "OLS-CUSUM", "Rec-MOSUM",

"OLS-MOSUM", "RE", "ME", "Score-CUSUM", "Score-MOSUM", "fluctuation"),

h = 0.15, dynamic = FALSE, rescale = TRUE)

NULL

> var2c.stab <- stability(var.2c, type = "OLS-CUSUM")

> names(var2c.stab)

[1] "stability" "names" "K"

> plot(var2c.stab)

In the R-code example above, an OLS-Cusum test is applied to the varest
object var.2c. The graphical output is displayed in figures 6–9 on the
following pages. The null hypothesis of a stable relationship cannot be
rejected for neither regression in the VAR.

2.5 Causality Analysis

Often researchers are interested in the detection of causalities between
variables. The most common one is the Granger-Causality test (Granger
1969). Incidentally, this test is not suited to test causal relationships
in the strict sense, because the possibility of a post hoc ergo propter hoc
fallacy cannot be excluded. This is true for any so called“causality test” in
econometrics. It is therefore common practice to say that variables x does
granger-cause variable y if variable x helps to predict variable y. Aside
of this test, within the function causality() a Wald-type instantaneous
causality test is implemented too. It is characterized by testing for nonzero
correlation between the error processes of the cause and effect variables.

> args(causality)

function (x, cause = NULL)

NULL

The function causality() has two arguments. The first argument, x, is
an object of class varest and the second, cause, is a character vector of
the variable names, that are assumed to be causal to the remaining vari-
ables in a VAR(p)-process. If this argument is unset, then the variable
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Figure 6: Employment equation: OLS-Cusum test

in the first column of x$y is used as cause variable and a warning is printed.

For both tests the vector of endogenous variables yt is split into two
sub-vectors y1t and y2t with dimensions (K1 × 1) and (K2 × 1) with
K = K1 +K2. For the rewritten VAR(p):»

y1t

y2t

–
=

pX
i=1

»
α11,i α12,i

α21,i α22,i

– »
y1,t−i
y2,t−i

–
+ CDt +

»
u1t

u2t

–
, (15)

the null hypothesis that the sub-vector y1t does not Granger-cause y2t, is
defined as α21,i = 0 for i = 1, 2, . . . , p. The alternative is: ∃α21,i 6= 0 for
i = 1, 2, . . . , p. The test statistic is distributed as F (pK1K2,KT − n∗),
with n∗ equal to the total number of parameters in the above VAR(p)-
process, including deterministic regressors. The null hypothesis for non-
instantaneous causality is defined as: H0 : Cσ = 0, where C is a (N ×
K(K + 1)/2) matrix of rank N selecting the relevant co-variances of u1t

and u2t; σ̃ = vech(Σ̃u). The Wald statistic is defined as:

λW = T σ̃′C′[2CD+
K(Σ̃u ⊗ Σ̃u)D+′

K C′]−1Cσ̃ , (16)

hereby assigning the Moore-Penrose inverse of the duplication matrix DK
with D+

K and Σ̃u = 1
T

ΣTt=1ûtû
′
t. The duplication matrix DK has dimen-

sion (K2× 1
2
K(K+1)) and is defined such that for any symmetric (K×K)

matrix A, vec(A) = DKvech(A) holds. The test statistic λW is asymp-
totically distributed as χ2(N).
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Figure 7: Productivity equation: OLS-Cusum test

The function causality() is now applied for investigating if the real
wage and productivity is causal to employment and unemployment.

> causality(var.2c, cause = c("rw", "prod"))

$Granger

Granger causality H0: prod rw do not Granger-cause e U

data: VAR object var.2c

F-Test = 3.4529, df1 = 8, df2 = 292, p-value = 0.0008086

$Instant

H0: No instantaneous causality between: prod rw and e U

data: VAR object var.2c

Chi-squared = 2.5822, df = 4, p-value = 0.63

The null hypothesis of no Granger-causality from the real wage and la-
bor productivity to employment and unemployment must be rejected;
whereas the null hypothesis of non-instantaneous causality cannot be re-
jected. This test outcome is economically plausible, given the frictions
observed in labor markets.
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Figure 8: Real wage equation: OLS-Cusum test

2.6 Forecasting

A predict-method for objects with class attribute varest is available.
The n.ahead forecasts are computed recursively for the estimated VAR,
beginning with h = 1, 2, . . . , n.ahead:

yT+1|T = A1yT + . . .+ApyT+1−p + CDT+1 (17)

