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1 Overview:

RJaCGH is an R package designed for the analysis of microarray CGH data. In
this type of problems we have a collection of log-ratios that measure the ratio
between the copy number of sequences of nucleotides between a test sample and
a control sample for a number of probes. The main goal of the analysis is to
detect which of those probes have a normal copy number, a loss copy number
or a gained copy number.
This package basically �ts a Non Homogeneous Hidden Markov Model through
Reversible Jump Markov Chain Montecarlo. That is, we assume that there are
k di�erent groups (hidden states; di�erent copy number ratios) within the data.
Each of those groups follows a normal distribution with parameters �k and �2k.
The movements between those hidden states follow a Markov process whose
transition probabilities depend on the distance between probes. The estimation
of the parameters is made through a Markov Chain Monte Carlo (MCMC)
algorithm. These techniques are based on the exploration of the parameter
space through sampling. Instead of �tting several models and selecting just
one, RJaCGH uses reversible jump [3] to jump between models and get the
posterior probability for each of them. We can make birth/death moves (create
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or delete a hidden state) and split/combine moves (separate or merge existing
states). The inferences are then based on all models visited through Bayesian
Model Averaging.

The package estimates the probability for every probe to have a normal
copy number, gained or lost and computes probabilistic common regions. This
vignette shows some of the package features with small examples. The references
give full details about the statistical model and the parameterization it uses, plus
further details of the algorithm.

Please note that our methods are computer intensive, so they may take a
long time on a slow machine.

2 Data:

We use for the examples the public data set of Snijders et al. [5] with 15 human
cells with known karyotypes, as found in the objects from package GLAD 1.6.0.
[6].

3 Examples:

3.1 Same model for the whole genome

We'll analyze data cell gm13330 from [5]. First, we take out the missing val-
ues, because RJaCGH does not handle NA's. We'll need the log-2 ratios, the
positions and the chromosome number:

> set.seed(1)

> library(RJaCGH)

> data(snijders)

> y <- gm13330$LogRatio[!is.na(gm13330$LogRatio)]

> Pos <- gm13330$PosBase[!is.na(gm13330$LogRatio)]

> Chrom <- gm13330$Chromosome[!is.na(gm13330$LogRatio)]

Now, we are going to �t the model through the function RJaCGH(). But
�rst we must decide if we want to �t a model with equal variances for all the
hidden states or with di�erent variances. This can be set with the argument
var.equal=TRUE (default) or var.equal=FALSE in the call to RJaCGH(). Be-
sides, we can �t the same model to the whole genome or a di�erent one for each
chromosome. We can set this option with model="genome" or model="Chrom"
in the call to RJaCGH(). In this section we will �t the same model for the whole
genome.

We can also set the maximum number of hidden states that we want to �t.
For example, we will �t HMMs with a maximum of four hidden states, so we'll
set the parameter k.max=4.
Besides, we can set, if we wish to, the jumping parameters of the MCMC. They
control the exploration of the probability distribution of the model via setting
the jumps we make from a particular value of the parameters to a new one.
There are two types of them:

� The standard deviation of the candidates of the jumps of the chain within
a given model: sigma.tau.mu, sigma.tau.sigma.2 and sigma.tau.beta.

2



They are vectors of length k.max. They are related to the dispersion within
models.

� The standard deviation of the jumps between models in split/combine
moves: tau.split.mu and tau.split.beta. They are scalars and are
related to the dispersion between models.

We must remember that these are not parameters of the model, in the sense that
di�erent values produce di�erent models. They are parameters of the algorithm
that speed up or assure convergence.

We have to enclose them in a list. By some inspection of the data and/or
trial/error we set them to the following values:

> jump.parameters <- list(sigma.tau.mu = rep(0.01, 4), sigma.tau.sigma.2 = rep(0.05,

+ 4), sigma.tau.beta = rep(0.1, 4), tau.split.mu = 0.1, tau.split.beta = 0.1)

The arguments burnin and TOT control the number of iterations of the al-
gorithm (the burn-in and the after burn-in).

