
Simple and Canonical Correspondence Analysis

Using the R Package anacor

Jan de Leeuw
University of California, Los Angeles

Patrick Mair
Wirtschaftsuniversität Wien

Abstract

This paper presents the R package anacor for the computation of simple and canonical
correspondence analysis with missing values. The canonical correspondence analysis is spec-
ified in a rather general way by imposing covariates on the rows and/or the columns of the
two-dimensional frequency table. The package allows for scaling methods such as standard,
Benzécri, centroid, and Goodman scaling. In addition, along with well-known two- and three-
dimensional joint plots including confidence ellipsoids, it offers alternative plotting possibilities
in terms of transformation plots, Benzécri plots, and regression plots.
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1. Introduction

Correspondence Analysis (CA; Benzécri 1973) is a multivariate descriptive method based on a data
matrix with non-negative elements and related to principal component analysis (PCA). Basically,
CA can be computed for any kind of data but typically it is applied to frequencies formed by
categorical data. Being an exploratoy tool for data analysis, CA emphasizes two- and three-
dimensional graphical representation of the results.

In this paper we revise briefly mathematical foundations of simple CA and canonical CA in terms
of singular value decomposition (SVD). The main focus is on the computational implementation
in R (R Development Core Team 2007), on scaling methods based on Benzécri distances, centroid
principles, and Fischer-Maung decomposition and on the elaboration of corresponding graphical.
More details about CA, various extensions and related methods can be found in Greenacre (1984),
Gifi (1990) and Greenacre and Blasius (2006) and numerous practical issues are discussed in
Greenacre (2007).

Recently, several R packages have been implemented and updated, respectively. The ca package by
Nenadić and Greenacre (2006) allows for the computation of simple CA using SVD on standardized
residuals. Multiple CA is carried out in terms of SVD on either the indicator matrix or the Burt
matrix. Joint CA, which can be regarded as variant of multiple CA excluding the diagonal cross
tabulations when establishing the Burt matrix, can be performed as well as subset CA. The
package provides two- and three-dimensional plots of standard and principal coordinates with
various scaling options.

The ade4 package (Chessel, Dofour, and Thioulouse 2004; Dray, Dofour, and Chessel 2007) which
has been developed within an ecological context, allows for multiple CA, canonical CA, disriminant
CA, fuzzy CA and other extensions. Another related package is vegan (Dixon 2003), also developed
within the field of ecology, which allows for constrained and partially constrained CA as well.
Another related package is homals (de Leeuw and Mair 2008) which fits models of the Gifi-family
(homogeneity analysis aka multiple CA, nonlinear PCA, nonlinear canonical correlation analysis).
Additional CA-related packages and functions in R can be found in Mair and Hatzinger (2007).

The anacor package we present offers, compared to the packages above, additional possibilites for
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scaling the scores in simple CA and canonical CA, additional graphical features, and allows for
missing values which are imputed using the Nora’s algorithm (Nora 1975).

2. Simple Correspondence Analysis

2.1. Basic Principles of Simple CA

The input unit of analysis is a bivariate frequency table F having n rows (i = 1, . . . , n) and m
columns (j = 1, . . . ,m). Thus the fij are non-negative integers. Without loss of generality we
suppose that n ≥ m. The row marginals fi• are collected in a n × n diagonal matrix D and the
column marginals f•j in a m×m diagonal matrix E. Suppose un and um are vectors of lengths n
and m with all elements equal to 1. It follows that the grand total can be written as n = u′nFum.
Suppose we want to find row scores and column scores such that the correlation in the bivariate
table F is as large as possible. This means maximizing λ(x, y) = n−1x′Fy over the row score
vector x and column score vector y. These vectors are centered by means of

u′nDx = 0, (1a)
u′mEy = 0, (1b)

and normalized on the grand mean by

x′Dx = n, (1c)
y′Ey = n. (1d)

Such vectors, i.e. both centered and normalized, are called standardized. The optimal x and y
must satisfy the centering and normalization conditions in (1), as well as the stationary equations

Fy = ξxDx+ µxDu, (2a)
F ′x = ξyEy + µyEu, (2b)

where (ξx, ξy, µx.µy) are Lagrange multipliers. By using the side constraints (1) we find that the
Lagrange multipliers must satisfy ξx = ξy = σ(x, y) and µx = µy = 0. Thus we can solve the
simpler system

