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1 Introduction

The MMG package is part of the BioConductor1 project.

Abstract of the orginal paper A fundamental task in systems biology is the identification of groups
of genes that are involved in the cellular response to particular signals. At its simplest
level, this often reduces to identifying biological quantities (mRNA abundance, enzyme
concentrations, etc.) which are differentially expressed in two different conditions. Popu-
lar approaches involve using t-test statistics, based on modelling the data as arising from
a mixture distribution. A common assumption of these approaches is that the data are
independent and identically distributed; however, biological quantities are usually related
through a complex (weighted) network of interactions, and often the more pertinent ques-
tion is which subnetworks are differentially expressed, rather than which genes. Further-
more, in many interesting cases (such as high-throughput proteomics and metabolomics),
only very partial observations are available, resulting in the need for efficient imputation
techniques.

We introduce Mixture Model on Graphs (MMG), a novel probabilistic model to identify
differentially expressed submodules of biological networks and pathways. The method can
easily incorporate information about weights in the network, is robust against missing

1http://www.bioconductor.org/
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data and can be easily generalized to directed networks. We propose an efficient sampling
strategy to infer posterior probabilities of differential expression, as well as posterior prob-
abilities over the model parameters. We assess our method on artificial data demonstrating
significant improvements over standard mixture model clustering. Analysis of our model
results on quantitative high-throughput proteomic data leads to the identification of biolog-
ically significant subnetworks, as well as the prediction of the expression level of a number
of enzymes, some of which are then verified experimentally.

MMG relies on a Gibbs sampler to evaluate the posterior probability of certain genes to be
down-regulated, up-regulated or merely unchanged depending on their location in the metabolic
network and proteomic measurements. (Other networks and other sources of relative measure-
ment may be considered.) This package furthermore implements a function to retrieve subnet-
works that seem to behave consistently (which are overall down-regulated or up-regulated, for
instance).

Note: If you use this package please cite

Sanguinetti, G. et al., “MMG: a probabilistic tool to identify submodules of metabolic
pathways”, Bioinformatics, 8, pp. 1078-1084, 2008.

2 Quick start

There are three important functions:

MMG.compute Runs the Gibbs sampler.

MMG.cut.graph Identify parts of the network that behave consistently.

MMG.make.dot Produces a DOT file in order to visualise the result of MMG.cut.grahp

The inputs are as follows:

• MMG.compute uses an input file that described the network of interest and the measurements
that are available. The network may be directed. The kth line must resemble:

k mk nk1 wk1 nk2 wk2 . . . nkN wkN

The interpretation of the line is the following:

– k is provided for legibility’s sake (it could be any number),

– mk is the relative measurement (log2-ratio, or NA when not available),

– there are N neighbours within the network, nki (1 ≤ i ≤ N),

– the weight of the connexion i→ k is wki (1 ≤ i ≤ N) and must be positive.

2.1 Calling the package

> library("MMG")
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2.2 Running the Gibbs sampler

The following file represents a hexagonal network:

1 NA 6 1 2 1
2 NA 1 1 3 1
3 -1.0 2 1 4 1
4 NA 3 1 5 1
5 NA 4 1 6 1
6 +1.0 5 1 1 1

Two nodes have measurements, one up, the other down. The file containing the data is hexag.dat.
We run MMG.compute on this file:

> r <- MMG.compute(file.name = "hexag.dat", steps = 1e+05, alpha = 0.1)

MMG Gibbs sampler (1e+05 steps)
Lambda down: 0.734304; SD = 0.7523456
Lambda up: 0.7215133; SD = 1.023968
Shannon entropy: 0.6457051; SD = 0.396608

The decimal point is 1 digit(s) to the left of the |

0 | 34
2 |
4 |
6 |
8 | 0000

2.3 Cutting the graph

There are different methods to cut the graph. See documentation for a complete description.
MMG.cut.graph operates on r as returned by MMG.compute:

> s <- MMG.cut.graph(r, select = "UP")

COMPONENT 1
* Node 1 NA [0.302 0.101 0.597]
* Node 5 NA [0.302 0.102 0.596]
* Node 6 1.000 [0.000 0.030 0.970]

It prints out the components that looks up-regulated. Given the simple situation envisaged,
only the node 6 (log2-ratio equal to +1.0) and its neighbours have a substantial probability of
being up-regulated (97%, 59%, and 59%).

The components field has as many entries as there are nodes in the network.

> s$components

[1] 1 0 0 0 1 1

A value of 0 means that a node could not be identified as being up or down, a positive
value m indicates that the node belongs to the mth connected component. In our example, only
one component is identified and therefore only the value 1 occurs for node 1, 5, and 6.
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2.4 Producing the DOT file

The value r returned by MMG.compute may be used to produce DOT files (see the result in
Figure 1).

> MMG.make.dot(r, file.name = "test1.dot", selection = c(1, 5,

+ 6))

NULL

> MMG.make.dot(r, file.name = "test2.dot", selection = 1:6)

NULL

(a) (b)

Figure 1: Result of the calls MMG.make.dot. (a) The up-regulated selection; (b) the entire net-
work. The probabilities (p−, p0, p+) are trivially mapped onto the RGB colour scheme. Therefore,
red indicates likely to be up-regulated nodes and blue likely to be down-regulated nodes.