We can also pass other arguments, such as the starting base and end base of
the probes (Start, End), the distance between probes (Dist), the names of the
probes (probe.names), the maximal distance between probes beyond which we
consider them independent (max.dist)... See the help �le for RJaCGH() for full
reference.

> fit <- RJaCGH(y = y, Pos = Pos, Chrom = Chrom, model = "genome",

+ var.equal = TRUE, k.max = 4, burnin = 50000, TOT = 10000,

+ jump.parameters = jump.parameters)

Starting Reversible Jump

After the �t (it may take a little while), RJaCGH() returns an object with
several interesting components. Its structure is a list with several lists nested
inside of it; one for each model �tted. For example,

> fit[[4]]

is another list with the results of the �t of a model with 4 hidden states.
There are several elements inside; for example, we can get the means and vari-
ances of the hidden states �tted:

> fit[[4]]$mu

> fit[[4]]$sigma.2

They are matrices with as many rows as samples have been drawn from a
model with 4 hidden states and as many columns as hidden states (that is, four).

> apply(fit[[4]]$mu, 2, mean)

[1] -0.83938775 -0.07825253 0.03520531 0.52463888

This would be the mean of the posterior distribution of the means of the 4
hidden states.

In the case of the functions of transition probabilities:
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> fit[[4]]$beta

is an array with the �rst and second dimensions the number of hidden states
and the third the number of MCMC iterations in that model. So

> apply(fit[[4]]$beta, c(1, 2), mean)

[,1] [,2] [,3] [,4]
[1,] 0.000000 0.2421245 2.001151 2.166395
[2,] 6.450002 0.0000000 2.562499 7.175590
[3,] 8.040229 3.1005899 0.000000 5.811885
[4,] 4.182116 4.0746709 2.493096 0.000000

would give the mean of the posterior distribution of beta (these are param-
eters of the transition matrix that depends itself on the distance between genes;
see references for details on the model).
We can also summarize the �t and inspect these results. By default, summary
returns the quantiles of the posterior distributions for the means and variances
and the median of the parameters for the transition probabilities:

> summary.HMM <- summary(fit)

> summary.HMM

Distribution of the number of hidden states:

1 2 3 4
0 0 0 1

Model with 4 states:

Distribution of the posterior means of hidden states:
10% 25% 50% 75% 90%

Loss-1 -0.864 -0.852 -0.839 -0.827 -0.814
Normal -0.085 -0.082 -0.078 -0.075 -0.071
Normal 0.030 0.032 0.035 0.038 0.040
Gain-1 0.509 0.517 0.525 0.533 0.541

Distribution of the posterior variances of hidden states:
10% 25% 50% 75% 90%

Loss-1 0.007 0.007 0.007 0.007 0.008
Normal 0.007 0.007 0.007 0.007 0.008
Normal 0.007 0.007 0.007 0.007 0.008
Gain-1 0.007 0.007 0.007 0.007 0.008

Parameters of the transition functions:
Loss-1 Normal Normal Gain-1

Loss-1 0.000 0.029 1.730 2.033
Normal 6.345 0.000 2.555 7.020
Normal 7.925 3.102 0.000 5.772
Gain-1 4.027 3.939 2.421 0.000
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We can also plot the model with higher posterior probability and the clas-
si�cation of genes using information from all models visited: that is, through
Bayesian Model Averaging:

> plot(fit, cex = 1.1)
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�t the distribution of the normal copy numbers), RJaCGH does an automatic
labeling based on the posterior means and variances of the hidden states and the
arguments normal.reference (the reference value for the mean of the normal
state -no change-), normal.ref.percentile (all states with credible intervals of
this probability including the normal.reference are labeled as 'Normal') and
auto.label (the minimum proportion of normal probes). The user can explore
di�erent thresholds with (not shown):

> plot(relabelStates(fit, normal.ref.percentile = 0.99))

> plot(relabelStates(fit, normal.ref.percentile = 0.05))

When a good labeling is found, we can update the �t:

> fit <- relabelStates(fit, normal.ref.percentile = 0.75)

If the user wants to make his own relabeling of states, he has to de�ne
fit[[k]]$state.labels, for the model k of interest. It must be a vector of
length k with elements 'Loss', 'Normal' or 'Gain'. For example, in our case:

> fit[[4]]$state.labels <- c("Loss", rep("Normal", 2), "Gain")

There are other methods to extract more information, as states(), model.averaging()
or smoothMeans(). They will be introduced in the next section.

