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This vignette is intended to be a quick reference that defines terms and illustrates how to use the pop-up menus.
Large parts will not make a great deal of sense outside the introduction to SEFA and lexical optimization in
Goodrich (2008a) and its (unwritten) extension to EFA in Goodrich (2008b).
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1 Notation

Some notation is provided so that the reader can refer back to it. For simplicity, I do not distinguish the notation for a
population parameter from the notation for an estimate of that population parameter here.

• n is the number of outcome variables

• S is the n× n correlation matrix among outcomes in the sample

• r1 ≥ 1 is the number of factors (at the first level)

• β is the n× r1 primary pattern matrix (at the first level)

• Φ is the r1 × r1 correlation matrix among primary factors (at the first level)

• Θ2 is the n× n diagonal covariance matrix among unique factors (at the first level)

• E [S] = C = βΦβ′ + Θ2 is the n× n expectation of S as a function of parameters (at the first level)

• Π = βΦ is the n× r1 primary structure matrix (at the first level)

• Γ = β ×Π is the n × r1 factor contribution matrix (at the first level) where × indicates element-by-element
multiplication rather than matrix multiplication

• D−2 = Diag
(
Φ−1

)
is the r1 × r1 diagonal of the inverse of the correlation matrix among primary factors (at

the first level)

• D =
[
D−2

]− 1
2 is the r1 × r1 correlation matrix between primary and reference factors (at the first level)

• Ψ = DΦ−1D is the r1 × r1 correlation matrix among reference factors (at the first level)

• Υ = βD is the n× r1 reference structure matrix (at the first level)

• r2 ≥ 0 is the number of second-order factors

• ∆ is the r1 × r2 second-order primary pattern matrix

• Ξ is the r2 × r2 correlation matrix among second-order primary factors

• Ω2 is the r1 × r1 diagonal covariance matrix among second-order unique factors

• Φ = ∆Ξ∆′ + Ω2 is the r1 × r1 second-order equation for the primary factors as a function of second-order
parameters

• z = ∆Ξ is the r2 × r1 primary structure matrix at the second level

• a = ∆×z is the r2 × r1 factor contribution matrix at the second level where × indicates element-by-element
multiplication rather than matrix multiplication

• Z−2 = Diag
(
Ξ−1

)
is the r2× r2 diagonal of the inverse of the correlation matrix among primary factors at the

second level

• Z =
[
Z−2

]− 1
2 is the r2 × r2 correlation matrix between primary and reference factors at the second level

• f = ∆Z is the r1 × r2 reference structure matrix at the second level
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2 SEFA or CFA via Factanal()

To start this sequence, I typed the command
mental.tests <- Factanal(covmat = Harman74.cor, factors = 5, model = "SEFA")

2.1 Simultaneous Second-Order Model

If r1 ≥ 3, the user will be asked whether to estimate a simultaneous second-order model, which decomposes the
correlation matrix among first-order primary factors as a function of fewer second-order factors. For example, some
people define “general intelligence” to be the second-order factor that drives various first-order (primary) mental
abilities. If a second-order model is estimated, and if r1 ≥ 5, the user will be asked how many second-order factors
(r2) to extract.

If a second-order model is specified, the tasks are to set bounds on the correlations among second-order factors (if
r2 ≥ 2), to fix values of the second-order coefficients (for CFA and mixed SEFA models), to set bounds on the
second-order coefficients, and to choose a mapping rule for the second-order coefficients (if r2 ≥ 2 in a SEFA model).

2.1.1 Deciding on a Simultaneous Second-Order Model

Figure 1 shows two dialog boxes. First, the user is asked whether to estimate a simultaneous second-order model. If
the user were to choose “No” at this point, there would be no second-order model and the user would then be asked
about bounds on the off-diagonals of Φ. Such a dialog would be similar to that in section 2.1.2, except that “level 2”
would be replaced by “level 1”. Then the dialog would cut directly to that described in section 2.2.

For the sake of completeness, I will assume that the user answered “Yes” to the question of whether a simultaneous
second-order model should be estimated. At this point, the dialog asks the user to specify the value of r2. If r1 = 3 or
r1 = 4, then r2 can only be one. If r1 ≥ 5, then r2 can be two. If r1 ≥ 6, then r2 can be three. Rarely would one need
to estimate a model with larger numbers for r1 and r2. I will assume that the user has chosen r2 = 2.

2.1.2 Bounds on the Correlations Among the Primary Factors (Ξ) at Level 2

The next menu asks about bounds on the off-diagonals of Ξ, as shown in figure 2. If r2 ≤ 1, this question would not
be asked.