Fy = σDx, (3a)
F ′x = σEy, (3b)

together with the side conditions in (1). The system in (3) is a singular value problem. We find
the stationary values of σ as the singular values of

Z = D−
1
2FE−

1
2 . (4)

Since m ≤ n, we have the singular value decomposition Z = PΣQ′. P is n× n and composed of
the left singular vectors; Q is m ×m and composed of the right singular vectors. Both matrices
are orthonormal, i.e. P ′P = Q′Q = I. Σ is the diagonal matrix containing the min(n,m) = m
singular values in descending order.
The m solutions of the stationary equations (3) can be collected in

X =
√

nD−
1
2P, (5a)

Y =
√

nE−
1
2Q, (5b)

where X is the n × m of row scores and Y is m × m. Except for the case of multiple singular
values, the solutions are uniquely determined. If (x, y, σ) solves (3) we shall call it a singular triple,
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while the two vectors (x, y) are a singular pair. In total there are s = 0, . . . ,m− 1 singular triples
(xs, ys, σs) where xs and ys are the columns of X and Y respectively.
We still have to verify if the m columns of X and Y satisfy the standardization conditions in (1).
First, X ′DX = nP ′P = nI and Y ′EY = nQ′Q = nI, which means both X and Y are normalized.
In fact we have orthonormality, i.e. if (xs, ys, σs) and (xs′ , ys′ , σs′) are different singular triples,
then x′sDxs′ = 0 and y′sEys′ = 0.
To investigate centering, we observe that (un, um, 1) is a singular triple, which is often called the
trivial solution, because it does not depend on the data. All other singular triples (xs, ys, λs) with
σs < 1 are consequently orthogonal to the trivial one, i.e. satisfy u′nDx = 0 and u′mEy = 0. If
there are other singular triples (xs, ys, 1) with perfect correlation, then xs and ys can always be
chosen to be orthogonal to un and um as well. It follows that all singular triples define stationary
values of σ, except for (un, um, 1) which does not satisfy the centering conditions.
The squared singular values σ2 correspond to the eigenvalues λ of Z ′Z and ZZ ′, respectively. Let
us denote the corresponding diagonal matrix of eigenvalues by Λ. In classical CA terminology (see
e.g. Greenacre 1984) these eigenvalues are referred to as principal inertias. By ignoring λ0 based
on the trivial triple (x0, y0, 1), the Pearson decomposition can be established by means of

n

m−1∑
s=1

σ2
s = n

m−1∑
s=1

λs = n(tr Z ′Z − 1) = χ2(F ). (6)

χ2(F ) is called total inertia and corresponds to the Pearson chi-square statistic for independence
of the table F with df = (n − 1)(m − 1). The single composites are the contributions of each
dimension to the total inertia. Correspondingly, for each dimension a percentage reflecting the
contribution of dimension s to the total intertia can be computed. The larger the eigenvalue, the
larger the contribution. In practical applications, a “good” CA solution is characterized by large
eigenvalues for the first few dimensions.

2.2. Methods of Scaling in Simple CA

The basic plot in CA is the joint plot which draws parts of X and Y jointly in a low-dimensional
Euclidean space. Note that instead of joint plot sometimes the term CA map is used. Both sym-
metric and asymmetric CA maps can be drawn with the ca package and corresponding descriptions
are given in Nenadić and Greenacre (2006).
We provide additional methods for scaling X and Y which lead to different interpretations of the
distances in the joint plot. Ideally we want the dominant geometric features of the plot (distances,
angles, projections) to correspond with aspects of the data. So let us look at various ways of
plotting row-points and column-points in p dimensions using the truncated solutions Xp which is
n× p, and Yp which is m× p.
In the simplest case we can use the standardized solution of Xp and Yp without any additional
rescaling and plot the coordinates into a device. This corresponds to a symmetric CA map and
the coordinates are referred to as standard coordinates.
An additional option of scaling is based on Benzécri distances, also known as chi-square distances.
A Benzécri distance between two rows i and k is defined by

δ2ik(F ) =
m∑

j=1

(
fij

fi•
− fkj

fi•

)2

/f•j . (7)

