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Summary. The RBGL package is primarily an interface from R to the
Boost Graph Library (BGL). It includes some graph algorithms built on top
of those from BGL and some algorithms independent of BGL.
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1 Basic notations/Preliminaries

1.1 Basics Notations

We use the following notation:
G: a graph, represented as G = (V, E); V = v1, v2, ..., vn: a set of vertices (or

nodes); E = e1, e2, ..., em: a set of edges with ei = [vj, vk], with vj, vk are in V; W =
w1, w2, ..., wm: a set of weights of the edges, i.e., wi is the weight on edge ei.

A walk is a sequence of vertices v1, v2, ..., vk such that for all i, [vi, vi+1] in E. A
path is a walk without repeated vertices. A cycle is a path that begins and ends at the
same vertice.

A directed graph is a graph with direction assigned to its edges, therefore, [vj, vk] !=
[vk, vj].

A directed acyclic graph (DAG) is a directed graph with no directed cycle.
An in-degree of vertex v is the total number of edges [u, v] in E; an out-degree of v

is the total number of edges [v, u] in E.
A network N is a directed graph G with (a) a source s whose in-degree is 0, (b) a

sink t whose out-degree is 0, and (c) a capacity for each edge in a network.
A flow in N assigns a value on each edge that doesn’t exceed its capacity, all the

internal vertices have the same incoming flow as the outgoing flow, s has outgoing flow
only, t has incoming flow only.

1.2 Examples in use

We are going to use the following graphs repeatedly in the examples.

> con <- file(system.file("XML/bfsex.gxl", package = "RBGL"))

> bf <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/dfsex.gxl", package = "RBGL"))

> df <- fromGXL(con)

> close(con)
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> con <- file(system.file("XML/dijkex.gxl", package = "RBGL"))

> dijk <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/conn.gxl", package = "RBGL"))

> coex <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/conn2.gxl", package = "RBGL"))

> coex2 <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/conn2iso.gxl", package = "RBGL"))

> coex2i <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/kmstEx.gxl", package = "RBGL"))

> km <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/biconn.gxl", package = "RBGL"))

> bicoex <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/ospf.gxl", package = "RBGL"))

> ospf <- fromGXL(con)

> close(con)

> con <- file(system.file("dot/joh.gxl", package = "RBGL"))

> joh <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/hcs.gxl", package = "RBGL"))

> hcs <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/snacliqueex.gxl", package = "RBGL"))

> kclex <- fromGXL(con)

> close(con)

> con <- file(system.file("XML/snacoreex.gxl", package = "RBGL"))

> kcoex <- fromGXL(con)

> close(con)
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Figure 1: The example graphs (I).
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e) Coex2 Example
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Figure 2: The example graphs (II).
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k) HCS Example
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m) kCores Example
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Figure 3: The example graphs (III).
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Figure 4: File dependency digraph example from Boost library.

2 Working with the Bioconductor graph class

An example object representing file dependencies is included, as shown in Figure 4.

> data(FileDep)

> FileDep

A graphNEL graph with directed edges

Number of Nodes = 15

Number of Edges = 19
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a) DFS Example
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Figure 5: a) The graph for depth-first-search example. b) The graph for depth-first-
search example, showing search orders.

3 Algorithms from BGL

3.1 Depth First Search

The dfs function returns two vectors of node names of discovery and finish order in a
depth-first-search (DFS), starting at the given vertex.

> print(dfs.res <- dfs(df, "y"))

$discovered

[1] "y" "x" "v" "w" "z" "u"

$finish

[1] "v" "x" "y" "z" "w" "u"

In this example, DFS starts with y, reaches x and v; DFS restarts from w, reaches
z; DFS restarts from u; at this point, all the vertices in the graph are visited once and
only once. You could see the search order in the figure.

3.2 Breadth First Search

The bfs function returns a vector of node names of discovery order in a breadth-first
search (BFS), starting at the given vertex.
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a) BFS Example
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Figure 6: a) The graph for breadth-first-search example. b) The graph for breadth-first-
search example, showing search orders.

> print(bfs.res <- bfs(bf, "s"))

[1] "s" "w" "r" "t" "x" "v" "u" "y"

In this example, BFS starts from vertex s, reaches w; from w BFS reaches r, t and
x; from r BFS reaches v; from t BFS reaches u; from x BFS reaches y; at this time, BFS
visits all the vertices in the graph once and only once.

3.3 Shortest paths

Edge weights play a major role in shortest-path problems. The weight of an edge in
a graph could represent the relationship between the two vertices, such as distance,
probability, etc.

TO-BE-FINALIZED: Our knowledge of such a relationship between two vertices is:
(1) we know there is an edge and there is a measured value on it; (2) we know there is
an edge but there is NO measured value on it; (3) we know there is NO edge; (4) we DO
NOT know if there is an edge.