Since Ξ is constrained to be a positive definite correlation matrix, the off-diagonals cannot exceed ±1. It is possible,
but often not necessary, to impose stricter bounds. Occasionally, there can be optimization difficulties if any correlation
gets too close to ±1, and in that case the user may want to narrow the acceptable interval to (−0.9, 0.9) or so.

If “No” is chosen, the dialog will skip to section 2.1.3 using the (−1, 1) interval for all correlations among second-
order factors. For the sake of completeness, I will assume the user answers “Yes” to this question.

Since Ξ is a correlation matrix, the diagonal elements are constrained to be 1.0 and the diagonal elements will be
ignored if they are changed. Since a correlation matrix is symmetric, it is not necessary to change the values below
the diagonal and they will be ignored regardless. It is only necessary to specify the values above the diagonal. In this
case, I have specified a lower bound of −0.9 on the only correlation among the two primary factors at level 2, which
is a very conservative choice.

When satisfied with the lower-bounds on the off-diagonals of Ξ, click the x at the top right (or “Quit”, but “Quit”
does not appear in the Windows version). Once x is pressed, the process is repeated for the upper bounds on the
off-diagonals of Ξ.
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Figure 1: Simultaneous Second-Order Model with r2 = 2
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Figure 2: Slightly Limiting the Bounds on the Correlation Between Second-Order Primary Factors
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Figure 3: (Not) Pegging Coefficients to Specified Values
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Figure 4: Specifying Informative Bounds on Primary Pattern Coefficients at Level 2
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2.1.3 Specifying Values of the Primary Pattern Matrix (∆) at Level 2

Since this example is a SEFA, the next dialog (shown in figure 3) asks the user whether any elements of ∆ should be
pegged to specific values. If a CFA model were estimated, this question would not appear because it is obligatory to
peg some elements of ∆ in a CFA model. In a SEFA model, it is possible to answer “No” to this question in order
to estimate a “pure” SEFA model. However, for illustrative purposes, I will assume that the user answers “Yes” to
estimate a “mixed SEFA” model.

At this point, the user should change the appropriate cells of ∆ from NA to numbers. For example, the user might
change the first row to

[
1.0 0.0

]
to make the first factor at the second level collinear with the first factor at the first

level. Any elements of ∆ that are to be unrestricted should be left as NA.

If a CFA model were being estimated, it would be necessary to specify restrictions on ∆ to satisfy the theorem on
rotational indeterminancy in Howe (1955). Namely there should be at least r2 − 1 zeros in each column of ∆ such
that all r2 submatrices of ∆ with zeros in the pth column of ∆ are of rank r2 − 1.

In this case, a mixed SEFA model is being estimated, so it is possible to specify fewer cells of ∆ including no restricted
cells at all. Here I assume the user has changed his or her mind about restrictions on ∆ and now wants all cells to be
unrestricted. Thus, all cells remain NA.

2.1.4 Bounds on Cells of the Primary Pattern Matrix (∆) at Level 2

The next question is what bounds should be placed on the cells of ∆. The dialog shown in figure 4 is similar to that in
section 2.1.2, except that the bounds are being placed on the cells of ∆ rather than the off-diagonals of Ξ. It is always
possible to select “No”, but doing so does not make the cells of ∆ unbounded. Rather, fairly wide bounds are used,
in particular ±1.5. In some cases, it may be necessary to specify wider bounds, but in most cases if the user answers
“Yes”, it would be to narrow the bounds.

If the user specifies bounds, the number chosen in the next dialog fills every free cell of the subsequent editable menu.
The fixed coefficients, if any, would be filled with their values. The user can then edit particular cells as necessary. Here
I have changed both cells in the first row to −0.2 to permit a more diffuse positive manifold for the first second-order
factor.

It should be emphasized that it is possible for coefficients to be less than −1.0 when r2 > 1. The decision here to
limit the cells of ∆ to be greater than −0.2 or −0.1 is a substantive constraint that can be wrong and can be tested. If
strong bounds are used, it may be best to specify boundary.enforcement = 2 in the call to Factanal.

When finished, press x (or “Quit” but “Quit” does not appear on the Windows version), to repeat this procedure for the
upper bounds on the cells of ∆. It is necessary that some of the valid intervals for the cells of ∆ include zero so that the
Howe (1955) theorem can be satisfied in a SEFA model. It is difficult to generally prove when inequality restrictions
on coefficients are sufficient to eliminate rotational indeterminacy, so the Howe (1955) theorem is recommended.