If we use ei and ek for unit vectors of length n, then

δ2ik(F ) = (ei − ek)′D−1FE−1F ′D−1(ei − ek) =

= (ei − ek)′D−
1
2ZZ ′D−

1
2 (ei − ek) =

= (ei − ek)′D−
1
2PΣ2P ′D−

1
2 (ei − ek) =

= (ei − ek)′XΣ2X ′(ei − ek).
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Thus, the Benzécri distances between the rows of F are equal to the Euclidean distances between
the rows of XΣ. Again, Xp is the row scores submatrix and Σp the submatrix containing the first
p ≤ m− 1 singular values. Based on these matrices fitted Benzécri distances can be computed. It
follows that

dik(X1Σ1) ≤ dik(X2Σ2) ≤ · · · ≤ dik(Xm−1Σm−1) = δik(F ). (8)

In the same way the Euclidean distances between the rows of Y Σ approximate the Benzécri
distances between the columns of F . In CA terminology this type of coordinates is sometimes
referred to as principal coordinates of rows and columns. Based on these distances we can compute
a Benzécri root mean squared error (RSME) for the rows and columns separately (see also de Leeuw
and Meulman 1986). For the rows it can be expressed as

RMSE =

√
1

n(n− 1)

∑
i

∑
k

(δik(Z)− δik(Xp))2. (9)

A third way to scale the scores is based on the centroid principle. The row centroids (averages)
expressed by means of the column scores are X(Y ) = D−1FY . In the same way, the column
centroids are given by Y (X) = E−1F ′X. These equations will be used in Section 5.1 to produce
the regression plot. Using this notation, the stationary equations can be rewritten as

X(Y ) = XΣ, (10a)

Y (X) = Y Σ. (10b)

This shows that for each singular triple (x, y, σ) the regression of y on x and the regression of x on y
are both linear, go through the origin, and have slopes λ and λ−1. Depending on whether X and/or
Y are centered, the distances between the points in the joint plot can be interpreted as follows.
Suppose that we plot the standard scores of Xp together with Y (Xp). Distances between column
points approximate Benzécri distances and distances between row points and column points can
be interpreted in terms of the centroid principle. Observe that in this scaling the column points
will be inside the convex hull of the row points, and if the singular values are small, column points
will form a much smaller cloud than row-points.
The same applies if we reverse the role of Xp and Yp. If we plot Y (Xp) and X(Yp) in the plane,
then distances between row points in the plane approximate Benzécri distances between rows and
distances between column points in the plane approximate Benzécri distances between columns.
Unfortunately, distances between row points and column points do not correspond directly to
simple properties of the data.
A further possibility of scaling is Goodman scaling which starts with the Fisher-Maung decompo-
sition. Straightforwardly, Z = PΣQ′ can be rewritten as D−

1
2FE−

1
2 = D

1
2XΣY ′E

1
2 . It follows

that F = DXΣY ′E. Now we plot the row-points XpΣ
1
2
p and the column points YpΣ

1
2
p . The scalar

product of the two sets of points approximates XΣY ′, which is the matrix of Pearson residuals

Nfij

fi•f•j
− 1. (11)

For this Goodman scaling there does not seem to be an obvious interpretation in terms of distances.
This is somewhat unfortunate because people find distances much easier to understand and work
with than scalar products.
It goes without saying that if the singular values in Σp are close to one, the four different joint
plots will be similar. Generally, plots based on the symmetric Benzécri and Goodman scalings will
tend to be similar, but the asymmetric centroid scalings can lead to quite different plots.

3. Canonical Correspondence Analysis
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3.1. Basic Principles of Canonical CA

Ter Braak (1986) presented canonical CA within an ecological context having the situation where
the whole dataset consists of two sets: data on the occurrence or abundance of a number of
species, and data on a number of environmental variables measured which may help to explain
the interpretation of the scaled solution. In other words, they are incorporated as effects in the
CA computation in order to examine their influence on the scores.
To give a few examples outside ecology, in behavioral sciences such environmental variables could
be various types schools, in medical sciences different hospitals etc. Thus, from this particular
point of view canonical CA reflects multilevel situations in some sense; from a general point of
view it reflects any type of effects on the rows and/or columns of the table. We introduce canonical
CA from the general perspective of having covariates A on the row margins fi• and/or covariates
B on the column margins f•j . Hence, canonical CA can be derived by means of a linear regression
of A and B on the row scores X and the column scores Y , i.e.