Corresponding edge weights are: case 1: measured value; case 2: NA; case 3: Inf;
case 4: TO-BE-DETERMINED

When there is a loop of negative weight between two vertices, the distance between
them is -Inf.

The shortest path problem is to find a path between two vertices where the sum of
all the edge weights on this path is minimum.
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There are two sets of algorithms available: (1) find shortest paths between a single
vertex, say, source s, and all other vertices, i.e., V-s, available algorithms are: Dijkstra’s,
Bellman Ford’s and DAG, and (2) find shortest paths between all pairs of vertices,
available algorithms are: Johnson’s and Floyd Warshall’s.

Dijkstra’s algorithm is for the single-source shortest-paths problem on graphs (di-
rected or undirected) with non-negative weights on edges. If all the edges have the same
weight, use depth-first-search instead.

> nodes(dijk)

[1] "A" "B" "C" "D" "E"

> edgeWeights(dijk)

$A

C

1

$B

B D E

2 1 2

$C

B D

7 3

$D

E

1

$E

A B

1 1

> dijkstra.sp(dijk)

$distances

A B C D E

0 6 1 4 5

$penult

A B C D E

1 5 1 3 4
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$start

A

1

The function dijkstra.sp finds the shortest paths from A, which is the first node in
the node list - default source, to all other vertices in the graph: B, C, D, E, shown in
the distances part. The penult shows TO-BE-FILLED-IN.

For instance, edge A->C exists and carries a weight of 1, so the shortest path from
A to C is 1; the shortest path from A to B goes through A->C->D->E->B and has
weight of 6 (1+3+1+1).

> nodes(ospf)[6]

[1] "RT3"

> dijkstra.sp(ospf, nodes(ospf)[6])

$distances

RT1 N1 N3 RT2 N2 RT3 RT6 N4 RT4 RT5 RT7 N12 N13 N14 RT10 N6

1 4 1 1 4 0 8 2 1 9 15 17 17 17 15 16

N15 RT8 N7 RT9 N9 N11 N8 RT11 RT12 N10 H1

24 16 20 19 19 22 18 18 19 21 29

$penult

RT1 N1 N3 RT2 N2 RT3 RT6 N4 RT4 RT5 RT7 N12 N13 N14 RT10 N6

3 1 6 3 4 6 6 6 3 9 10 10 10 10 7 15

N15 RT8 N7 RT9 N9 N11 N8 RT11 RT12 N10 H1

11 16 18 21 24 20 15 23 21 25 25

$start

RT3

6

> sp.between(ospf, "RT6", "RT1")

$`RT6:RT1`

$`RT6:RT1`$length

[1] 7

$`RT6:RT1`$path_detail

[1] "RT6" "RT3" "N3" "RT1"
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Figure 7: Network example from BGL.

$`RT6:RT1`$length_detail

$`RT6:RT1`$length_detail[[1]]

RT6->RT3 RT3->N3 N3->RT1

6 1 0

The first part of this example finds the shortest paths from start RT6 to all the other
vertices in the graph, and the second part finds the shortest path between two vertices:
RT6 and RT1.

Bellman-Ford’s algorithm is for the single-source shortest-paths problem on graphs
(directed or undirected) with both positive and negative edge weights. The default
source is the first entry in the list of nodes in the graph.

> dd <- coex2

> nodes(dd)

[1] "A" "B" "C" "D" "E" "G" "H" "F"
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> bellman.ford.sp(dd)

$`all edges minimized`

[1] TRUE

$distance

A B C D E G H F

0 1 1 1 2 2 2 3

$penult

A B C D E G H F

1 1 1 1 3 3 4 5

$start

[1] "A"

> bellman.ford.sp(dd, nodes(dd)[2])

$`all edges minimized`

[1] TRUE

$distance

A B C D E G H F

Inf 0 1 1 2 2 2 3

$penult

A B C D E G H F

1 2 2 2 3 3 4 5

$start

[1] "B"

The first bellman.ford.sp returns the shortest paths from start A, which is the first
vertex on the node list, to all other vertices. The second call shows the shortest paths
from start B to all other vertices, since there is no path from B to A, the distance between
them is Inf.

The DAG algorithm is for the single-source shortest-paths problem on a weighted,
directed acyclic graph (DAG), which is more efficient for DAG than both Dijkstra’s and
Bellman-Ford’s algorithms. When all the edges have the same weight, use depth-first-
search instead.

> dd <- coex2

> dag.sp(dd)
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$distance

A B C D E G H F

0 1 1 1 2 2 2 3

$penult

A B C D E G H F

1 1 1 1 3 3 4 5

$start

[1] "A"

> dag.sp(dd, nodes(dd)[2])

$distance

A B C D E G H F

Inf 0 1 1 2 2 2 3

$penult

A B C D E G H F

1 2 2 2 3 3 4 5

$start

[1] "B"

It’s easy to see that conn2.gxl doesn’t contain any cycle, so we could use function
dag.sp on it. The first example finds the shortest paths from the start A to all other
vertices. The second example finds the shortest paths from start B to all other vertices,
since no path goes from B to A, the distance is Inf.