2.1.5 Mapping Rules for the Primary Pattern Matrix (∆) at Level 2

In the SEFA model presumed here, the questions shown in figure 5 are very important and pertain to the mapping
rule used to squash certain cells of ∆ to zero. If a CFA model were being estimated, this question would not appear
because the Howe (1955) theorem must be satisfied by a priori restrictions. Let bp be the number of zeros required for
the pth column of ∆. Most of the mapping rules at the second level are defined on the reference structure matrix

(
f̌
)

and the factor contribution matrix
(
ǎ
)
, rather than the primary pattern matrix (∆̌), where the supra-check indicates a

prelimary matrix that is constructed by filling the free elments with θ (in symbols) or par (in R syntax). By “smallest”,
I always mean in absolute value. The distinctions between mapping rules are fairly minor in this case when r2 = 2,
but are defined in general as follows:
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Figure 5: Mapping Rules at Level 2 in a SEFA
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• “No, I just want plain zeros”. This mapping rule simply squashes the bp smallest elements in the pth column of
f̌ to zero, implying that ∆p has bp zeros.

• “Encourage cohyperplanrity (revisionist Yates 1987)”. This mapping rule squashes r2 − 1 elements in the pth
column of ∆ using the following piecewise function ∀q 6= p:

∆jp =

{
0 if ǎjq − ǎjq = max

{
ǎq − ǎp

}
∆̌jp otherwise,

which tends to place a zero in the pth column of ∆ at the row where the factor contribution of some other
column is large for each of the remaining columns.

• “r2 ‘outcomes’ (really primary factors) of complexity r2−1 for each factor (weaker Thurstone)”. This mapping
rule is similar to the “plain zeros” mapping rule in that r2 small elements in the pth column of f̌ are squashed
to zero, except that there is an additional stipulation that no “outcome” (really primary factor) is of complexity
less than r2 − 1 where the complexity of the jth “outcome” (primary factor) is the number of non-zeros in fj .
However, any “non-zero” coefficient can be arbitrarily close to zero. Thus, each column of ∆ will have r2 exact
zeros.

• “Unit complexity basis (revisionist Butler 1969)”. This mapping rule uses the dishinguishability weights defined
in Yates (1987) to select r2 primary factors that are of unit complexity. In particular, let

w̌p =
1∑
ǎ��

r1∑
j=1

ǎjp

where
∑

ǎ�� =
∑r1

j=1

∑r2
p=1 ǎjp is the weight applied the the pth second-order factor such that

∑r2
p=1 wp = 1.

This equation is similar to equation 118 in Yates (1987, p. 145). Then let

čj =

∑r2
p=1 w̌p∆̌jp∑r2

p=1 ǎjp

be the directional cosine between ∆̌j and the (weighted) centroid of ∆̌, which is the same as equation 119 in
Yates (1987, p. 145). Finally, let

dw
j = min

{
1,

(r2)2

r2 − 1
čj (čj − 1)

}
be the distinguishability weight for ∆̌j , which is the same as equation 78a in Yates (1987, p. 112). Then, ∀p
choose a first-order factor to be of unit complexity among first-order factors where ǎjp = max

{
ǎj

}
such that

dw
j is maximal. For such first-order factors, squash ∆j to zero ∀q 6= p. At the end of these steps, there will be
r2 first-order factors that are collinear with the second-order primary axes and there will be r2− 1 zeros in each
column of ∆.

• “Set the maximum complexity for each outcome.” This mapping rule is similar to the “plain zeros” mapping
rule, except that it is applied to each row of ∆ rather than the columns. In general, ∀j, the user can choose
a number between 1 and r2 for the maximum number of non-zero coefficients in ∆j . More details on this
mapping rule are given in section X.

In some cases, bp may be greater than the number of zeros created by whichever mapping rule is chosen. In that case,
the remaining zeros are filled in by squashing the bp smallest elements in the pth column of the recalculated reference
structure matrix after the mapping rule has been applied and some reference structure correlations are zero. Thus, it is
necessary to specify bp, and the dialog box for doing so is also shown in figure 5. By default, the user is asked whether
to set bp = r2 ∀p, which can be accepted by answering “Yes” to the following question but here I answer “No” to
specify bp = r2 − 1 ∀p.

This concludes the dialog boxes for the second-order model.
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2.2 First-Order Model

The tasks are to set bounds on the correlations among first-order factors (if a second-order model is not estimated), to
fix values of the first-order coefficients (for CFA and mixed SEFA models), to set bounds on the first-order coefficients,
and to choose a mapping rule for the first-order coefficients (if r2 ≥ 2 in a SEFA model).

Note that if there is no second-order model, the user will be asked about bounds on the off-diagonals of Φ. This dialog
is similar to that in section 2.1.2, except that “level 2” is replaced by “level 1” in the prompts.