We can also inspect the convergence of the most visited model:

> trace.plot(fit)
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If we don't see good mixing we can re-adjust the jumping parameters:

� If the lines are too straight for some parameters, we must reduce its cor-
responding jumping parameters and re�t.

� If the lines oscilate too much, we should re�t with greater jumping pa-
rameters.

� The parameters that rule the movements amongst states are tau.split.mu
and tau.split.beta, and the parameters that rule the means, the vari-
ances and beta are sigma.tau.mu, sigma.tau.sigma.2 and sigma.tau.beta.

We can also check the good mixing of the algorithm looking at the proportion
of the di�erent values sampled for �, �2 and �: it should not be very low nor
very high; some authors say that it should roughly be around 0.23. We'll do it
for the model with highest posterior probability:

> maxK <- as.numeric(names(which.max(table(fit$k))))

> fit[[maxK]]$prob.mu

[1] 0.1628163

> fit[[maxK]]$prob.sigma.2

[1] 0.3794379

> fit[[maxK]]$prob.beta

[1] 0.2253225

And �nally, we can check that the algorithm has made some jumps between
models (birth, death, split and combine movements):

> fit$prob.b

[1] 3

> fit$prob.d

[1] 9

> fit$prob.s

[1] 9

> fit$prob.c

[1] 2

(Note that these numbers include the burn-in iterations, but the trace.plot()
not.)

8



3.2 A di�erent model for every chromosome

We can also �t a di�erent model for every chromosome with the function
RJaCGH() changing the parameter model to 'Chrom'. We'll �t a model to other
cell line: 01524. If there is lot of di�erence in variance between chromosomes ev-
ery chromosome should have its own set of jumping parameters, so we shouldn't
specify them and let RJaCGH do a simple search to �nd 'good' ones. In this ex-
ample there is no such di�erent variances per chromosomes, but we'll let the
program choose them as a demonstration:

> y2 <- gm01524$LogRatio[!is.na(gm01524$LogRatio)]

> Pos2 <- gm01524$PosBase[!is.na(gm01524$LogRatio)]

> Chrom2 <- gm01524$Chromosome[!is.na(gm01524$LogRatio)]

> fit.chrom <- RJaCGH(y = y2, Pos = Pos2, Chrom = Chrom2, model = "Chrom",

+ k.max = 4, burnin = 50000, TOT = 10000)

Again, the result of the �t are nested lists. We can access every chromosome in a
simple way, because there is a list for every chromosome, and every chromosome
is an object of the same class as explained in the former section. For example,
to inspect the chromosome 6 we would do the following:

> summary(fit.chrom[[6]])

Distribution of the number of hidden states:

1 2 3 4
0.000 0.993 0.007 0.000

Model with 2 states:

Distribution of the posterior means of hidden states:
10% 25% 50% 75% 90%

Normal -0.009 -0.001 0.008 0.015 0.022
Gain-1 0.516 0.528 0.541 0.554 0.565

Distribution of the posterior variances of hidden states:
10% 25% 50% 75% 90%

Normal 0.007 0.008 0.009 0.01 0.011
Gain-1 0.007 0.008 0.009 0.01 0.011

Parameters of the transition functions:
Normal Gain-1

Normal 0.000 4.015
Gain-1 2.544 0.000

We can also see the sequence of hidden states, that is the copy number
status for every probe. We can compute it conditionally to a particular model,
(with the method states) or averaging through every model �t weighted by the
posterior probability of that model (method model.averaging):

> sequence <- states(fit.chrom)

> sequence.averaged <- model.averaging(fit.chrom)
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We can see the copy number of chromosome 6:

> head(sequence[[6]]$states)