> var.f10 <- predict(var.2c, n.ahead = 10, ci = 0.95)

> names(var.f10)

[1] "fcst" "endog" "model" "exo.fcst"

> class(var.f10)

[1] "varprd"

> plot(var.f10)

> fanchart(var.f10)

Beside the function’s arguments for the varest object and the n.ahead

forecast steps, a value for the forecast confidence interval can be provided
too. Its default value is 0.95. The forecast error covariance matrix is given
as:

Cov

0B@
264yT+1 − yT+1|T

...
yT+h − yT+h|T

375
1CA =

26664
I 0 · · · 0

Φ1 I 0
...

. . . 0
Φh−1 Φh−2 . . . I

37775 (Σu⊗Ih)

26664
I 0 · · · 0

Φ1 I 0
...

. . . 0
Φh−1 Φh−2 . . . I

37775
′
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Figure 9: Unemployment equation: OLS-Cusum test

and the matrices Φi are the coefficient matrices of the Wold moving aver-
age representation of a stable VAR(p)-process:

yt = Φ0ut + Φ1ut−1 + Φ2ut−2 + . . . , (18)

with Φ0 = IK and Φs can be computed recursively according to:

Φs =

sX
j=1

Φs−jAj for s = 1, 2, . . . , , (19)

whereby Aj = 0 for j > p.

The predict-method does return a list object of class varprd with
three elements. The first element, fcst, is a list of matrices containing
the predicted values, the lower and upper bounds according to the chosen
confidence interval, ci and its size. The second element, endog is a matrix
object containing the endogenous variables and the third is the submitted
varest object. A plot-method for objects of class varprd does exist
as well as a fanchart() function for plotting fan charts as described in
Britton, Fisher & Whitley [1998].

> args(fanchart)

function (x, colors = NULL, cis = NULL, names = NULL, main = NULL,

ylab = NULL, xlab = NULL, col.y = NULL, nc, plot.type = c("multiple",

"single"), mar = par("mar"), oma = par("oma"), ...)

NULL
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Figure 10: Employment: 10-step ahead forecasts with 95% confidence

The fanchart() function has colors and cis arguments, allowing the user
to input vectors of colors and critical values. If these arguments are left
NULL, then as defaults a heat.map color scheme is used and the critical
values are set from 0.1 to 0.9 with a step size of 0.1. In order to save
space, the predict plot for employment and a fan chart for unemployment
is shown in the exhibits 10 and 11, respectively.

2.7 Impulse response analysis

The impulse response analysis is based upon the Wold moving average
representation of a VAR(p)-process (see equations (18) and (19) above).
It is used to investigate the dynamic interactions between the endoge-
nous variables. The (i, j)th coefficients of the matrices Φs are thereby
interpreted as the expected response of variable yi,t+s to a unit change
in variable yjt. These effects can be cumulated through time s = 1, 2, . . .
and hence one would obtain the cumulated impact of a unit change in
variable j to the variable i at time s. Aside of these impulse response co-
efficients, it is often conceivable to use orthogonalized impulse responses
as an alternative. This is the case, if the underlying shocks are less likely
to occur in isolation, but rather contemporaneous correlation between the
components of the error process ut are existent, i.e., the off-diagonal el-
ements of Σu are non-zero. The orthogonalized impulse responses are
derived from a Choleski decomposition of the error variance-covariance
matrix: Σu = PP ′ with P being a lower triangular. The moving average
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Figure 11: Unemployment: Fan chart with default settings

representation can then be transformed to:

yt = Ψ0εt + Ψ1εt−1 + . . . , (20)

with εt = P−1ut and Ψi = ΦiP for i = 0, 1, 2, . . . and Ψ0 = P . Inciden-
tally, because the matrix P is lower triangular, it follows that only a shock
in the first variable of a VAR(p)-process does exert an influence on all the
remaining ones and that the second and following variables cannot have
a direct impact on y1t. One should bear this in mind whence orthogonal
impulse responses are employed (see the code snippet below and figure 12
for a re-ordering of the data to compute the impulse responses originating
from a real wage shock to employment and unemployment). Please note
further, that a different ordering of the variables might produce different
outcomes with respect to the impulse responses. As we shall see in section
3, the non-uniqueness of the impulse responses can be circumvented by
analyzing a set of endogenous variables in the structural VAR (SVAR)
framework.