Johnson’s algorithm finds the shortest path between every pair of vertices in a sparse
graph. Its time complexity is O(V E log V).

> zz <- joh

> edgeWeights(zz)

$a

b e c

3 -4 8

$b

d e

1 7

$e
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d

6

$c

b

4

$d

c a

-5 2

> johnson.all.pairs.sp(zz)

a b e c d

a 0 1 -4 -3 2

b 3 0 -1 -4 1

e 8 5 0 1 6

c 7 4 3 0 5

d 2 -1 -2 -5 0

This example uses a graph with negative edge weights.
The shortest paths between all pairs of vertices are presented in the matrix, entry

[i, j] gives the distance from vertex i to vertex j. For example, the shortest path from
vertex c to vertex d is of length 5; the shortest path from vertex a to vertex e is of length
-4, since edge a->e is available and of distance -4; the shortest distance from a to c is
-3.

Floyd-Warshall’s algorithm finds the shortest path between every pair of vertices in
a dense graph.

> floyd.warshall.all.pairs.sp(coex)

A B C D E H F G

A 0 1 1 1 2 2 3 3

B 1 0 1 1 2 2 3 3

C 1 1 0 1 2 2 3 3

D 1 1 1 0 1 1 2 2

E 2 2 2 1 0 1 1 1

H 2 2 2 1 1 0 1 1

F 3 3 3 2 1 1 0 1

G 3 3 3 2 1 1 1 0

All edge distances are assumed to be 1, if not given. Since the graph is undirected, the
distance matrix is symmetric, for example, distance from C to G is the same as that
from G to C.
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Figure 8: Example Johnson-all-pairs-shortest-paths example
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3.4 Minimum spanning tree

Minimum-spanning-tree (MST) problem is to find a subset of edges that connect all the
vertices, contains no cycles and have the minimum weight sum.

There are two algorithms available: Kruskal’s algorithm and Prim’s algorithm. Both
are for undirected graphs with weighted edges, and both return a list of edges, weights
and nodes determining MST.

The mstree.kruskal function finds the MST by Kruskal’s algorithm.

> mstree.kruskal(km)

$edgeList

[,1] [,2] [,3] [,4]

from "A" "E" "E" "B"

to "C" "D" "A" "D"

$weights

[,1] [,2] [,3] [,4]

weight 1 1 1 1

$nodes

[1] "A" "B" "C" "D" "E"

This graph is treated as undirected graph with corresponding weights. MST consists
of 4 edges, A->C, D->E, E->A, B->D, each is of weight 1.

The mstree.prim function finds the MST by Prim’s algorithm.

> mstree.prim(coex2)

$edgeList

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

from "A" "A" "A" "A" "C" "C" "D" "H"

to "A" "B" "C" "D" "E" "G" "H" "F"

$weights

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

weight 0 1 1 1 1 1 1 1

$nodes

[1] "A" "B" "C" "D" "E" "G" "H" "F"

The graph is treated as undirected graph with default weight 1. MST consists of 7
edges, A->B, A->C, A->D, C->E, D->H, E->F, C->G.
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g) Kruskal MST Example
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Figure 9: Kruskal MST examples.

3.5 Connected components

There are several algorithms available for this group of problems.
A connected component of an undirected graph is a subgraph that for any two vertices

in this subgraph, u and v, there’s a path from u to v.
The connectedComp function computes the connected components in an undirected

graph.

> km1 <- km

> km1 <- graph::addNode(c("F", "G", "H"), km1)

> km1 <- addEdge("G", "H", km1, 1)

> km1 <- addEdge("H", "G", km1, 1)

> connectedComp(ugraph(km1))

$`1`

[1] "A" "B" "C" "D" "E"

$`2`

[1] "F"

$`3`

[1] "G" "H"

The original graph has one connected component. After we add three vertices, F, G,
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H and an edge G-H, make the graph undirected, the modified graph has three connected
components now.

A strongly connected component of a directed graph is a connected subgraph that for
every pair of vertices in this subgraph, u and v, there are both a path from u to v and a
path from v to u.

The strongComp function computes the strongly connected components in a directed
graph.

> km2 <- km

> km2 <- graph::addNode(c("F", "G", "H"), km2)

> km2 <- addEdge("G", "H", km2, 1)

> km2 <- addEdge("H", "G", km2, 1)

> strongComp(km2)

$`1`

[1] "D"

$`2`

[1] "A" "B" "C" "E"

$`3`

[1] "F"

$`4`

[1] "G" "H"

After adding three vertices, F, G, H and an edge G-H, there are three strong com-
ponents in the graph now.

