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This paper describes sample size and power calculations for experiments in which hy-

potheses are tested using likelihood ratio methods. The underlying mathematical results

are briefly reviewed and examples of their use are presented. The methods are extended

to cases in which the null hypothesis specifies equality of parameter values. Several exam-

ples demonstrate the handling of covariates and illustrate the use of constraints to reduce

the dimension of the parameter space. Finally, computer implementation and available

software are discussed.
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1 Introduction

Likelihood ratio (LR) methods for calculating power and requisite sample sizes

were published in Wilks (1938), but the required computations precluded their use

in all but the simplest cases. Despite advances in computation, LR methods are

still under-utilized. Reasons for the lack of use include the difficulty of formulating

reasonable specific alternative hypotheses and an insufficient appreciation of the

straightforward nature of the calculations. Here, we examine algorithms used to
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compute sample size and power using LR methods, and we provide examples of the

framing of alternative hypotheses.

Related work includes Muller and Peterson (1984) and O’Brien (1986a) who

discuss exact power calculations for tests involving normally distributed error. Soft-

ware for these calculations is available in Heitjan (1993). Since exact calculations

are available for the normal distribution, we do not discuss those here. O’Brien

(1986b) provides an expanded discussion of the log-linear model. Other asymptotic

LR methods have been derived in Self and Mauritsen (1988) and Self, Mauritsen,

and Ohara (1992).

This paper is organized as follows: a) Section 2 states the mathematical results

for calculations and presents a straightforward application of them; b) Section 3 con-

tains methods for testing the equality of model parameters and includes an example;

c) Section 4 provides non-trivial examples with covariates and high-dimensional pa-

rameter spaces and d) Section 5 discusses computer implementation and available

software.

2 Preliminaries

2.1 Example

The following is a prototypical trial. Some calculations relating to this trial are

considered in Section 4.1. The purpose of the trial is to describe the probability of

response versus dose; specifically, whether a logistic model with a quadratic term

improves the fit over a linear logistic model. Doses of the agent, one dose per

subject, are administered and responses are recorded. Linear and quadratic logistic

models are fit to the data and the difference in log likelihoods of the two models are

calculated. If twice this difference exceeds 3.84 (the upper 95th percentile of the χ2
1

distribution), there is evidence at the 0.05 significance level that the quadratic term

improves the fit.
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The planning of such studies, particularly determining the sample size required

to provide a specified power, requires a specification of the presumed true state of

nature at which the calculation will be made. This state includes the specification of

values for the parameters of the model, θ̃, which in this case consists of the intercept,

linear, and quadratic coefficients for the logistic model. The state also includes the

design of the experiment, i.e., the dosages to be employed and the proportion of

subjects to receive each dosage. The design can greatly influence the sample size

required; however, the subject of obtaining good designs is outside the scope of the

current work.

2.2 Mathematical Background

This presentation follows Cox and Hinkley (1974), Section 9.3.

Let y = {y1, . . . , yn} be a realization of independent, identically distributed ran-

dom variables,{Y1, . . . , Yn}, having a density f(y; θ), where θ is a vector of unknown

parameters. The log likelihood of the observations, y, at the parameter value θ is

l(y; θ) =
n
∑

s=1

log(f(ys; θ)). (1)

Let θ̃ denote the alternative hypothesis value of θ. The expected information

matrix i is defined by

ij,k = −
n
∑

l=1

Eθ̃

(

∂2l(Yl; θ)

∂θj∂θk

)

. (2)

This expectation can be written in computable form as

Eθ̃

(

∂2l(Yl; θ)

∂θj∂θk

)

=
∫ ∂2l(y; θ)

∂θj∂θk
f(y; θ̃)dy, (3)

where the integration is over the set of possible values of Y . Note that the expecta-

tion is calculated at the assumed true value of θ. If the Yi assume discrete values,

f(y|θ) is the probability that Y = y, and the integral in (3) is replaced by a sum

over all possible outcomes, y.

The information matrix is the inverse of the asymptotic covariance matrix of the

maximum likelihood estimates of θ. This will be used in Section 3.
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The presence of covariates in the model requires another level of computation

to obtain the information matrix. When the experimenter chooses covariate values,

the information matrix is computed separately for each value, and the results are

summed. In observational studies in which covariates are random, the informa-

tion matrix is integrated, component by component, over the population covariate

distribution.