> args(irf)

function (x, impulse = NULL, response = NULL, n.ahead = 10, ortho = TRUE,

cumulative = FALSE, boot = TRUE, ci = 0.95, runs = 100, seed = NULL,

...)

NULL

> Canada2 <- Canada[, c(3, 1, 4, 2)]

> names(Canada2)
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[1] "rw" "e" "U" "prod"

> var.2c.alt <- VAR(Canada2, p = 2, type = "const")

> irf.rw.eU <- irf(var.2c.alt, impulse = "rw", response = c("e",

+ "U"), boot = TRUE)

> names(irf.rw.eU)

[1] "irf" "Lower" "Upper" "response" "impulse"

[6] "ortho" "cumulative" "runs" "ci" "boot"

[11] "model"

> plot(irf.rw.eU)

The function for conducting impulse response analysis is irf(). It is a
method for objects with class attribute varest and svarest. The func-
tion’s arguments are displayed in the R-code example above. The impulse
variables are set as a character vector impulse and the responses are pro-
vided likewise in the argument response. If either one is unset, then all
variables are considered as impulses or responses, respectively. The de-
fault length of the impulse responses is set to 10 via argument n.ahead.
The computation of orthogonalized and/or cumulated impulse responses
is controlled by the logical switches ortho and cumulative, respectively.
Finally, confidence bands can be returned by setting boot = TRUE (de-
fault). The pre-set values are to run 100 replications and return 95%
confidence bands. It is at the user’s leisure to specify a seed for repli-
cability of the results. The standard percentile interval is calculated as
CIs = [s∗γ/2, s

∗
(1−γ)/2], where s∗γ/2 and s∗(1−γ)/2 are the γ/2 and (1− γ)/2

quantiles of the estimated bootstraped impulse response coefficients Φ̂∗

or Ψ̂∗ (Efron & Tibshirani 1993). The function irf() returns an object
with class attribute varirf for which a plot method does exist. In figure
12 the result of the impulse response analysis is depicted. Although a
positive real wage shock does influence employment and unemployment
in the directions one would a priori assume, it does so only significantly
for unemployment during the time span ranging from the third period to
the sixth period.2

2.8 Forecast error variance decomposition

The forecast error variance decomposition (henceforth: FEVD) is based
upon the orthogonalized impulse response coefficient matrices Ψn (see
section 2.7 above). The FEVD allows the user to analyze the contribu-
tion of variable j to the h-step forecast error variance of variable k. If the
element-wise squared orthogonalized impulse responses are divided by the
variance of the forecast error variance, σ2

k(h), the resultant is a percent-
age figure. Formally, the forecast error variance for yk,T+h − Yk,T+h|T is
defined as:

σ2
k(h) =

h−1X
n=0

(ψ2
k1,n + . . .+ ψ2

kK,n) (21)

which can be written as:

σ2
k(h) =

KX
j=1

(ψ2
kj,0 + . . .+ ψ2

kj,h−1) . (22)

2Incidentally, the result should not be mistaken or interpreted as demanding higher real
wages, i.e., having a free lunch, without facing the consequences beyond of the model’s scope.
The example has been primarily chosen for demonstrations purposes only.
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Figure 12: Orthogonal impulse responses from real wage to employment and
unemployment (95% confidence bands, boots trapped with 100 replications)

Dividing the term (ψ2
kj,0 + . . .+ψ2

kj,h−1) by σ2
k(h) yields the forecast error

variance decompositions in percentage terms:

ωkj(h) = (ψ2
kj,0 + . . .+ ψ2

kj,h−1)/σ2
k(h) . (23)

The method fevd is available for conducting FEVD. Functions for objects
of classes varest and svarest do exist. The argument aside of an object
with class attribute being either varest or svarest is the number of fore-
casting steps, n.ahead. Its default value has been set to 10. Currently,
the . . .-argument is unused.

> args(fevd)

function (x, n.ahead = 10, ...)

NULL

The method does return a list object with class attribute varfevd for
which a plot-method does exists. The list elements are the forecast error
variances organized on a per-variable basis.