A biconnected graph is a connected graph that removal of any single vertex doesn’t
disconnect it. If the removal of a vertex increases the number of components in a graph,
this vertex is call an articulation point.

The biConnComp function computes the biconnected components in an undirected
graph. The articulationPoints function finds all the articulation points in an undi-
rected graph.

> biConnComp(bicoex)

[[1]]

[1] "B" "C" "D"

[[2]]

[1] "A" "B" "F" "E"
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Figure 10: Biconnected components example from Boost library.

[[3]]

[1] "G" "H" "I"

[[4]]

[1] "A" "G"

> articulationPoints(bicoex)

[1] "B" "G" "A"

There are 4 biconnected components in the example: one with vertices B, C, D and
edges B-C, C-D, B-D labeled 0, one with vertices A, B, E, F and edges A-B, B-E, E-F,
A-F labeled 1, one with vertices G, H, I and edges G-I, G-H, I-H labeled 2, and one
with vertices A, G and edges A-G labeled 3.

There are 3 articulation points in the example: A, B, G. It’s easy to see removing
any one of them will result in more connected components.
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When you add edges to an undirected graph and want to get updated information on
the connected components, you could use the following functions: init.incremental.components
function to initialize the process; after adding edges to the graph, use incremental.components
function to update the information on the connected components; use same.component

function to find out if two vertices are in the same connected component.
Currently, only one incremental graph is allowed at any given time. To start on a

new graph, you need to call init.incremental.components first.

> jcoex <- join(coex, hcs)

> x <- init.incremental.components(jcoex)

> incremental.components(jcoex)

[[1]]

no. of connected components

2

[[2]]

[1] "G" "F" "H" "E" "D" "C" "B" "A"

[[3]]

[1] "X" "Z" "B4" "B3" "B2" "B1" "A3" "Y" "A5" "A4" "A2" "A1"

> same.component(jcoex, "A", "F")

[1] TRUE

> same.component(jcoex, "A", "A1")

[1] FALSE

> jcoex <- addEdge("A", "A1", jcoex)

> incremental.components(jcoex)

[[1]]

no. of connected components

1

[[2]]

[1] "X" "Z" "B4" "B3" "B2" "B1" "A3" "Y" "A5" "A4" "A2" "A1" "G" "F" "H"

[16] "E" "D" "C" "B"

> same.component(jcoex, "A", "A1")

[1] TRUE
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Figure 11: Example on incremental components: a graph connecting coex and hcs.
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In the first part of this example, we join two separate graphs together, the resulting
graph contains two connected components. Vertices A and F are in the same connected
component, while vertices A and A1 are not in the same connected component.

In the second part of the example, we add an edge connecting A and X, which
effectively connects the two subgraphs, we have only one connected component left,
which consists of all the vertices from the two original graphs, A and A1 are in the same
connected component now.

3.6 Maximum Flow

The functions, edmunds.karp.max.flow and push.relabel.max.flow are available to find
the maximum flow between source and sink.

> edgeWeights(dijk)

$A

C

1

$B

B D E

2 1 2

$C

B D

7 3

$D

E

1

$E

A B

1 1

> edmunds.karp.max.flow(dijk, "B", "D")

$maxflow

[1] 2

$edges

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

from "A" "B" "B" "B" "C" "C" "D" "E" "E"
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to "C" "B" "D" "E" "B" "D" "E" "A" "B"

$flows

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

flow 1 0 1 1 0 1 0 1 0

> push.relabel.max.flow(dijk, "C", "B")

$maxflow

[1] 8

$edges

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

from "A" "B" "B" "B" "C" "C" "D" "E" "E"

to "C" "B" "D" "E" "B" "D" "E" "A" "B"

$flows

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

flow 0 0 0 0 7 1 1 0 1

Call to edmunds.karp.max.flow finds the maximum flow of 2 from B to D: one part
of flow 1 is B -> D directly, another part of flow 1 is B -> E -> A -> C -> D.

Call to push.relabel.max.flow find the maximum flow of 8 from C to B: one part of
flow 7 is C -> B directly, another part of flow 1 is C -> D -> E -> B.

You can see the flow on each edge in the output, and each is no more than the
capacity of the edge.

3.7 Sparse Matrix Ordering

There are three functions available in this category: cuthill.mckee.ordering, minDe-

greeOrdering and sloan.ordering.
Cuthill-McKee’s algorithm tries to reduce the bandwidth of a graph by renumbering

its vertices. The outputs are the vertices in the new ordering and reverse ordering.
Minimum degree Ordering is one approach that tries to reduce fill-ins in matrix

reordering, which turns a system of equations A x = b to (P A PT)(P x) = P b.
Sloan Ordering tries to reduce the profile and wavefront of a graph by renumbering

its vertices.