X = AU, (12a)
Y = BV, (12b)

where A and B are known matrices of dimensions n × a and m × b, respectively, and U and V
are weights. We suppose, without loss of generality, that A and B are of full column rank. We
also suppose that un is in the column-space of A and um is in the column-space of B. Note that
ordinary CA is a special case of canonical CA in which both A and B are equal to the identity.
By using basically the same derivation as in the previous section, we find the singular value problem

(A′FB)V = (A′DA)UΣ, (13a)
(B′F ′A)U = (B′EB)V Σ. (13b)

Analogous to Section 2.1, X and Y , expressed by means of (12), satisfy the standardization
conditions U ′A′DAU = nI and V ′B′EBV = nI. If un = Ag and um = Bh, then (g, h) defines a
solution to (13) with σ = 1. Thus we still have the dominant trivial solution which makes sure
that all other singular pairs are centered.
The problem that we have to solve is the SVD on Z which for canonical CA can be expressed as

Z = (A′DA)−
1
2A′FB(B′EB)−

1
2 (14)

using the inverse of the symmetric square roots of A′DA and B′EB. Suppose again that Z = PΣQ′

is the singular value decomposition of Z. Then U = (A′DA)−
1
2P and V = (B′EB)−

1
2Q are the

optimal solutions for the weights in our maximum correlation problem, and the corresponding
scores are X = A(A′DA)−

1
2P and Y = B(B′EB)−

1
2Q. Both X and Y are normalized, orthogonal,

and, except for the dominant solution, centered. Again, X and Y are the standard coordinates
which can be rescaled by means of the principles described in Section 3.2.
If we assume, for convenience, that un is the first column of A and um is the first column of B,
then the elements of the first row and column of Z are zero, except for element z11, which is
equal to one. The other (a − 1)(b − 1) elements of Z are, under the hypothesis of independence,
asymptotically independent N(0, 1) distributed. Thus

n

p∑
s=1

σ2
s = n

p∑
s=1

λs = n(tr Z ′Z − 1) = χ2 (FA,B) , (15)

which is asymptotically a chi-square with df = (a−1)(b−1). Hence, in canonical CA we compute
a canonical partition of the components of chi-square corresponding with orthogonal contrasts A
and B.

3.2. Methods of Scaling in Canonical CA
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In this section the same methods of rescaling of row and column scores used for simple CA, are
applied to canonical CA. Again, we start with Benzécri distances δ2ik (FAB) between two rows i
and k and using unit vectors ei and ek of length n:

δ2ik (FAB) = (ei − ek)′(A′DA)−1A′FB(B′EB)−1B′F ′A(A′DA)−1(ei − ek) =

= (ei − ek)′(A′DA)−
1
2ZZ ′(A′DA)−

1
2 (ei − ek) =

= (ei − ek)′(A′DA)−
1
2PΣ2P ′(A′DA)−

1
2 (ei − ek) =

= (ei − ek)′XΣ2X ′(ei − ek) =

= (ei − ek)′AUΣ2U ′A′(ei − ek).

Analogous to (8) the monotonicity property holds for the distances for the first p singular values
in terms of the row scores submatrix Xp and the singular value submatrix Σp. The Benzécri
distances for the columns can be derived in an analogous manner.
For the centroid principle we rewrite the stationary equations in (13) as follows (cf. Equation 10):

A(A′DA)−1A′DX? = XΣ, (16a)

B(B′EB)−1B′EY ? = Y Σ, (16b)

where

X? = D−1FY = X(Y ), (16c)

Y ? = E−1F ′X = Y (X), (16d)

and of course X = AU and Y = BV . We see that the columns of X are proportional to the
projections in the metric D of X? on the space spanned by the columns of A. The same applies to
the column scores Y . Note that if we solve the linear regression regression problem of minimizing

tr (X? −AT )′D(X? −AT ) (17)

then the minimizer is T = (A′DA)−1A′DX?. As a solution of the stationary equations is follows
that T = UΣ. Ter Braak (1986) calls T the canonical coefficients. In our more general setup
there are also canonical coefficients for the columns, which are the regression coefficients when
regressing Y ? on B.
Within the context of canonical CA there are various matrices of correlation coefficients that can
be computed to give canonical loadings. For the rows, we can correlate X,X?, and A. Now
X ′DX? = X ′FY = Σ. We know that X ′DX = I, but generally X? is not normalized, and thus
the correlations are not equal to Σ. In fact, using the Loewner order, (X?)′DX? = Y ′F ′D−1FY .
Y ′EY = I and, since Λ = (X?)′DA′(A′DA)−1AD by 16a, also (X?)′DX? & Λ. If the columns of
A are centered and normalized, the correlations become Σ. For the columns, the situation is the
same for Y, Y ? and B.
The Fisher-Maung decomposition is merely a rewriting of the singular value decomposition. The
most obvious generalization in the constrained case uses