2.2.1 Specifying Values of the Primary Pattern Matrix (β) at Level 1

Since this example is a SEFA, the dialog shown in figure 6 asks the user whether any elements of β should be pegged
to specific values. If a CFA model were estimated, this question would not appear because it is obligatory to peg some
elements of β in a CFA model. In a SEFA model, it is possible to answer “No” to this question to estimate a “pure”
SEFA model. However, for illustrative purposes, I will assume that the user answers “Yes” to estimate a “mixed”
SEFA model.

At this point, the user should change the appropriate cells of β from NA to numbers. For example, the user might
change the first row to

[
NA 0.0 0.0 0.0 0.0

]
to make the first factor collinear with visual perceptiveness. Any

elements of β that are unrestricted should be left as NA. Continuing this example, by leaving the first factor unre-
stricted for the visual perception test, the user allows the test to have measurement error.

If a CFA model were being estimated, it would be necessary to specify restrictions on β to satisfy the theorem on
rotational indeterminancy in Howe (1955). Namely there should be at least r1− 1 zeros in each column of β such that
all r1 submatrices of β with zeros in the pth column of β are of rank r1 − 1.

In this case, a SEFA model is being estimated, so it is possible to specify fewer cells of β including no restricted
cells at all. Here I assume the user has changed his or her mind about restrictions on β and now wants all cells to be
unrestricted. Thus, all cells are left as NA.

2.2.2 Bounds on Cells of the Primary Pattern Matrix (β) at Level 1

The next question is what bounds should be placed on the cells of β. The dialog in figure is similar to that in section
2.1.4, except that the bounds are being placed on the cells of the primary pattern matrix at level 1 (β) rather than
the primary pattern matrix at level 2 (∆). It should be kept in mind that the model is estimated on a correlation
matrix of outcomes (S) when choosing bounds. Thus, it is somewhat uncommon — but nevertheless possible — for
a coefficient to be greater than ±1. It is always possible to select “No”, but doing so does not make the cells of β
unbounded. Rather, fairly wide bounds are used, in particular ±1.5. In some cases, it may be necessary to specify
wider bounds, but in most cases if the user answers “Yes”, it would be to narrow the bounds.

After an initial number is chosen to fill all the cells in the editor, the user can change some or all of the cells as
necessary. For example, to estimate the model under a positive manifold restriction, the user could set all lower
bounds to−0.2 or something. When finished with the lower bounds, click the x, at which point the process is repeated
for the upper bounds. It is important for some, if not all, of the valid intervals to include zero in a SEFA model so that
the rotational indeterminancy can be eliminated by mapping some coefficients to zero.

2.2.3 Mapping Rules for Coefficients at Level 1

In the SEFA model presumed here, the next question is very important and pertains to the mapping rule used to squash
certain cells of β to zero. If a CFA model were being estimated, this questions in figure 8 would not appear because
the Howe (1955) theorem would be satisfied by a priori restrictions.
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Figure 6: (Not) Specifying Values for the Primary Pattern Coefficients at Level 1
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Figure 7: Specifying Bounds on the Primary Pattern Coefficients at Level 1
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Figure 8: Mapping Rules at Level 1 in a SEFA Model
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Let bp be the number of zeros required for the pth column of β. Most of the mapping rules at the second level are
defined on the reference structure matrix

(
Υ̌
)

and the factor contribution matrix
(
Γ̌
)
, rather than the primary pattern

matrix (β̌), where theˇindicates a prelimary matrix that is constructed by filling the free elments with θ (in symbols)
or par (in R syntax). By “smallest”, I always mean in absolute value. The mapping rules in the first dialog box in
figure 8 are defined as follows:

• “No, I just want plain zeros”. This mapping rule simply squashes the bp smallest elements in the pth column of
Υ̌ to zero, implying that βp has bp zeros.

• “Encourage cohyperplanrity (revisionist Yates 1987)”. This mapping rule squashes r2 − 1 elements in the pth
column of β using the following piecewise function ∀q 6= p:

βjp =

{
0 if Γ̌jq − Γ̌jq = max

{
Γ̌q − Γ̌p

}
β̌jp otherwise,

which tends to place the zeros for the pth column of β in the rows where the factor contribution of some other
column is large.

• “r1 outcomes of complexity r1 − 1 for each factor (weaker Thurstone)”. This mapping rule is similar to the
“plain zeros” mapping rule in that r1 small elements in the pth column of Υ̌ are squashed to zero, except that
there is an additional stipulation that no outcome is of complexity less than r1 − 1 where the complexity of the
jth outcome is the number of non-zeros in Υj . However, any “non-zero” coefficient can be arbitrarily close to
zero. Thus, each column of β will have r1 exact zeros.