> dijk1 <- ugraph(dijk)

> cuthill.mckee.ordering(dijk1)

$`reverse cuthill.mckee.ordering`

[1] "A" "B" "E" "C" "D"
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$`original bandwidth`

[1] 4

$`new bandwidth`

[1] 3

> minDegreeOrdering(dijk1)

$inverse_permutation

[1] "B" "A" "C" "E" "D"

$permutation

[1] "B" "A" "C" "E" "D"

> sloan.ordering(dijk1)

$sloan.ordering

[1] "A" "D" "B" "E" "C"

$bandwidth

[1] 4

$profile

[1] 13

$maxWavefront

[1] 4

$aver.wavefront

[1] 2.6

$rms.wavefront

[1] 2.792848

TODO: EXPLAIN THESE OUTPUT.

3.8 Edge connectivity and minimum disconnecting set

For a single connected undirected graph, function edgeConnectivity calculates the mini-
mum number of edges that have to be removed to create two disconnected components.
No edge weight is taken into account and the output is the edges that need to be removed.

This is very similar to the minCut algorithm, which takes the edge weights into
account when removing edges and outputs the vertices on the two disconnected compo-
nents.
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> edgeConnectivity(coex)

$connectivity

[1] 2

$minDisconSet

$minDisconSet[[1]]

[1] "D" "E"

$minDisconSet[[2]]

[1] "D" "H"

Mimimum of two edges must be removed to create two disconnected components:
edges D-E and D-H.

3.9 Topological sort

The tsort function will return the names of vertices from a DAG in topological sort
order.

> tsort(FileDep)

[1] "zow_h" "boz_h" "zig_cpp" "zig_o" "dax_h"

[6] "yow_h" "zag_cpp" "zag_o" "bar_cpp" "bar_o"

[11] "foo_cpp" "foo_o" "libfoobar_a" "libzigzag_a" "killerapp"

Note that if the input graph is not a DAG, BGL topological_sort will check this
and throw ’not a dag’. This is crudely captured in the interface (a message is written to
the console and zeroes are returned).

> FD2 <- FileDep

> FD2 <- addEdge(from = "bar_o", to = "dax_h", FD2)

> tsort(FD2)

character(0)

3.10 Layout

If you want to simply draw a graph, you should consider using package Rgraphviz.
Package Rgraphviz provides a lot more functionalities in graph layout, you can use it

to do the actual layouts: a. ”neato”uses Kamada-Kawai algorithm to make spring model
layout, b. ”fdp” uses Fruchterman-Reingold algorithm to make spring model layout, c.
”circo” does circular layout. See Figure 12 for an example.
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> plot(coex, "neato")

The following functions are interfaces to those in BGL, they only calculate the (x,
y)-coordinates of the vertices in the graph. The actual layout is achieved with additional
function, we provide an example on how to do so.

Following functions are available:
The randomGraphLayout function puts the vertices randomly on a plane;
The circleLayout function puts the vertices as vertices of a regular polygon;
The kamadaKawaiSpringLayout function is for connected, undirected graphs, it treats

the edges as springs and tries to minimize the energy of the whole system;
The fruchtermanReingoldForceDirectedLayout function is for unweighted, undirected,

possibly disconnected graphs, it treats the edges as forces that pull vertices together,
no-edges as forces that push vertices apart, vertices move to a position as environment
changes; initial positions of the vertices are set randomly by calling randomGraphLay-

out. Notice that the choice of ”width” and ”height” values has dramatic impact on the
performance.

> randomGraphLayout(coex)

A B C D E H F

x 2.247747e-05 0.6013526 0.9679557 0.5149758 0.2629062 0.08954777 0.5822297

y 8.503245e-02 0.8916113 0.1896898 0.3980084 0.7435125 0.56038993 0.8095667

G

x 0.5919188

y 0.5117126

> circleLayout(coex)

A B C D E H F

x 1 0.7071073 1.326795e-06 -0.7071054 -1.00000e+00 -0.7071091 -3.980385e-06

y 0 0.7071063 1.000000e+00 0.7071082 2.65359e-06 -0.7071044 -1.000000e+00

G

x 0.7071035

y -0.7071101

> kamadaKawaiSpringLayout(coex)

A B C D E H F

x 0.9812284 0.7105882 -0.04072935 0.04913392 -0.8469084 -0.1890417 -0.6743637

y 0.2309024 0.9317890 0.93750275 -0.02487002 -0.6190274 -1.0732776 -1.8284108

G

x -1.380900

y -1.340714
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> fruchtermanReingoldForceDirectedLayout(coex, 10, 10)

A B C D E H F G

x 3.192958 0.9889099 -1.428881 -0.1548334 -0.8784356 -3.792289 -5 -2.724398

y 5.000000 5.0000000 5.000000 1.4771074 -3.2574547 -1.783194 -5 -5.000000

Outputs are the (x, y)-coordinates of the vertices in the layout.
If you want to draw the graphs based on the calculated coordinates, you need an

additional function. The following is an example.