(A′DA)−
1
2A′FB(B′EB)−

1
2 = PΣQ′, (18a)

or

(A′DA)−1A′FB(B′EB)−1 = UΣV ′, (18b)

or

A′FB = (A′DA)UΣV ′(B′EB) = A′(DXΣY ′E)B. (18c)
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This can be written as A′RB = 0 with

rij = fij − fi•f•j(1 +
c−1∑
s=1

σsxisyjs), (19)

where c = min(a, b).
Note that the joint plots pertaining to the different scaling methods are again based on the p-
dimensional solution with the corresponding row scores Xp based on the linear combination of
matrix A, and the corresponding column scores Yp based on the linear combination of matrix B.

4. Additional Topics

4.1. Confidence Ellipsoids Using the Delta Method

The core computation in the anacor package is the SVD on Z = PΣQ′. As a result we get the
n × n matrix P of left singular vectors, the m × m matrix Q of the right singular vectors, the
diagonal matrix Σ of order m containing the singular values, and, correspondingly, the eigenvalue
matrix Λ. Based on these results the n×p row score matrix Xp and the m×p column score matrix
are computed (standard scores). At this point an important issue is the replication stability of the
results in terms of confidence ellipsoids around the standard scores in the joint plot.
A general formal framework to examine stability in multivariate methods is given in Gifi (1990,
Chapter 12). The starting point of the replication stability is the well-known delta method. Let us
assume that we have a sequence of multivariate random variables xn, it follows that

√
n(xn−µ) D→

N(0,Σ). If we apply a transformation φ(xn) the delta method states that
√

n(φxn − φ(µ)) =
√

n∇φ(µ)(xn − µ) D→ N(0,∇φ(µ)′Σ∇φ(µ)). In simple words: The delta method provides the
transformed variance-covariance (VC) matrix which is based on the gradient of φ evaluated at µ.
To apply this method for CA we have to embed our observations pij = fij/n into a sequence of
random variables, i.e. a sequence of multinomial distributed random variables with cell proba-
bilities πij . Asymptotic theory states that

√
n(p − π) D→ N(0,Π − ππ′) where p and π are the

vectors of relative frequencies and probabilities and Π is the diagonal matrix with the elements of
π on the diagonal.
The SVD system of transformations φ we use is ZQ = PΣ and Z ′P = QΣ with P ′P = Q′Q = I.
Expressions for the partial derivatives ∂φ/∂pij as well as other related derivatives are given in de
Leeuw (2008).

4.2. Reconstitution Algorithm for Incomplete Tables

As an additional feature of the anacor package, incomplete tables are allowed. The algorithm we
use was proposed by Nora (1975) and revised by de Leeuw and van der Heiden (1988). This algo-
rithm should not be mistaken for the CA reconstitution formula which allows for the reconstruction
of the data matrix from the scores. Nora’s algorithm is rather based on the complementary use of
CA and log-linear models (see van der Heiden and de Leeuw 1985) and provides a decomposition
of the residuals from independence. We will describe briefly the reconstitution of order 0 which is
implemented in anacor.
We start at iteration l = 0 by setting the missing values in F to zero. The corresponding table
which will be iteratively updated is denoted by F (0). Correspondingly, the row margins are f (0)

i• ,
the column margins f

(0)
•j and the grand mean f

(0)
•• . The elements of the new table F (1) are

computed under independence. Pertaining to iteration l, this corresponds to

f
(l+1)
ij =

f
(l)
i• f

(l)
•j

f
(l)
••

. (20)
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Within each iteration a measure for the change in the frequencies is computed, i.e. H(l) =∑n
i=1

∑m
j=1 f

(0)
ij log f (l)

ij . The iteration stops if |H(l)−H(l−1)| < ε. After reaching convergence, we
set F := F (l) and we proceed with the computations from Section 2 and Section 3, respectively.

5. Applications of Simple and Canonical CA

5.1. Plotting options in anacor

The basic function in the package is anacor which performs simple or canonical CA with different
scaling options. The NA cells in the table will be imputed using the reconstitution algorithm. The
results are stored in an object of class "anacor". For objects of these class a print.anacor and a
summary.anacor method is provided. Two-dimensional plots can be produced with plot.anacor,
static 3-D plots with plot3dstatic.anacor and dynamic rgl-plots with plot3d.anacor. The
type of the plot can be specified by the argument plot.type:

• "jointplot": Plots row and column scores into the same device (also available as 3-D).