The null hypothesis determines the values of specific components of θ, which

is partitioned into (ψ, λ), where the first set of parameter values, ψ, have been

set by the null hypothesis to the value ψ0. The remaining parameters, λ, are not

constrained by the null hypothesis. In the example, the null hypothesis constrains

the coefficient of the quadratic term in the logistic model to be zero; the values of

the intercept and linear coefficient are not constrained.

The expected information matrix, i, is partitioned in correspondence to θ into






iψψ iψλ

iλψ iλλ





 .

Let θ̂ be the maximum likelihood estimate of θ, θ̂0 be the value that maximizes the

likelihood subject to ψ = ψ0, and ψ̃ be the presumed true value of ψ. The results

central to LR power and sample-size calculations are as follows:

Result 1. The asymptotic distribution of 2[l(θ̂) − l(θ̂0)] is noncentral χ2 with

noncentrality parameter

[

ψ̃ − ψ0

]T [

iψψ − iψλi
−1
λλ iλψ

] [

ψ̃ − ψ0

]

(4)

and degrees of freedom equal to the number of elements in ψ0.

Result 2 provides the distribution of a linearly transformed multivariate nor-

mal distribution; it is used in Section 3 for null hypotheses that impose equality

constraints on parameters. For proof of this result, see Tong (1990), Section 3.1.1.

Result 2. If X is p-variate normal with mean vector µ and covariance matrix

Σ and if A is an (n × p) matrix, then A X is multivariate normal with mean Aµ

and covariance A Σ AT .
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2.3 Example: Single-Group Binomial

What sample size is required to reject with power 0.8 the null hypothesis that a

binomial probability is p = 0.2 when actually p = 0.4 using a 0.05 level, two-sided

test?

The only parameter of the model is the probability of an event, p, so the infor-

mation matrix is a scalar. For a single observation, the log likelihood is log(p) if the

event occurs and log(1 − p) if the event does not occur.

i = −

[

p×
∂2 log(p)

∂p2
+ (1 − p) ×

∂2 log(1 − p)

∂p2

]

=
1

p(1 − p)
. (5)

The expected information for a single observation is 1/(0.4× 0.6) = 4.17, so for

n observations, the expected information will be 4.17n. Using (4), the noncentrality

parameter for a null hypothesis value of p0 is (p0 − 0.4)2 × 4.17n, which at p0 = 0.2

is 0.167n.

The noncentrality parameter, ν, must be chosen to provide the desired power.

We will reject the null hypothesis if twice the LR is greater than the 0.95 quantile

of the (central) χ2
1 distribution, i.e., 3.84. The probability of exceeding 3.84 is

1 − χ2
1(3.84|ν),

where χ2
d(x|ν) is the cumulative distribution function of the noncentral chi-square

distribution with d degrees of freedom and noncentrality parameter ν. The requisite

value of ν was found using DSTATTAB, which is described in Section 5. This value

is 7.85; hence n is 47.

The LR test is multi-sided as is the analysis of variance; the test detects any

difference from the null hypothesis, not differences in a specified direction. If there is

only one parameter of interest, a good approximation to the sample-size required by

a one-sided test can be obtained by calculating the sample size required at twice the

significance level of the two-sided test. Doubling the significance level above from
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0.05 to 0.1 yields n = 37.2, a somewhat conservative value. An exact computation

shows that a one-sided test with 35 trials has a significance level of 0.034 and a

power of 0.805.

3 Equality Constraints

Null hypotheses that constrain parameter values to be equal necessitate problem

reformulation before Result 1 can be applied. Let θ be the vectors of parameters in

the original formulation. A linear transformation, A, is applied to θ so that Result

1 holds for the reparameterization, θ
′

= Aθ.

A constraint, θj = θk, results in a reparameterization: θ
′

l = θj − θk and θ
′

m = θk

for some subscripts l and m. θ
′

l is constrained by the null hypothesis while θ
′

m is

not. The reparameterization of a chain of equality constraints is similar. Let the

chain be:

θj1 = θj2 = · · · = θjp.

Then for some l1, . . . , ln, θ
′

ln
= θjn − θjn+1

, for n = 1, . . . , (p − 1) and θ
′

lp
= θjp .