> var2c.fevd <- fevd(var.2c, n.ahead = 5)

> class(var2c.fevd)

[1] "varfevd"

> names(var2c.fevd)

[1] "e" "prod" "rw" "U"
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Figure 13: Forecast error variance decomposition for employment

> var2c.fevd$e

e prod rw U

[1,] 1.0000000 0.00000000 0.000000000 0.000000000

[2,] 0.9633815 0.02563062 0.004448081 0.006539797

[3,] 0.8961692 0.06797131 0.013226872 0.022632567

[4,] 0.8057174 0.11757589 0.025689192 0.051017495

[5,] 0.7019003 0.16952744 0.040094324 0.088477959

From the example above, it is evident that aside of employment itself, the
influence of productivity is contributing the most to the forecast uncer-
tainty of employment. In the exhibit 13, the FEVD of employment for
five ahead steps is plotted as a bar graph.3

3 SVAR: Structural vector autoregressive
models

3.1 Definition

Recall from section 2.1 on page 2 the definition of a VAR(p)-process, in
particular equation (1). A VAR(p) can be interpreted as a reduced form

3If the plot-method is called interactively, the user is enforced to go through the bar graphs
for all variables. In order to save space, only the FEVD for the employment variable is shown
in figure 13.
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model. A SVAR-model is its structural form and is defined as:

Ayt = A∗1yt−1 + . . .+A∗pyt−p +Bεt . (24)

It is assumed that the structural errors, εt, are white noise and the coef-
ficient matrices A∗i for i = 1, . . . , p, are structural coefficients that might
differ from their reduced form counterparts. To see this, consider the
resulting equation by left-multiplying equation (24) with the inverse of A:

yt = A−1A∗1yt−1 + . . .+A−1A∗pyt−p +A−1Bεt

yt = A1yt−1 + . . .+Apyt−p + ut .
(25)

A SVAR-model can be used to identify shocks and trace these out by em-
ploying IRA and/or FEVD through imposing restrictions on the matrices
A and/or B. Incidentally, though a SVAR-model is a structural model,
it departs from a reduced form VAR(p)-model and only restrictions for A
and B can be added. It should be noted that the reduced form residuals
can be retrieved from a SVAR-model by ut = A−1Bεt and its variance-
covariance matrix by Σu = A−1BB′A−1′

.

Depending on the imposed restrictions, three types of SVAR- models
can be distinguished:

� A model: B is set to IK (minimum number of restrictions for iden-
tification is K(K − 1)/2 ).

� B model: A is set to IK (minimum number of restrictions to be
imposed for identification is the same as for A model).

� AB model: restrictions can be placed on both matrices (minimum
number of restrictions for identification is K2 +K(K − 1)/2).

3.2 Estimation

A SVAR model is estimated with the function SVAR().4 Its arguments
are shown in the R-code example below. An object with class attribute
varest has to be provided as argument x. Whether an A-, B- or AB-
model will be estimated, is dependent on the setting for Amat and Bmat.
If a restriction matrix for Amat with dimension (K ×K) is provided and
the argument Bmat is left NULL, an A-model be estimated. In this case
Bmat is set to an identity matrix IK . Alternatively, if only a matrix object
for Bmat is provided and Amat left unchanged, then a B-model will be
estimated and internally Amat is set to an identity matrix IK . Finally, if
matrix objects for both arguments are provided, then an AB-model will
be estimated. In all cases, the matrix elements to be estimated are marked
by NA entries at the relevant positions.

> args(SVAR)

function (x, estmethod = c("scoring", "logLik"), Amat = NULL,

Bmat = NULL, Ra = NULL, Rb = NULL, ra = NULL, rb = NULL,

start = NULL, max.iter = 100, conv.crit = 1e-07, maxls = 1,

lrtest = TRUE, ...)

NULL

4The following exhibition uses the estimation method logLik for directly minimizing the
negative log-likelihood function. It also possible to use a scoring algorithm. Hereby, the
restrictions have to be provided in a different form (see example(SVAR) for further details.
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> amat <- diag(4)

> diag(amat) <- NA

> amat[1, 2] <- NA

> amat[1, 3] <- NA

> amat[3, 2] <- NA

> amat[4, 1] <- NA

> amat

[,1] [,2] [,3] [,4]

[1,] NA NA NA 0

[2,] 0 NA 0 0

[3,] 0 NA NA 0

[4,] NA 0 0 NA

In the example above, an expository object amat has been set up. The
next function’s argument is start. This argument expects a vector of
starting values, hence, the user has one handle at hand for controlling
the optimization process in case one encounters convergence problems.
If left NULL, then starting values are set to 0.1 for all coefficients to be
optimized. Finally, the . . . argument in SVAR() is parsed to the optim()

function. Therefore, it is possible to choose the numerical optimization
method and set hessian = TRUE to obtain the numerical standard errors,
for instance.