• “Unit complexity basis (revisionist Butler 1969)”. This mapping rule uses the dishinguishability weights defined
in Yates (1987) to select r1 outcomes to be of unit complexity. In particular, let

w̌p =
1∑
Γ��

n∑
j=1

Γ̌jp

where
∑

Γ�� =
∑n

j=1

∑r1
p=1 Γ̌jp is the weight applied the the pth first-order factor such that

∑r1
p=1 wp = 1.

This equation is similar to equation 118 in Yates (1987, p. 145). Then let

čj =

∑r1
p=1 w̌pβ̌jp∑r1

p=1 Γ̌jp

be the directional cosine between β̌j and the (weighted) centroid of β̌, which is the same as equation 119 in
Yates (1987, p. 145). Finally, let

dw
j = min

{
1,

(r1)2

r1 − 1
čj (čj − 1)

}

be the distinguishability weight for β̌j , which is the same as equation 78a in Yates (1987, p. 112). Then, ∀p
choose a outcome to be of unit complexity among outcomes where Γ̌jp = max

{
Γ̌j

}
such that dw

j is maximal.
For such outcomes, squash βj to zero ∀q 6= p. At the end of these steps, there will be r1 outcomes that are
collinear with the first-order primary axex and there will be r1 − 1 zeros in each column of β.

• “Set the maximum complexity for each outcome.” This mapping rule is similar to the “plain zeros” mapping
rule, except that it is applied to each row of β rather than the columns. In general, ∀j, the user can choose
a number between 1 and r1 for the maximum number of non-zero coefficients in βj . This mapping rule is
used as an example in figure 8. It is possible to choose the same complexity for all rows of β, in which case a
simpler dialog box is shown. Note that if the complexity of all rows of β is r1 − 1, this restriction characterizes
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Thurstone’s (1935) definition of simple structure, and if the complexity of all rows is 1, this restriction implies
a perfect cluster configuration. In figure 8, I have chosen to (arbitrarily) specify the complexity of the rows of β
on a row-by-row basis, which gives more flexibility to place restrictions on the model in accordance with prior
theory.

In some cases, bp may be greater than the number of zeros created by whichever mapping rule is chosen. In that case,
the remaining zeros are filled in by squashing the bp smallest elements in the pth column of the recalculated reference
structure matrix after the mapping rule has been applied and some reference structure correlations are zero. Thus, it is
necessary to specify bp. By default, the user is asked whether to set bp = r1 ∀p, which can be accepted by answering
“Yes” to the question in figure 8.

2.3 Lexical Criteria

Finally, the user is asked which lexical criteria should be included in the optimization. Regardless of what options are
chosen here, there will always be criteria that impose necessary constraints on the model (positive definite correlation
matrices, positive specific variances, etc.) and constraints that the column sums of ∆ (if a second-order model is
estimated) and β are positive, which improves the computational efficiency of the algorithm. Also, regardless of what
options are chosen here, the ultimate criterion will be appended to the end of the criteria that define constraints. In this
case, the model is to be estimated by maximum likelihood, so the dialog box reminds the user of this. If a second-order
model is not estimated, the choices that mention with “level 2” in figure 9 would not appear.

Peña and Rodriguez (2003) defines a determinant of a correlation matrix among a set of variables raised to the power
of the reciprocal of the number of variables as the “effective variance” of those variables. The essence of the effective
variance is that it can be meaningfully compared to a different set of variables when the sets of variables differ in size.
The generalized variance is more well-known statistic and is simply the determinant of the correlation matrix among
a set of variables. The generalized variance can be interpreted as the hypervolume of a set of unit-length vectors and
the effective variance can be interpreted as “the length of the side of the hypercube whose volume is equal to the
determinant (Peña and Rodriguez 2003, p. 363).” Both of these concepts are used to define the criteria / constraints in
figure 9:

• “Reference factors at level 2 must have more effective variance than do the primary factors at level 1”. This
criterion is formally defined as1 if |Φ|

1
r1 ≤

∣∣ZΞ−1Z
∣∣ 1

r2

|Φ|
1

r1 −
∣∣ZΞ−1Z

∣∣ 1
r2 otherwise,

and loosely requires that the reference factors at level 2 be “less correlated per variable” than are the primary
factors at level 1. This criterion tends to push the second-order axes toward the edge of the configuration of
first-order factors.