• "rowplot", "colplot": Plots the row/column scores into separate devices (also available as
3-D).

• "graphplot": This plot type is an unlabeled version of the joint plot where the points are
connected by lines. Options are provided (i.e. wlines) to steer the line thickness indicating
the connection strength.

• "regplot": First, the unscaled solution is plotted. A frequency grid for the row categories
(x-axis) and column categories (y-axis) is produced. The regression line is based on the
category weighted means of the relative frequencies. More precise, the black line on the
column-wise means (x-axis) and the column category on the y-axis, the red line is based on
the row categories (x-axis) and the row-wise means on the y-axis. In a second device the
scaled solution is plotted. The frequency grid is determined by the row scores (x-axis) and
the column scores(y-axis). Now, instead of the row/column categories, the column scores
(black line y-axis) and the row scores (red line x-axis) are used (see centroid principle in
Section 2.2).

• "transplot": The transformation plot plots the initial row/column categories against the
scaled row/column scores.

• "benzplot": The Benzécri plot shows the observed distances against the fitted Benzécri
distances; assumed that the row and/or columns in the CA result are Benzécri scaled. For
the rows the observed distances are based on D−

1
2ZZ ′D−

1
2 and the fitted distances on

XpΣ2
pX
′
p; for the columns on E−

1
2ZZ ′E−

1
2 and YpY

′
p , respectively.

In addition, anacor offers various CA utility functions: expandFrame() expands a data frame into
a indicator supermatrix, burtTable() establishes the Burt matrix, and mkIndiList() returns a
list of codings with options for crisp indicators, numerical versions, and fuzzy coding.

5.2. Applications of Simple CA

We start with an application of simple CA on Tocher’s eye color data (Maung 1941) collected on
5387 Scottish school children. This frequency table consists of the eye color in the rows (blue,
light, medium, dark) and the hair color in the columns (fair, red, medium, dark, black).

> library(anacor)

> data(tocher)

> res <- anacor(tocher, scaling = c("standard", "centroid"))

> res
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CA fit:
Sum of eigenvalues: 0.2293315

Total chi-square value: 1240.039

Chi-Square decomposition:
Chisq Proportion Cumulative Proportion

Component 1 1073.331 0.866 0.866
Component 2 162.077 0.131 0.996
Component 3 4.630 0.004 1.000

> plot(res, plot.type = "jointplot", ylim = c(-1.5, 1.5))

> plot(res, plot.type = "graphplot", wlines = 5)

For this two-dimensional solution we use asymmetric scaling by having standard coordinates for
the rows and principal coordinates for the columns. As graphical representation methods the joint
plot including 95% confidence ellipsoids and the graph plot are chosen (see Figure 1).
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Figure 1: Joint Plot and Graph Plot for Tocher Dataset.

As mentioned above the coordinates of the points in both plots are the same. Note that the
column scores (blue points) in the joint plot are scaled around their centroid. The row scores (red
points) are not rescaled. In the graph plot the columns scores are represented by blue triangles
and the row scores by red points. The thickness of the connecting lines reflect the frequency of
the table or, in other words, the strength of the connection. The distances within row/column
categories can be interpreted and we see that black/dark hair as well as fair/red hair are quite
close to each other. The same applies to blue/light eyes. The distances between single row and
column categories can not be interpreted.
We can run a χ2-test of independence

> chisq.test(tocher)

Pearson's Chi-squared test

data: tocher
X-squared = 1240.039, df = 12, p-value < 2.2e-16
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and see that it is highly significant. Looking at the χ2-decomposition of the CA result we see that
the first component accounts for 88.6% of the total χ2-value (i.e. inertia).

In a second example we show two CA solutions for the Bitterling dataset (Wiepkema 1961) which
concerns the reproductive behavior of male bitterlings. The data are derived from 13 sequences
using a moving time-window of size two (time 1 in rows, time 2 in columns) and are organized in
a 14× 14 table with the following categories: jerking (jk), turning beats (tu), head butting (hb),
chasing (chs), fleeing (ft), quivering (qu), leading (le), head down posture (hdp), skimming (sk),
snapping (sn), chafing (chf), and finflickering (ffl).