3 Real example

Here is a real example that uses the data from the article

Ow, S. Y. et al., “Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133
through cellular enrichments and iTRAQ shotgun proteomics”, submitted to J Prot Res,
2008.

> library("MMG")

> r <- MMG.compute(file.name = "R_net.dat", steps = 50000, burn.in = 1000,

+ sigma = 0.3, alpha = 1)

MMG Gibbs sampler (50000 steps)
Lambda down: 3.846124; SD = 0.8084104
Lambda up: 1.361258; SD = 0.1789232
Shannon entropy: 0.9971746; SD = 0.2392221

The decimal point is 1 digit(s) to the left of the |
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0 | 000001245
1 | 46
2 | 00259
3 | 067
4 | 7
5 | 4679
6 | 0112344666667777777777777888888888999999999999999
7 |
8 |
9 |
10 | 66777788899999999999999999999999999999999999999999999999999999999999
11 | 00000000000000000000000000000000000000000000000000000000000000000000+201

> n <- r$dat$n.nodes

> n

[1] 422

> s <- MMG.cut.graph(r, descriptions = "R_descr.dat", method = "THRESHOLD",

+ threshold = 0.25, select = "UP")

COMPONENT 1
* Node 11 1.309 [0.000 0.000 1.000] fructose-bisphosphate aldolase
* Node 13 0.718 [0.000 0.090 0.910] fructose-1,6-bisphosphatase
* Node 14 0.805 [0.000 0.052 0.948] glucose-6-phosphate isomerase
* Node 15 0.803 [0.000 0.057 0.943] sugar kinase; hypothetical protein; glucokinase
* Node 22 0.865 [0.000 0.038 0.962] isocitrate dehydrogenase
* Node 35 1.157 [0.000 0.002 0.998] 6-phosphogluconate dehydrogenase
* Node 37 1.434 [0.000 0.000 1.000] glucose-6-phosphate 1-dehydrogenase
* Node 98 0.481 [0.000 0.307 0.693] argininosuccinate synthase
* Node 99 0.783 [0.000 0.085 0.915] argininosuccinate lyase
* Node 151 0.546 [0.000 0.246 0.754] aspartate aminotransferase
* Node 155 0.842 [0.000 0.050 0.950] glutamate--ammonia ligase
* Node 161 0.386 [0.000 0.322 0.678] glutathione reductase
* Node 196 0.801 [0.000 0.069 0.931] cysteinyl-trna synthetase
* Node 329 0.540 [0.000 0.258 0.742] methionine sulfoxide reductase a; ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit
* Node 417 2.602 [0.000 0.000 1.000] nitrogenase molybdenum-iron protein beta chain; nitrogenase molybdenum-iron protein alpha chain; nitrogenase iron protein; nitrogenase reductase

COMPONENT 2
* Node 46 0.650 [0.000 0.181 0.819] phosphoglucomutase/phosphomannomutase; mannose-1-phosphate guanyltransferase

COMPONENT 3
* Node 47 0.921 [0.000 0.031 0.969] dtdp-glucose dehydratase

COMPONENT 4
* Node 63 1.280 [0.000 0.001 0.999] hypothetical protein

COMPONENT 5
* Node 122 1.055 [0.000 0.009 0.991] adenine phosphoribosyltransferase
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COMPONENT 6
* Node 133 1.281 [0.000 0.001 0.999] phosphoribosylformylglycinamidine synthase subunit ii; phosphoribosylformyl glycinamidine synthetase

COMPONENT 7
* Node 179 0.748 [0.000 0.116 0.884] seryl-trna synthetase

COMPONENT 8
* Node 203 0.599 [0.000 0.235 0.765] 3-isopropylmalate dehydrogenase

COMPONENT 9
* Node 209 0.452 [0.000 0.367 0.633] valine--pyruvate transaminase

COMPONENT 10
* Node 228 1.084 [0.000 0.007 0.993] proline iminopeptidase

COMPONENT 11
* Node 230 0.481 [0.000 0.345 0.655] histidyl-trna synthetase

COMPONENT 12
* Node 280 1.291 [0.000 0.001 1.000] hypothetical protein

COMPONENT 13
* Node 404 0.737 [0.000 0.119 0.881] ferrochelatase

COMPONENT 14
* Node 420 0.528 [0.000 0.302 0.698] phosphoadenosine phosphosulfate reductase

> l <- (1:n)[s$components != 0]

> l

[1] 11 13 14 15 22 35 37 46 47 63 98 99 122 133 151 155 161 179 196
[20] 203 209 228 230 280 329 404 417 420

> MMG.make.dot(r, file.name = "nostoc.dot", selection = l, type = "UNDIRECTED",

+ rem.loops = TRUE)

NULL

The result is presented in Figure 2
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Figure 2: Up-regulated pathways in Nostoc punctiforme’s metabolic network in nitrogen-fixing
conditions.
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