• “Primary factors at level 2 must have more effective variance than do the primary factors at level 1”. This
criterion is formally defined as {

1 if |Φ|
1

r1 ≤ |Ξ|
1

r2

|Φ|
1

r1 − |Ξ|
1

r2 otherwise,

and is similar to the criterion above. In general, it seems that imposing this restriction on the second-order
primary factors is stronger than imposing it on the second-order reference factors and pushes the second-order
axes farther toward the edge of the configuration of first order factors.
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Figure 9: Lexical Criteria in SEFA

• “Reference factors at level 1 must have more effective variance than does the battery as a whole”. This criterion
is formally defined as {

1 if |Ψ|
1

r1 ≤ |C|
1
n

|Ψ|
1

r1 − |C|
1
n otherwise,

and is similar to the two criteria above except that the comparison is relative to C. In this case, the criterion
loosely implies that the reference factors at level 1 be “less correlated per variable” than is the test configuration
in common factor space and encourages the first-order axes to cut through the edges of the test configuration.

• “Primary factors at level 1 must have more effective variance than does the battery as a whole”. This criterion
is formally defined as {

1 if |Φ|
1

r1 ≤ |C|
1
n

|Φ|
1

r1 − |C|
1
n otherwise,

and is similar to the previous criterion above except that the correlation among the primary factors at issue.
In general, it seems that imposing this restriction on the primary factors is stronger than imposing it on the
reference factors and tends to push the first-order axes farther out into the edges of the test configuration.

• “No suppressor variables at level 2” Suppressor variables are defined as variables with negative factor contri-
butions. This criterion is advocated, albeit somewhat indirectly, in Yates (1987, p. 119) with respect to level 1,
although I can see no reason why it would be any less applicable to level 2. Prohibiting suppressor variables
strikes me as a reasonable assumption to make in most cases. The criterion is formally defined as

1
r1r2

r1∑
j=1

r2∑
p=1

I {ajp ≥ a} where I {ajp ≥ a} =

{
1 if ajp ≥ a
0 otherwise,
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and a is a threshold for the minimum acceptable factor contribution that is specified by the user, as shown at the
bottom of figure 9.

• “No suppressor variables at level 1”. This criterion is conceptually similar to the one above and is formally
defined at level 1 as

1
nr

n∑
j=1

r∑
p=1

I {Γjp ≥ Γ} where I {Γpj ≥ Γ} =

{
1 if Γpj ≥ Γ
0 otherwise,

and Γ is a threshold for the minimum acceptable factor contribution that is specified by the user as shown at the
bottom of figure 9.

• “Reference factors at level 2 must have more generalized variance than do primary factors at level 2”. This
criterion is extrapolated from Yates (1987, p. 27), although it is not asserted with much formality in the text, is
not specifically advocated for level 2. Regardless, the criterion could be operationalized as{

1 if |Ξ| ≤
∣∣ZΞ−1Z

∣∣
|Ξ| −

∣∣ZΞ−1Z
∣∣ otherwise,

but has a faster and substantively equivalent operationalization in the code. However, when r2 = 2, |Ξ| =∣∣ZΞ−1Z
∣∣ by necessity, so this criterion can bind only in the rare case where r2 ≥ 3.

• “Reference factors at level 1 must have more generalized variance than do primary factors at level 1”. This
criterion is conceptually the same as the previous one and could be operationalized as{

1 if |Φ| ≤ |Ψ|
|Φ| − |Ψ| otherwise,

but has a faster and substantively equivalent operationalization in the code. When r1 = 2, |Φ| = |Ψ| by
necessity, so this criterion can bind in the case when r1 ≥ 3.

• “Tests in hyperplanes have more effective variance than does the battery as a whole”. This criterion is only
defined for level 1, although I suppose it could be defined for level 2 at some point in the future. It seems
consistent with the spirit of Yates (1987) but is not explicitly advocated anywhere. This criterion is formally
defined as

1
r1

r1∑
p=1

I

{∣∣∣∣ pβΦ
p

β′ +
p

Θ2

∣∣∣∣
1
b

≥ |C|
1
n

}
where I

{∣∣∣∣ pβΦ
p

β′ +
p

Θ2

∣∣∣∣
1
b

≥ |C|
1
n

}
=

1 if
∣∣∣∣ pβΦ

p

β′ +
p

Θ2

∣∣∣∣
1
b

≥ |C|
1
n

0 otherwise,

p

β is the bp × r1 submatrix of β with exact zeros in the pth column and
p

Θ2 is the bp × bp diagonal (but not
necessarily contiguous) submatrix of Θ2 with the unique variances of the outcomes in the pth hyperplane.
Thus, this criterion essentially requires that the tests in the pth hyperplane be “less correlated per variable” than
is the battery as a whole (in common factor space) for all r1 hyperplanes at level 1.