[1] Normal Normal Normal Normal Normal Normal
Levels: Normal Gain-1

> head(sequence.averaged[[6]]$states)

[1] Normal Normal Normal Normal Normal Normal
Levels: Loss < Normal < Gain

And the probability of every state in that chromosome:

> head(sequence[[6]]$prob.states)

Normal Gain-1
[1,] 1 0
[2,] 1 0
[3,] 1 0
[4,] 1 0
[5,] 1 0
[6,] 1 0

> head(sequence.averaged[[6]]$prob.states)

Loss Normal Gain
[1,] 0 0.9987433 0.001256689
[2,] 0 0.9972173 0.002782669
[3,] 0 0.9972173 0.002782669
[4,] 0 0.9972173 0.002782669
[5,] 0 0.9972173 0.002782669
[6,] 0 0.9972173 0.002782669

We can also see the smoothed values for every probe (this method returns a
vector, not a list with as many vectors as chromosomes):

> s.means <- smoothMeans(fit.chrom)

> head(s.means)

[1] 0.004903643 0.004903643 0.006610641 0.022967068 0.012319315 0.026532209

These methods can be also used on a �t with the same model on the whole
genome, as the one we �t in the last section.

We can also plot the whole genome or just a chromosome:

> plot(fit.chrom)

10
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> plot(fit.chrom[[6]])
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Finally, we can also see the probabilities of alteration in a graph chromosome
by chromosome:

> genome.plot(fit.chrom)
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P.Loss >= 0.9
0.7 <= P.Loss < 0.9
0.5 <= P.Loss < 0.7
P.Loss < 0.5 or P.Gain < 0.5
0.5 <= P.Gain < 0.7
0.7 <= P.Gain < 0.9
P.Gain >= 0.9

3.3 Fitting several arrays

We can also �t at the same time several arrays (if they have the same probes
spotted in the same positions). RJaCGH �ts a di�erent model to each of them:

> gm07081LR <- gm07081$LogRatio

> gm10315LR <- gm10315$LogRatio

> gm07408LR <- gm07408$LogRatio

> not.NA <- !is.na(gm07081LR) & !is.na(gm10315LR) & !is.na(gm07408LR)

> gm07081LR <- gm07081LR[not.NA]

> gm10315LR <- gm10315LR[not.NA]

> gm07408LR <- gm07408LR[not.NA]

> Pos3 <- gm07081$PosBase[not.NA]

> Chrom3 <- gm07081$Chromosome[not.NA]

> fit.arrays <- RJaCGH(y = cbind(gm07081LR, gm10315LR, gm07408LR),

+ Pos = Pos3, Chrom = Chrom3, model = "genome", k.max = 4,

+ burnin = 50000, TOT = 10000)

The returned object follows the same structure (nested lists); now every
object is a list with the result of the �t to each array:

> summary(fit.arrays)

Summary for array gm07081LR :

Distribution of the number of hidden states:
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1 2 3 4
0 0 0 1

Model with 4 states:

Distribution of the posterior means of hidden states:
10% 25% 50% 75% 90%

Normal -0.139 -0.139 -0.139 -0.120 -0.117
Normal -0.004 -0.003 -0.003 -0.002 0.000
Gain-1 0.218 0.226 0.226 0.245 0.268
Gain-2 0.479 0.482 0.499 0.499 0.504

Distribution of the posterior variances of hidden states:
10% 25% 50% 75% 90%

Normal 0.005 0.005 0.005 0.005 0.005
Normal 0.005 0.005 0.005 0.005 0.005
Gain-1 0.005 0.005 0.005 0.005 0.005
Gain-2 0.005 0.005 0.005 0.005 0.005

Parameters of the transition functions:
Normal Normal Gain-1 Gain-2

Normal 0.000 0.012 3.993 2.787
Normal 5.493 0.000 5.755 6.511
Gain-1 0.471 0.792 0.000 0.348
Gain-2 3.652 1.853 2.479 0.000

================================================

Summary for array gm10315LR :

Distribution of the number of hidden states:

1 2 3 4
0 0 1 0

Model with 3 states:

Distribution of the posterior means of hidden states:
10% 25% 50% 75% 90%

Normal -0.012 -0.011 -0.009 -0.007 -0.005
Normal 0.071 0.083 0.093 0.109 0.118
Gain-1 0.582 0.592 0.599 0.605 0.609

Distribution of the posterior variances of hidden states:
10% 25% 50% 75% 90%

Normal 0.007 0.007 0.007 0.007 0.007
Normal 0.007 0.007 0.007 0.007 0.007
Gain-1 0.007 0.007 0.007 0.007 0.007

14



Parameters of the transition functions:
Normal Normal Gain-1

Normal 0.000 5.880 8.948
Normal 1.507 0.000 3.271
Gain-1 6.419 3.056 0.000

================================================

Summary for array gm07408LR :

Distribution of the number of hidden states:

1 2 3 4
0 0 0 1

Model with 4 states:

Distribution of the posterior means of hidden states:
10% 25% 50% 75% 90%

Normal -0.007 -0.005 -0.004 -0.004 -0.003
Gain-1 0.437 0.449 0.454 0.454 0.462
Gain-2 0.606 0.625 0.635 0.658 0.661
Gain-3 0.877 0.909 0.918 0.957 0.990

Distribution of the posterior variances of hidden states:
10% 25% 50% 75% 90%

Normal 0.004 0.004 0.004 0.004 0.004
Gain-1 0.004 0.004 0.004 0.004 0.004
Gain-2 0.004 0.004 0.004 0.004 0.004
Gain-3 0.004 0.004 0.004 0.004 0.004

Parameters of the transition functions:
Normal Gain-1 Gain-2 Gain-3

Normal 0.000 6.093 8.480 8.312
Gain-1 2.736 0.000 1.985 3.507
Gain-2 2.008 0.001 0.000 0.732
Gain-3 0.238 0.023 0.069 0.000

================================================

> summary(fit.arrays[["gm07081LR"]])$mu

10% 25% 50% 75% 90%
Normal -0.138791017 -0.138791017 -0.138791017 -0.119720784 -1.170062e-01
Normal -0.003748636 -0.003103135 -0.003103135 -0.001638606 -5.572882e-05
Gain-1 0.217765922 0.225574230 0.225574230 0.245239875 2.677448e-01
Gain-2 0.478619524 0.482270506 0.499055357 0.499055357 5.039175e-01

So we can apply the same methods used in previous sections to the whole
set of arrays, to a given array (or to a given chromosome of a given array if we
�t a di�erent model to every chromosome for each array).
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We may want to plot the �t for all the arrays. We can do it in two di�erent
ways:

� Plot for every probe the percentage of arrays which have that probe
marginally altered.

� Plot for every probe the average probability on all arrays.

> plot(fit.arrays, show = "frequency")

0 500000 1000000 1500000 2000000 2500000 3000000

−1
00

−5
0

0
50

10
0

Pos.Base

Pe
rc

en
t o

f c
op

y 
ga

in
/lo

ss
 in

 a
ll a

rra
ys

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

1 2 3 4 5 6 7 8 9 10 11 12 13141516171819202122231

> plot(fit.arrays, show = "average")
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We can also compare the classi�cation of genes with the true states of Sni-
jders:

> seq.states <- model.averaging(fit.arrays[["gm07081LR"]])$states

> table(seq.states, gm07081$Statut[not.NA])

seq.states Normal Trisomy
Loss 0 0
Normal 1878 1
Gain 11 67

3.4 Probabilistic Common Regions

RJaCGH can also compute probabilistic common regions. Note that these re-
gions are di�erent to other approaches, because they take into account the
precision or variability inherent to the estimation of the true copy number for
every probe on every array considered. There are two di�erent methods:

� pREC_A returns regions common to the whole set of arrays with a joint
probability of alteration as high as a given threshold.