We fit a two-dimensional and a five-dimensional CA solution using Benzécri scaling. With two di-
mensions we explain 53.2% of the total inerita (sum of eigenvalues is 1.33) and with five dimensions
we explain 85.8% (sum of eigenvalues is 2.15).

> data(bitterling)

> res1 <- anacor(bitterling, ndim = 2, scaling = c("Benzecri",

+ "Benzecri"))

> res2 <- anacor(bitterling, ndim = 5, scaling = c("Benzecri",

+ "Benzecri"))

> res2

CA fit:
Sum of eigenvalues: 2.147791
Benzecri RMSE rows: 0.0002484621
Benzecri RMSE columns: 0.000225833

Total chi-square value: 14589.07

Chi-Square decomposition:
Chisq Proportion Cumulative Proportion

Component 1 4026.287 0.276 0.276
Component 2 3730.218 0.256 0.532
Component 3 1996.814 0.137 0.669
Component 4 1635.673 0.112 0.781
Component 5 1145.514 0.079 0.859
Component 6 904.313 0.062 0.921
Component 7 832.702 0.057 0.978
Component 8 284.566 0.020 0.998
Component 9 31.421 0.002 1.000
Component 10 1.357 0.000 1.000
Component 11 0.206 0.000 1.000

> plot(res1, plot.type = "benzplot", main = "Benzecri Distances (2D)")

> plot(res2, plot.type = "benzplot", main = "Benzecri Distances (5D)")

The improvement of the five-dimensional solution with respect to the two-dimensional one is
reflected by the Benzécri plots in Figure 2. For a perfect (saturated) solution the points would lie
on the diagonal. This plot can be used as an overall goodness-of-fit plot or, alternatively, single
distances can be interpreted.

The data for the next example were collected by Glass (1954). In this 7×7 table the occupational
status of fathers (rows) and sons (columns) of 3497 British families were cross-classified. The
categories are professional and high administrative (PROF), managerial and executive (EXEC),
higher supervisory (HSUP), lower supervisory (LSUP), skilled manual and routine non-manual
(SKIL), semi-skilled manual (SEMI), and unskilled manual (UNSK).
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Figure 2: Benzécri Plots for Bitterling Data.

> data(glass)

> res <- anacor(glass)

> plot(res, plot.type = "regplot", xlab = "fathers occupation",

+ ylab = "sons occupation")

Figure 3 represents regression plots for the first CA dimension. On the left hand side we show the
unscaled solution. The father’s occupation is on the abscissae and the occupation of the sons on
the ordinate. The grid represents the (transposed) table with the corresponding frequencies. Let
us focus on the red line first: The coordinates in x-direction correspond to single row categories aka
father’s occupation. Now, for each father occupation (i.e. conditional) the category-weighted aver-
age of the (relative) frequencies is computed. The weights range from 1 to m. The corresponding
points are connected and we see that the son’s occupation increases monotonically conditional on
the father’s occupation. The same applies to the black line. Conditional on each son’s occupation
the relative frequencies are weighted from 1 to n. The average values are plotted in x-direction
and are again monotonically increasing. The monotonicity is not surprising since the categories
(professions) are ordered in the table (from PROF down to UNSK) and the variables are highly



12 Simple and Canonical CA with anacor

Unscaled Solution Dimension 1

fathers occupation  categories

so
ns

 o
cc

up
at

io
n 

 c
at

eg
or

ie
s

PROF EXEC HSUP LSUP SKIL SEMI UNSK

P
R

O
F

E
X

E
C

H
S

U
P

LS
U

P
S

K
IL

S
E

M
I

U
N

S
K

●

●

●

●

●

●

●

●

●

●

●

●

●

●

50

19

26

8

18

6

2

16

40

34

18

31

8

3

12

35

65

66

123

23

21

11

20

58

110

223

64

32

14

36

114

185

714

258

189

0

6

19

40

179

143

71

0

3

14

32

141

91

106

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Scaled Solution Dimension 1

fathers occupation  scores
so

ns
 o

cc
up

at
io

n 
 s

co
re

s

●

●

●

●

●

●●

●

●

●

●

●

●
●

50

19

26

8

18

6
2

16

40

34

18

31

8
3

12

35

65

66

123

23
21

11

20

58

110

223

64
32

14

36

114

185

714

258
189

0

6

19

40

179

143
71

0

3

14

32

141

91
106

UNSK SKIL LSUP HSUP EXEC PROF

U
N

S
K

S
K

IL
LS

U
P

H
S

U
P

E
X

E
C

P
R

O
F

Figure 3: Regression Plots for Glass Data.