Note that it is possible to select more than one of these criteria as constraints in the lexical optimization process.
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3 Exploratory Factor Analysis via Factnal() and Rotate()

This strategy of EFA is explained in more detail in Goodrich (2008b). To start this sequence, I typed the command
mental.tests.efa <- Factanal(covmat = Harman74.cor, factors = 5, model = "EFA")

3.1 Factor Extraction

I use Λ to indicate the preliminary pattern matrix to estimate when the preliminary factors are orthogonal.

The only dialog box asks what algorithm to use to estimate the exploratory factor analysis model:

The first option simply calls factanal(), which is fine for many problems and estimates the EFA model with
the restrictions that Λ′Θ2Λ is diagonal and Φ = I. The second algorithm imposes these same restrictions but uses
genoud() to optimize with a genetic algorithm. This approach is much slower but slightly more likely to reach the

global optimum in complicated problems The third algorithm estimates the model under restrictions that Λ =
[
Λ1

Λ2

]
where Λ1 is a r1 × r1 matrix with zeros above the diagonal and Φ = I.

In principle, all three algorithms should produce the same estimate of Θ2 and be within a rotation of each other. In
practice, the third algorithm has difficulty meeting these standards.

3.2 Factor Transformation

Let Φ = T′T where T is a r1 × r1 transformation matrix with unit-length columns. The factor transformation step
chooses T so so that some (lexical) objective function is minimized. I initiated this sequence with
mental.tests.rotated <- Rotate(mental.tests.efa)

3.2.1 Constraints

Peña and Rodriguez (2003) defines a determinant of a correlation matrix among a set of variables raised to the power
of the reciprocal of the number of variables as the “effective variance” of those variables. The essence of the effective
variance is that it can be meaningfully compared to a different set of variables when the sets of variables differ in size.
The generalized variance is more well-known statistic and is simply the determinant of the correlation matrix among
a set of variables. The generalized variance can be interpreted as the hypervolume of a set of unit-length vectors and
the effective variance can be interpreted as “the length of the side of the hypercube whose volume is equal to the
determinant (Peña and Rodriguez 2003, p. 363).” Both of these concepts are used to define the criteria / constraints in
figure 10 to be used while seeking the optimal T.

The first criterion is required and prevents factor collapse. The effective variance of the primary factors is defined as
|Φ|

1
r1 . If |Φ|

1
r1 = 0, then Φ and T are singular, a circumstance which is known as “factor collapse”. By specifying
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Figure 10: Possible Constraints when Optimizing for T in EFA
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a non-zero threshold that the effective variance must exceed, factor collapse can thus be prevented. In this case, the
threshold is 0.25 and the criterion is formally defined as{

−1 if |Φ|
1

r1 ≥ 0.25

−
(
|Φ|

1
r1

)
otherwise.

The remaining constraints are optional and are enumerated in the next dialog box in figure 10. These criteria are
defined as follows:

• “Limit primary factor correlations”. This option allows the user to set valid intervals for pairwise corrleations
between primary factors, i.e. the off-diagonals of Φ = T′T. If this box is checked, dialog boxes that are similar
to the previous one will pop up asking for minimum and maximum acceptable correlations. The associated
criterion equals −1 if all off-diagonals are within their valid intervals and equal to the distance between the
most abberrant correlation and the valid interval otherwise.

• “Reference factors must have more effective variance than does the battery as a whole”. This criterion is formally
defined as {

1 if |Ψ|
1

r1 ≤ |C|
1
n

|Ψ|
1

r1 − |C|
1
n otherwise.

This criterion loosely implies that the reference factors must be “less correlated per variable” than is the test
configuration in common factor space and encourages the first-order axes to cut through the edges of the test
configuration.

• “Primary factors must have more effective variance than does the battery as a whole”. This criterion is formally
defined as {

1 if |Φ|
1

r1 ≤ |C|
1
n

|Φ|
1

r1 − |C|
1
n otherwise,

and is similar to the previous criterion above except that the correlation among the primary factors at issue.
In general, it seems that imposing this restriction on the primary factors is stronger than imposing it on the
reference factors and tends to push the first-order axes farther out into the edges of the test configuration.

• “Primary factors must have less generalized variance than do reference factors”. This criterion is extrapolated
from Yates (1987, p. 27), although it is not asserted with much formality in the text. Regardless, the criterion
could be operationalized as {

−1 if |Φ| ≤ |Ψ|
|Ψ| − |Φ| otherwise,

but has a faster and substantively equivalent operationalization in the code. When r1 = 2, |Φ| = |Ψ| by
necessity, so this criterion can bind only when r1 ≥ 3.