> crudeGraphPlot <- function(g, alg = circleLayout, ...) {

+ layout <- alg(g)

+ plot(layout[1, ], layout[2, ], pch = nodes(g), axes = FALSE,

+ xlab = "", ylab = "", main = substitute(g), cex = 1.4)

+ ee <- edges(g)

+ src <- names(ee)

+ ds <- function(nn1, nn2, lob) segments(lob[1, nn1], lob[2,

+ nn1], lob[1, nn2], lob[2, nn2], ...)

+ for (s in src) sapply(ee[[s]], function(x) ds(s, x, layout))

+ invisible(NULL)

+ }

> crudeGraphPlot(coex)

> crudeGraphPlot(coex, alg = kamadaKawaiSpringLayout, col = "green")

Call crudeGraphPlot(coex) gives the default circular layout on your graphics device.
Call crudeGraphPlot(coex, alg=kamada.kawai.spring.layout, col=”green”) shows you

the spring layout with green edges, see Figure 12.

3.11 Isomorphism

The isomorphism function determines if two graphs are isomorphism, i.e., determines if
there is a one-to-one mapping f of vertices from one graph g1 to the other g2 such that
edge u -> v is in E(g1) iff edge f(u) -> f(v) exists and is in E(g2).

> isomorphism(dijk, coex2)

$isomorphism

[1] FALSE

> isomorphism(coex2i, coex2)

$isomorphism

[1] TRUE

The function handles both directed and undirected graphs. There are more vertices
in graph conn2 than dijkstra, so it’s impossible to find a one-to-one mapping between
them. One the other hand, graph conn2i is basically the same graph as conn2 except
the vertices have different names, so they are isomorphism.
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Figure 12: a) plot(coex, neato). b) crudeGraphPlot(coex). c) crudeGraphPlot(coex,
alg=kamadaKawaiSpringLayout, col=”green”).
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3.12 Vertex Coloring

The sequential.vertex.coloring function assigns colors, as numbers 0, 1, 2, ..., to
vertices in a graph so that two vertices connected by an edge are of different colors. It
does not guarantee that minimum number of colors is used, and the result depends on
the input ordering of the vertices in the graph.

> sequential.vertex.coloring(coex)

$`no. of colors needed`

[1] 4

$`colors of nodes`

A B C D E H F G

0 1 2 3 0 1 2 3

We need 4 colors for the vertices of this graph, one color scheme is to give color 0 to
vertices A, E, color 1 to vertices B, H, color 2 to vertices C, F and color 3 to vertices D,
G.

3.13 Transitive Closure

Directed graphs can be used to represent relations, R, on a finite set of objects, V. For
example, the objects could be integers and the relation could be less than. An edge
exists in the graph, between two nodes, (u, v) if the (u, v) ∈ R. A transitive digraph is
a digraph whose corresponding relation is transitive. That is, if there is an edge (u, v)
and an edge (v, w), then there must be an edge (u, w). Finally, the transitive closure,
R∗ of an arbitrary relation R is the smallest transitive relation that contains R.

Finally, if D is the directed graph that represents the relation R, then the directed
graph D∗ that represents the relation R∗ is called the transitive closure of D.

The function transitive.closure returns the transitive closure of a directed graph.
In the code below we compute the transitive closure for the example graph dijk and

then plot both the original graph, and the transitive closure in Figure 14.
TO-BE-FINALIZED: The transitive closure tc of a graph g is a graph that contains

the same set of vertices as g, and there is an edge from u to v in tc iff there is a path
from u to v in g.

> dijk.tc = transitive.closure(dijk)

In this graph, you can reach each and every vertex from any vertex.
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c) Dijkstra's Example

A

B

C

D

E

b) Transitive closure
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Figure 14: a) The graph for Dijkstra’s example. b) The transitive closure of the graph
in panel a)

3.14 Wavefront, Profiles

TODO: EXPLAIN THESE TERMS
The following functions are available: ith.wavefront, maxWavefront, aver.wavefront

and rms.wavefront.

> ss <- 1

> ith.wavefront(dijk, ss)

$ith.wavefront

[1] 3

> maxWavefront(dijk)

$maxWavefront

[1] 4

> aver.wavefront(dijk)

$aver.wavefront

[1] 2.6

> rms.wavefront(dijk)

$rms.wavefront

[1] 2.792848

TODO: EXPLAIN THESE RESULTS
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3.15 Betweenness Centrality and Clustering

Betweenness centrality of a vertex (or an edge) measures its importance in a graph, i.e.,
among all the shortest paths between every pair of vertices in the graph, how many
of them have to go through this vertex (or edge). Relative betweenness centrality is
calculated by scaling the absolute betweenness centrality by factor 2/((n-1)(n-2)), where
n is the number of vertices in the graph.