The parameters are estimated by minimizing the negative of the con-
centrated log-likelihood function:

lnLc(A,B) =− KT

2
ln(2π) +

T

2
ln |A|2 − T

2
ln |B|2

− T

2
tr(A′B′−1B−1AΣ̃u) ,

(26)

by utilizing optim.

> args(optim)

function (par, fn, gr = NULL, ..., method = c("Nelder-Mead",

"BFGS", "CG", "L-BFGS-B", "SANN"), lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)

NULL

> svar2c.A <- SVAR(var.2c, estmethod = "logLik", Amat = amat, Bmat = NULL,

+ hessian = TRUE, method = "BFGS")

> svar2c.A

#################

# SVAR: A-model #

#################

LR overidentification test:

LR overidentification

data: Canada

Chi^2 = 0.8252, df = 2, p-value = 0.6619
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Estimated A matrix:

e prod rw U

e 2.787720 0.01998724 0.1906375 0.000000

prod 0.000000 1.53260287 0.0000000 0.000000

rw 0.000000 -0.19609242 1.2920240 0.000000

U 2.562603 0.00000000 0.0000000 4.882572

Estimated standard errors for A matrix:

e prod rw U

e 0.2176737 0.1706396 0.1434537 0.000000

prod 0.0000000 0.1196780 0.0000000 0.000000

rw 0.0000000 0.1699440 0.1008898 0.000000

U 0.3642575 0.0000000 0.0000000 0.381258

Estimated B matrix:

e prod rw U

e 1 0 0 0

prod 0 1 0 0

rw 0 0 1 0

U 0 0 0 1

Estimated standard errors for B matrix:

e prod rw U

e 0 0 0 0

prod 0 0 0 0

rw 0 0 0 0

U 0 0 0 0

The returned object of function SVAR() is a list with class attribute svarest.

> class(svar2c.A)

[1] "svarest"

> names(svar2c.A)

[1] "A" "Ase" "B" "Bse" "LRIM" "Sigma.U" "LR"

[8] "opt" "start" "type" "var" "call"

Dependent on the chosen model and if the argument hessian = TRUE

has been set, the list elements A, Ase, B, Bse contain the estimated
coefficient matrices with the numerical standard errors, if applicable. The
element LRIM does contain the long-run impact matrix in case a SVAR
of type Blanchard & Quah is estimated, otherwise this element is NULL

(see below for more details). The list element Sigma.U is the variance-
covariance matrix of the reduced form residuals times 100, i.e., ΣU =
A−1BB′A−1′

× 100. The list element LR is an object with class attribute
htest, holding the Likelihood ratio over-identification test, whereby the
test statistic is defined as:

LR = T (log det(Σ̃ru)− log det(Σ̃u)) (27)

with Σ̃u being the ML estimator of the reduced form variance-covariance
matrix and Σ̃ru is the corresponding estimator obtained from the restricted
structural form estimation. The element opt is the returned object from
function optim. The remaining four list items are the vector of starting
values, the SVAR model type, the varest object and the call to SVAR().
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Finally, it should be noted that the model proposed by Blanchard &
Quah [1989] can be considered as a particular SVAR-model of type B.
The matrix A is equal to IK and the matrix of the long-run effects is
lower-triangular and defined as:

(IK −A1 − · · · −AP )−1B . (28)

Hence, the residual of the second equation cannot exert a long-run influ-
ence on the first variable and likewise the third residual cannot impact
the first and second variable. The estimation of the Blanchard & Quah
model is achieved by a Choleski decomposition of:

(IK − Â1 − · · · − Âp)−1Σ̂u(IK − Â′1 − · · · − Â′p)−1 . (29)

The matrices Âi for i = 1, . . . , p assign the reduced form estimates. The
long-run impact matrix is the lower-triangular Choleski decomposition of
this matrix and the contemporaneous impact matrix is equal to:

(IK −A1 − · · · −Ap)Q , (30)

where Q assigns the lower-triangular Choleski decomposition. It should
be noted that a re-ordering of the VAR might become necessary due to
the recursive nature of the model.