• “No suppressor variables”. Suppressor variables are defined as variables with negative factor contributions.
This criterion is advocated, albeit somewhat indirectly, in Yates (1987, p. 119). Prohibiting suppressor variables
strikes me as a reasonable assumption to make in most cases. The criterion is formally defined as

− 1
nr

n∑
j=1

r∑
p=1

I {Γjp ≥ Γ} where I {Γjp ≥ Γ} =

{
1 if Γjp ≥ Γ
0 otherwise,

and Γ is a threshold for the minimum acceptable factor contribution that is specified by the user. If this criterion
is checked, a pop-up will ask for the value of Γ. See the very end of section 2.2.3 for a picture and explanation
of this dialog box, which is virtually identical to the next one.
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Figure 11: Ultimate Criteria to be Used when Optimizing for T in EFA

• “Positive manifold”. This criterion is similar to (and a bit more restrictive than) the criterion that prohibits
suppressor variables. The criterion is formally defined as

− 1
nr

n∑
j=1

r∑
p=1

I {Υjp ≥ Υ} where I {Υjp ≥ Υ} =

{
1 if Υjp ≥ Υ
0 otherwise,

where Υ is a threshold for the minimum acceptable reference structure correlation that is specified by the user.
If this criterion is checked, the dialog box at the bottom of figure 10will ask for the value of Υ.

3.2.2 The Ultimate Criterion

The final step is to choose the ultimate criterion for lexical optimization, as shown in the dialog box in figure 11. These
criteria are defined as follows:

• minimaximin: This criterion attempts to satisfy Thurstone’s definition of simple structure by choosing T so that
all outcomes have at least one near-zero reference structure correlation. The criterion is formally defined as

ln
(
max

{
min

{
Υ2

1

}
,min

{
Υ2

2

}
, . . . ,min

{
Υ2

n

}})
.

Thus, the (log of the) maximum of the minimums of the squared rows of Υ is minimized. Taking the natural
logarithm just makes the optimization work a bit better near zero.

• phi: This criterion was proposed by Thurstone (1935) to numerically characterize simple structure when it
reaches its theoretical minimum of (log) zero. The criterion is formally defined as

ln
(∑n

j=1 exp
(

1
c

∑r1
p=1 ln

(
Υ2

jp

)))
,
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Figure 12: Weights for the ϕ Criterion

which is equal to logarithm of φ as defined by Thurstone (1935) when c = 1. Thurstone suggested that choosing
c to be greater than 1.0 could yield better results by lessening the pressure to get one near-zero into each row of
Υ and increasing the pressure to get more than one near-zero into some rows of Υ. If Thurstone’s criterion is
used, the dialog box at the bottom of figure 11will appear, prompting the user for c.

• varphi: This criterion is a generalization of Thurstone’s φ. Let
−→
Υ be a matrix of reference structure correlations

where each row is independently sorted in increasing magnitude, and let
−→
φ
−[1:p]

be Thurstone’s criterion (with

c = 1) calculated on
−→
Υ, excluding the first through the pth column of

−→
Υ. Then define ϕ = φ+

∑r−2
p=1 wp

−→
φ
−[1:p]

,

where wp ∈ [0, 1] is the weight the analyst specifies for
−→
φ
−[1:p]

relative to a unit weight placed on φ. At one

extreme, if wp = 0∀p, then ϕ = φ. At the other extreme, if wp = 1∀p, then the analyst favors a perfect cluster
configuration, where three is only one non-zero coefficient per test. An “objective” alternative to specifying
weights is to specify that the weights are a function of

−→
Υ, such as wp = max

{
0, 1−max

{−→
Υ2

(p+1)

}}
to

gradually reduce the weight as p increases. If this criterion is chosen, the dialog boxes in figure 12 will appear,
prompting the user to specify whether dynamic weights or static weights should be used. If user-specified
weights are chosen, the user is then prompted to specify each wp .

• LS: This criterion is called the Loading Simplicy Index in Lorenzo-Seva (2003). The derivation of it is not
complicated but involves a lot of notation not previously introduced here, so the reader is refered to Lorenzo-
Seva (2003) for details. Simply put, it reaches its optimum of (negative) 1.0 when Υ exhibits a perfect cluster
configuration. Although Lorenzo-Seva (2003) defines the Loading Simplicity Index in terms of the primary
pattern matrix, it is invariant to the column-scale of the primary pattern matrix and thus can arbitrarily be
defined for the reference structure matrix as well.
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