The brandes.betweenness.centrality function implements Brandes’ algorithm in
calculating betweenness centrality.

The betweenness.centrality.clustering function implements clustering in a graph
based on edge betweenness centrality.

TODO: EXPLAIN MORE

> brandes.betweenness.centrality(coex)

$betweenness.centrality.vertices

A B C D E H F G

[1,] 0 0 0 12 4 4 0 0

$edges

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

[1,] "A" "A" "A" "B" "B" "C" "D" "D" "E" "E" "E" "H" "H" "F"

[2,] "B" "C" "D" "C" "D" "D" "E" "H" "G" "H" "F" "F" "G" "G"

$betweenness.centrality.edges

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

centrality 1 1 5 1 5 5 8 8 3 1 3 3 3

[,14]

centrality 1

$relative.betweenness.centrality.vertices

A B C D E H F G

[1,] 0 0 0 0.5714286 0.1904762 0.1904762 0 0

$dominance

[1] 0.5170068

> betweenness.centrality.clustering(coex, 0.1, TRUE)

$no.of.edges

[1] 12

$edges
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

from "A" "A" "A" "B" "B" "C" "E" "E" "E" "H" "H" "F"

to "B" "C" "D" "C" "D" "D" "G" "H" "F" "F" "G" "G"

$edge.betweenness.centrality

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

centrality 1 1 1 1 1 1 1 1 1 1 1 1

TODO: EXPLAIN THE RESULTS

4 Algorithms built on RBGL

4.1 Min-Cut

Given an undirected graph G=(V, E) of a single connected component, a cut is a partition
of the set of vertices into two non-empty subsets S and V-S, a cost is the weight sum of
edges that are incident on one vertex in S and one vertex in V-S. The min-cut problem
is to find a cut (S, V-S) of minimum cost.

For simplicity, subset S is the smaller of the two.

> minCut(coex)

$mincut

[1] 2

$S

[1] "A" "B" "C" "D"

$`V-S`

[1] "E" "H" "F" "G"

Currently all edge weights are assumed to be 1, minimum cut is of weight 2, it will
partition the graph into two subsets: subset A, B, C, D and subset E, H, F, G.

4.2 highlyConnSG

A graph G with n vertices is highly connected if its connectivity k(G) > n/2. Function
highlyConnSG partitions a graph into a set of highly connected subgraphs, by using
minimum-cut algorithm repeatedly. To improve performance, it takes special care of
singletons, low degree vertices and merges clusters.

> highlyConnSG(coex)
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$clusters

$clusters[[1]]

[1] "A" "B" "C" "D"

$clusters[[2]]

[1] "E" "H" "F" "G"

> highlyConnSG(hcs)

$clusters

$clusters[[1]]

[1] "A1" "A2" "A4" "A5" "A3"

$clusters[[2]]

[1] "B1" "B2" "B3" "B4"

$clusters[[3]]

[1] "Y" "Z" "X"

In graph conn, two highly-connected-subgraphs are found: subgraph with vertices A,
B, C, D and subgraph with vertices E, H, F, G.

In graph hcs, 3 highly-connected-subgraphs are found: subgraph with vertices A1,
A2, A3, A4, A5, subgraph with vertices B1, B2, B3, B4 and subgraph with vertices X,
Y, Z.

5 Algorithms independent from RBGL

5.1 maxClique

A clique is a complete subgraph, i.e., there is an edge between every pair of vertices.
Maximum Clique problem is to find the largest clique in a graph. This problem is

NP-complete, which means it cannot be solved by any known polynomial algorithm.
Function maxClique implements the algorithm from Finding all cliques of an undi-

rected graph, by C. Bron and J. Kerbosch (CACM, Sept 1973, Vol 16, No. 9.), which
finds all the cliques in a graph.

> maxClique(coex)

$maxCliques

$maxCliques[[1]]

[1] "D" "B" "C" "A"

$maxCliques[[2]]
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[1] "D" "E" "H"

$maxCliques[[3]]

[1] "F" "E" "H" "G"

> maxClique(hcs)

$maxCliques

$maxCliques[[1]]

[1] "B1" "B2" "B3" "B4"

$maxCliques[[2]]

[1] "B1" "Y"

$maxCliques[[3]]

[1] "B1" "A5"

$maxCliques[[4]]

[1] "A2" "A4" "A3"

$maxCliques[[5]]

[1] "A2" "A4" "A1"

$maxCliques[[6]]

[1] "A4" "A5" "A3"

$maxCliques[[7]]

[1] "A4" "A5" "A1"

$maxCliques[[8]]

[1] "A1" "Y"

$maxCliques[[9]]

[1] "Z" "Y" "X"

$maxCliques[[10]]

[1] "Z" "B4"

In graph conn, 3 cliques are found: clique with vertices D, B, C, A, clique with
vertices D, E, H and clique with vertices F, E, H, H.