� pREC_S returns regions shared by a subset of arrays (of size as high as a
given threshold) with a joint probability within each array as high as a
given threshold.

pREC_A detects regions common for most of the arrays. It has three argu-
ments, p for the minimum probability to call a region altered, alteration for
the type of alteration ('Gain' or 'Loss') and array.weights for the weight that
we want to give to each array (by default, it is the same for all of them).

We can �nd common regions for the three arrays from the last section:
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> Regions.Gain <- pREC_A(fit.arrays, p = 0.33, alteration = "Gain")

> Regions.Loss <- pREC_A(fit.arrays, p = 0.33, alteration = "Loss")

> Regions.Gain

Chromosome Start End Probes Prob. Gain
1 2 245000 245000 1 0.6617995
2 7 0 6868 13 0.3333333
3 7 9696 17181 3 0.3333333
4 7 18019 38319 25 0.3333333
5 7 40773 57971 24 0.3333333
6 11 13646 13646 1 0.3333333
7 11 48923 48923 1 0.3333333
8 11 76848 76848 1 0.3333333
9 11 128440 128440 1 0.3333333
10 12 0 0 1 0.6635330
11 12 94805 94805 1 0.6666667
12 17 48088 48088 1 0.3333333
13 17 56276 56276 1 0.6666667
14 20 0 73000 85 0.3333333
15 22 3258 33000 14 0.3333333
16 23 4000 149342 45 0.6666667

> Regions.Loss

[1] "No common minimal regions found"

If we want to make this results into a data.frame we would do:

> RG <- as.data.frame(print(Regions.Gain))

pREC_S is useful to detect subset of arrays that share common alterations.
It has the arguments p and alteration but also a freq.array that sets the
minimum number of arrays that can form a region.

> Regions <- pREC_S(fit.arrays, p = 0.75, alteration = "Gain",

+ freq.array = 2)

> Regions

Common regions of Gain of at least 0.75 probability:
Chromosome Start End Probes Arrays

1 2 245000 245000 1 gm07081LR;gm07408LR
2 12 0 0 1 gm07081LR;gm07408LR
3 12 94805 94805 1 gm07081LR;gm07408LR
4 17 56276 56276 1 gm07081LR;gm07408LR
5 20 70647 70647 1 gm07081LR;gm07408LR
6 23 4000 149342 45 gm10315LR;gm07408LR

The result of plotting this object is an image plot that shows for each pair
of arrays the number of alterations shared and their mean lengths. Besides,
a hierarchical clustering based in that measure is performed and the arrays
reordered:
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> plot(Regions, cex.axis = 0.6)

$probes
Var2

Var1 gm07081LR gm10315LR gm07408LR
gm07081LR 0 0 5
gm10315LR 0 0 45
gm07408LR 5 45 0

$length
Var2

Var1 gm07081LR gm10315LR gm07408LR
gm07081LR 0 0.000 1.000
gm10315LR 0 0.000 3229.844
gm07408LR 1 3229.844 0.000

gm
07

08
1L
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10

31
5L
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40
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gm07081LR

gm10315LR
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0 (0)

0 (0)

5 (1)

0 (0)

0 (0)

45 (3229.8)

5 (1)

45 (3229.8)

0 (0)

3.5 Checking convergence

We have seen the function trace.plot to check convergence in a given model,
but the best way to be sure that RJaCGH has converged is to run several parallel
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chains and draw the Gelman-Brooks convergence plot. In this example, we use
data from cell line gm01524, but only from chromosome 1:

> fit <- list()

> for (i in 1:4) {

+ fit[[i]] <- RJaCGH(y = y2[Chrom2 == 1], Pos = Pos2[Chrom2 ==

+ 1], k.max = 4, burnin = 50000, TOT = 10000, jump.parameters = jump.parameters)

+ }

> gelman.brooks.plot(fit)
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Gelman−Brooks diagnostic plots

We should check that the lines converge to zero, or at least that remain
under 1.1. The values that return the function should be under 1.1, too. The
results are satisfactory, so we can join the four chains into one:

> fit <- collapseChain(fit)

And use the former methods to the object fit.
Other useful function is chainsSelect, which deletes 'outliers' chains. See

help �le for details.
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