dependent (χ2 = 1361.742, df = 36, p < 0.000).
On the right hand side of Figure 3 we find the scaled solution. The first obvious characteristic is
that the grid components are not equidistant anymore due to the category scaling. The ordering
of the professions in terms of the scaled values is given on the top and the right, respectively. Com-
pared to the unscaled solution they are reversed. By means of these grid margins we see that the
differences between PROF, EXEC, and HSUP are considerably large compared to lower profession
levels such as UNSK, SEMI, and SKIL. The regression lines are computed in an analogous fashion
than in the unscaled solution; with the exception that the category scores are taken as weights.
The red line is composed of the weighted averages conditional on the row scores on the abscissae,
the black line by the weighted averages conditional on the columns scores on the ordinate. This
leads to two linear “regressions” with the row/column scores as predictors.
As a final interpretation we see that there is a positive relationship between the intra-familiar
occupations: The higher the father’s occupation level, the higher the son’s occupation level. More
detailed, if the father occupies one of the three highest levels, the son is (on the average) in the
level below. For the three lowest levels we have the opposite case: On the average the son is in
the next higher level.

5.3. Canonical CA on Maxwell Data

A hypothetical dataset by Maxwell (1961) is used to demonstrate his method of discriminant anal-
ysis. We will use it to illustrate canonical CA. The data consist of three criterion groups (columns),
i.e. schizophrenic, manic-depressive and anxiety state; and four binary predictor variables each
indicating either presence or absence of a certain symptom. The four symptoms are anxiety suspi-
cion, schizophrenic type of thought disorders, and delusions of guilt. These four binary variables
were factorially combined to form 16 distinct patterns of symptoms (predictor patterns), and each
of these patterns is identified with a row of the table. In total we have a cross-classification of 620
patients according to the 16 patterns of symptoms and the three criterion groups.
We fit a symmetric (Goodman scaled) two-dimensional solution and get an amount of explained
inertia of 87.2%.

> data(maxwell)

> res <- anacor(maxwell$table, row.covariates = maxwell$row.covariates,
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+ scaling = c("Goodman", "Goodman"))

> res

CA fit:
Sum of eigenvalues: 0.6553413

Total chi-square value: 406.312

Chi-Square decomposition:
Chisq Proportion Cumulative Proportion

Component 1 302.568 0.650 0.650
Component 2 103.743 0.223 0.872

> plot(res, plot.type = "colplot", xlim = c(-1.5, 1), arrows = TRUE,

+ conf = NULL)

> plot(res, plot.type = "transplot", legpos = "topright")

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

Column Plot

Dimension 1

D
im

en
si

on
 2

schizophrenic

manic.depressive

anxiety.disorder

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Transformation Plot − Rows

row categories

ro
w

 s
co

re
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dimension  1
Dimension  2

Figure 4: Column Scores and Transformation Plot for Maxwell Data.

The plot of the column scores on the left hand side of Figure 4 shows that the mental diseases
go into somewhat different directions and thus they are not really related to each other. The
transformation plot on the right hand side shows interesting patterns. For the first dimension a
cyclic behavior over the predictors is identifiable. The scores (y-axis) for pairs of points 1-2, 3-4,
5-6, etc. do not change much within these pairs. Note that these pairs are contrasted by the
(fourth) predictor “delusions of guilt”. Between these pairs some obvious differences in the scores
are noticeable. These between-pairs-differences are contrasted by the (third) predictor “thought
disorders”: 1-2 has 0, 3-4 has 1, 5-6 has 0 etc. Therefore, the first dimension mainly reflects
thought disorders.
The second dimension shows an alternating behavior. Referring to the pair notation above, it
reflects within-pair-differences based on “delusions of guilt”. In addition a slight downward trend
due to “anxiety” (first predictor) can be observed.

6. Discussion

The anacor package provides additional features which are not offered by other CA packages
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on CRAN. These features are additional scaling methods for simple and canonical CA, missing
data, and graphical representations such as regression plots, Benzécri plots, transformation plots,
and graphplots. The included utilities make it possible to switch from the data format used in
anacor to the data format used in homals, and this gives the user a great deal of flexibility. The
confidence ellipsoids from CA are a powerful tool to visualize the dispersions of the row and column
projections in the plane.
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