The Blanchard & Quah model is implemented as function BQ(). It
has one argument x, which is an object with class attribute varest. The
function does return a list object with class attribute svarest. Below is
a trivial example of applying a Blanchard & Quah [1989]-type SVAR to
the already available VAR var.2c.

> BQ(var.2c)

########################

# SVAR: Blanchard-Quah #

########################

Estimated contemporaneous impact matrix:

e prod rw U

e -0.00764432 -0.28469582 0.07374319 -0.21233590

prod 0.54366334 0.21657828 -0.03379321 -0.28651841

rw 0.08211181 0.28588183 0.71874239 0.06161939

U 0.12945102 0.05667792 -0.01039129 0.24110588

Estimated identified long run impact matrix:

e prod rw U

e 104.37389 0.0000000 0.000000 0.0000000

prod 45.35215 5.1971134 0.000000 0.0000000

rw 168.40969 -2.1144696 10.719506 0.0000000

U -19.25842 -0.4561694 1.410200 0.5331401

The contemporaneous impact matrix is stored as list-element B and the
long-run impact matrix as list-element LRIM in the returned object.

3.3 Impulse response analysis

Like impulse response analysis can be conducted for objects with class at-
tribute varest it can be done so for objects with class attribute svarest
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(see section 2.7 on page 19 following). In fact, the irf-methods for classes
varest and svarest are at hand with the same set of arguments; except
ortho is missing for objects of class svarest due to the nature and inter-
pretation of the error terms in a SVAR. The impulse response coefficients
for a SVAR are calculated as Θi = ΦiA

−1B for i = 1, . . . , n.
In the code snippet below, an example of an IRA is exhibited for the
estimated SVAR from the previous section.

> svar2cA.ira <- irf(svar2c.A, impulse = "rw", response = c("e",

+ "U"), boot = FALSE)

> svar2cA.ira

Impulse response coefficients

$rw

e U

[1,] -0.05292837 0.02777929

[2,] -0.12816194 0.06237647

[3,] -0.19908356 0.13215216

[4,] -0.26547797 0.18578989

[5,] -0.32043081 0.22492294

[6,] -0.35743849 0.24753946

[7,] -0.37478736 0.25405194

[8,] -0.37389275 0.24686257

[9,] -0.35784064 0.22915640

[10,] -0.33036781 0.20422207

[11,] -0.29519673 0.17504960

3.4 Forecast error variance decomposition

A forecast error variance decomposition can be applied likewise to objects
of class svarest. Here, the forecast errors of yT+h|T are derived from
the impulse responses of a SVAR and the derivation to the forecast error
variance decomposition is similar to the one outlined for VARs (see section
2.8 on page 21 following).
An application is provided in the code snippet below and a plot for the
real wage equation is exhibited in figure 14 on page 29.

> svar2cA.fevd <- fevd(svar2c.A, n.ahead = 8)

> plot(svar2cA.fevd)

4 VECM to VAR

Reconsider the VAR presentation from equation 1 on page 2:

yt = A1yt−1 + . . .+Apyt−p + ut , (31)

The following vector error correction specifications do exist, which can be
estimated with function ca.jo() contained in urca:

∆yt = Πyt−p + Γ1∆yt−1 + . . .+ Γp−1yt−p+1 + ut , (32)

with
Γi = −(I −A1 − . . .−Ai), i = 1, . . . , p− 1. (33)

and
Π = −(I −A1 − . . .−Ap) . (34)
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Figure 14: SVAR: FEVD for real wage

The Γi matrices contain the cumulative long-run impacts, hence this
VECM specification is signified by long-run form. The other specifica-
tion is given as follows:

∆yt = Πyt−1 + Γ1∆yt−1 + . . .+ Γp−1yt−p+1 + ut , (35)

with
Γi = −(Ai+1 + . . .+Ap) i = 1, . . . , p− 1. (36)

Equation 34 applies to this specification too. Hence, the Π matrix is the
same as in the first specification. However, the Γi matrices now differ, in
the sense that they measure transitory effects. Therefore this specification
is signified by transitory form.

With function vec2var() a VECM (i.e an object of formal class ca.jo,
generated by ca.jo()) is transformed into its level VAR representation.
For illustration purposes, an example taken from Johansen & Juselius
[1990] is used in the following.