In graph hcs, 10 cliques are found. For instance, vertices A2, A4, A3 form a clique,
vertices B1, Y form a clique.
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5.2 is.triangulated

A graph is triangulated if all cycles of length 4 or more have a chord. The is.triangulated
function returns TRUE or FALSE, accordingly.

We implemented the following algorithm from Combinatorial Optimization: algo-
rithms and complexity (p. 403) by C. H. Papadimitriou, K. Steiglitz: G is chordal iff
either G is an empty graph, or there is a v in V such that (i) the neighborhood of v, i.e.,
v and its adjacent vertices, forms a clique, and (ii) recursively, G-v is chordal.

> is.triangulated(coex)

[1] TRUE

> is.triangulated(hcs)

[1] FALSE

5.3 separates

Function separates determines if a subset of vertices separates two other subsets of
vertices, and returns TRUE or FALSE, accordingly.

> separates("B", "A", "E", km)

[1] TRUE

> separates("B", "A", "C", km)

[1] FALSE

5.4 kCores

A k-core in a graph is a subgraph where each vertex is adjacent to at least k other
vertices in the same subgraph.

Function kCores finds all the k-cores in a graph. It returns the core numbers for
all the nodes in the graph. When the given graph is directed, you can choose whether
in-degree, out-degree or both should be considered.

The k-core of a graph is not a necessarily connected subgraph. If i > j, the i-core of
a graph contains the j-core of the same graph.

The implementation is based on the algorithm by V. Batagelj and M. Zaversnik,
2002.

> kCores(kcoex)
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A C B E F D G H J K I L M N O P Q R S T U

1 2 1 2 3 3 3 3 3 3 3 3 2 2 1 1 2 2 2 2 0

> kcoex2 <- coex2

> kCores(kcoex2)

A B C D E G H F

3 3 3 3 3 3 3 3

> kCores(kcoex2, "in")

A B C D E G H F

0 0 0 0 0 0 0 0

> kCores(kcoex2, "out")

A B C D E G H F

0 0 0 0 0 0 0 0

> g1 <- addEdge("C", "B", kcoex2)

> kCores(g1, "in")

A B C D E G H F

0 1 1 1 1 1 1 1

> g2 <- addEdge("C", "A", kcoex2)

> kCores(g2, "out")

A B C D E G H F

1 1 1 0 0 0 0 0

The example on directed graph, ”conn2”, turns out to be a waterfall-like graph. If
we order the nodes as: A, B, C, D, E, F, H, G, all the edges go in the same direction,
i.e., i -> j, i < j.

Let’s consider in-degree-only case: A has no in-edge so it is 0-core; after you eliminate
A, no in-edge to B, so B is 0-core; continue this, we could see that there’s no subset of
nodes that each and every single node has 1 in-degree. Therefore, they are all of 0-core.

For out-degree-only case: G has no out-edge, so it’s 0-core; after eliminating G, F has
no out-edge, so F is 0-core; continue this process, we could see that there’s no subset of
nodes that each and every single node has 1 out-edge. Therefore, they are all of 0-core.

If we add edge(s) to break the waterfall-like property, C->B, C->A, separately, we
could see the changes in the core numbers that are consistant with the analysis above.
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Figure 15: K-cores Example.
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5.5 kCliques

In social network analysis, a k-cliques is a maximum subgraph that the shortest distance
between any two nodes is no more than k.

Function kCliques finds all the k-cliques in an undirected graph (k = 1, ..., N, where
N is the length of the longest shortest-path). It returns all the k-cliques.

Let D be a matrix, D[i][j] is the shortest path from node i to node j. Algorithm is
outlined as following. o. use Johnson’s algorithm to fill D; let N = max(D[i][j]) for all i,
j; o. each edge is a 1-clique by itself; o. for k = 2, ..., N, try to expand each (k-1)-clique
to k-clique: o. consider a (k-1)-clique the current k-clique KC; o. repeat the following:
if for all nodes j in KC, D[v][j] <= k, add node v to KC; o. eliminate duplicates; o. the
whole graph is N-clique.

> kCliques(kclex)

$`1-cliques`

$`1-cliques`[[1]]

[1] "1" "2" "3"

$`1-cliques`[[2]]

[1] "2" "4"

$`1-cliques`[[3]]

[1] "3" "5"

$`1-cliques`[[4]]

[1] "4" "6"

$`1-cliques`[[5]]

[1] "5" "6"

$`2-cliques`

$`2-cliques`[[1]]

[1] "1" "2" "3" "4" "5"

$`2-cliques`[[2]]

[1] "2" "3" "4" "5" "6"

$`3-cliques`

$`3-cliques`[[1]]

[1] "1" "2" "3" "4" "5" "6"
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Figure 16: K-cliques Example.
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