> library(urca)

> data(finland)

> sjf <- finland

> sjf.vecm <- ca.jo(sjf, ecdet = "none", type = "eigen", K = 2,

+ spec = "longrun", season = 4)

> summary(sjf.vecm)

######################

# Johansen-Procedure #
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######################

Test type: maximal eigenvalue statistic (lambda max) , with linear trend

Eigenvalues (lambda):

[1] 0.30932660 0.22599561 0.07308056 0.02946699

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 3 | 3.11 6.50 8.18 11.65

r <= 2 | 7.89 12.91 14.90 19.19

r <= 1 | 26.64 18.90 21.07 25.75

r = 0 | 38.49 24.78 27.14 32.14

Eigenvectors, normalised to first column:

(These are the cointegration relations)

lrm1.l2 lny.l2 lnmr.l2 difp.l2

lrm1.l2 1.0000000 1.000000 1.0000000 1.000000

lny.l2 -0.9763252 -1.323191 -0.9199865 1.608739

lnmr.l2 -7.0910749 -2.016033 0.2691516 -1.375342

difp.l2 -7.0191097 22.740851 -1.8223931 -15.686927

Weights W:

(This is the loading matrix)

lrm1.l2 lny.l2 lnmr.l2 difp.l2

lrm1.d 0.033342108 -0.020280528 -0.129947614 -0.002561906

lny.d 0.022544782 -0.005717446 0.012949130 -0.006265406

lnmr.d 0.053505000 0.046876449 -0.007367715 0.002173242

difp.d 0.005554849 -0.017353903 0.014561151 0.001531004

One can conclude that two co-integration relationships do exist. The
co-integrating rank is needed for the above transformation with function
vec2var. Given the object sjf.vecm of class ca.jo with r = 2, one can
now swiftly proceed:

> args(vec2var)

function (z, r = 1)

NULL

> sjf.var <- vec2var(sjf.vecm, r = 2)

> sjf.var

Coefficient matrix of lagged endogenous variables:

A1:

lrm1.l1 lny.l1 lnmr.l1 difp.l1

lrm1 0.855185363 -0.28226832 -0.09298924 -0.1750511

lny 0.036993826 0.33057494 -0.06731145 -0.1946863

lnmr -0.156875074 -0.01067717 0.76861874 0.4247362

difp 0.001331951 0.02850137 0.02361709 0.2063468

A2:
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lrm1.l2 lny.l2 lnmr.l2 difp.l2

lrm1 0.15787622 0.27655060 -0.10255593 -0.52017728

lny -0.02016649 0.65497929 -0.08102873 -0.09357761

lnmr 0.25725652 -0.10358761 -0.24253117 0.26571672

difp -0.01313100 -0.01096218 -0.02802090 0.36002057

Coefficient matrix of deterministic regressor(s).

constant sd1 sd2 sd3

lrm1 0.03454360 0.039660747 0.037177941 0.10095683

lny 0.05021877 0.043686282 0.082751819 0.09559270

lnmr 0.22729778 0.008791390 0.012456612 0.02011396

difp -0.03055891 0.001723883 -0.007525805 -0.00835411

The print method does return the coefficient values, first for the lagged
endogenous variables, next for the deterministic regressors. The returned
object is of class vec2var and this list has the following elements:

> names(sjf.var)

[1] "deterministic" "A" "p" "K"

[5] "y" "obs" "totobs" "call"

[9] "vecm" "datamat" "resid" "r"

> class(sjf.var)

[1] "vec2var"

> methods(class = "vec2var")

[1] fevd.vec2var* fitted.vec2var* irf.vec2var* logLik.vec2var*

[5] Phi.vec2var* plot.vec2var* predict.vec2var* print.vec2var*

[9] Psi.vec2var* residuals.vec2var*

Non-visible functions are asterisked

The object has assigned class attribute vec2var and a print- , irf-, fevd-
, predict-, Phi and Psi-method do exist. Furthermore, the functions
arch(), normality(), serial() and fanchart() can be employed for fur-
ther analysis too.5

Finally, structural vector error correction models can be estimated
with the function SVEC(). Likewise to the function SVAR2() a scoring
algorithm is utilized for determining the coefficients of the long run and
contemporaneous impact matrices. The estimated standard errors of these
parameters can be calculated by a bootstrapping procedure. The latter
is controlled by the functional argument boot in SVEC; its default value is
FALSE.

5The reader is referred to the previous sections in which these methods and functions are
outlined.
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