The first p − 1 of these θ
′

parameters are constrained by the null hypothesis; θ
′

lp

is not. In addition to reparameterizing for equality constraints, A also moves θ
′

parameters that are constrained by the null hypothesis to the top of the θ
′

vector

and unconstrained parameters to the bottom to arrive at the partitioning of Result

1. Constructing A manually is straightforward for many problems (see the following

example); a short computer program can construct A from an arbitrary list of

constraints.

To obtain the information matrix i
′

of θ
′

, let Σ = i−1 be the asymptotic variance-

covariance matrix of θ̂. By Result 2, AΣAT is the variance-covariance matrix of θ̂‘.

Since i
′

is the inverse of this variance-covariance matrix,

i
′

= (A−1)T i A−1. (6)
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3.1 Example: Three-Group Poisson

Three independent Poisson processes produce events at mean rates of θ1 = 1,

θ2 = 2, and θ3 = 3 per day. For how many days must the processes be observed to

have an 80% chance of detecting that the means are different at an overall signifi-

cance level of 0.05?

We calculate the information matrix for a single Poisson observation. The prob-

ability that j events occur in a single observation from a Poisson process with mean

µ is

f(j) =
µj

j!
exp−µ,

so
∂2 log(f(j))

∂µ2
= −

j

µ2
. (7)

Since the number of events, j, is distributed Poisson the expectation of j is µ. Hence,

i =
1

µ
. (8)

If the processes are observed for d days, the information matrix will be

i = d















1 0 0

0 1/2 0

0 0 1/3















.

By the methods of the previous section, θ
′

1 = θ1 − θ2, θ
′

2 = θ2 − θ3, and θ
′

3 = θ3.

Hence,

A =















1 −1 0

0 1 −1

0 0 1















.

i
′

is calculated, and Result 1 is applied using the θ
′

values. In terms of θ
′

,

ψ̃ = (−1,−1)

ψ0 = (0, 0).
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The noncentrality parameter is 1.09d. There are two constraints and thus two

degrees of freedom for the χ2. The upper 0.95 quantile of the central χ2
2 distribution

is 5.99. We must choose d to satisfy

χ2
2(5.99|1.09d) = 0.2,

from which 1.09d = 9.632 or d = 8.84.

4 Comprehensive Examples

In many cases, specifying a family of alternative hypotheses is difficult because of

the large number of parameters influencing power. Wherever possible, this number

is reduced by imposing constraints. The first and third examples (Sections 4.1 and

4.3) illustrate this point.

4.1 Detecting a Quadratic Term in Logistic Regression

The model examined posits that the probability of an event at dose d, p(η), is

quadratic in the logistic link, i.e., the model is

p(η) =
eη

1 + eη
,

where η = a+ bd+ cd2. The experiment tests whether c = 0.

The case arose in radiobiology during an examination of whether regrowth of

tissue is accelerated during a course of treatment; if so, the logistic model would

contain a quadratic term, otherwise it would not. The three parameters of the model

and the doses of d chosen (of which there must be at least three to allow the fit of a

quadratic model) all contribute to the information matrix. A list of power values for

many combinations of these six or more values would overwhelm the investigator.

To reduce the dimensionality of this problem, we will assume that the probability

of response is known at two doses: p = 0.1 at dose d1 and p = 0.9 at dose d2. The

dose scale can be shifted and scaled so that d1 and d2 are transformed to 0 and
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1 respectively. Specifically, let z = (d − d1)/(d2 − d1), then p(z = 0) = 0.1 and

p(z = 1) = 0.9. The linear part of the model, η, is still quadratic in z. In terms of

this formulation, a = logit(0.1) = −2.1972 and b+ c = logit(0.9) − a = 4.3944.

It is reasonable to assume that the probability of responses will increase with

dose, which implies that p(z) is monotone in d. Monotonicity implies that the

derivative of the quadratic, b + 2cz, is positive at all values of z, which in turn

implies both that b is positive and that b+2c is positive. Monotonicity limits values

of c to the range -4.3944 to 4.3944. Curves satisfying these constraints are shown

in Figure 1.

Figure 1. Family of logistic transforms of quadratic curves for alternative hypotheses.

The family was determined by requiring all curves to intersect at two points and by

requiring monotonicity. The logistic curve without a quadratic term is the heavy

curve in the center.
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The design uses z values of 0, 0.5, and 1 with equal numbers of subjects at each

of the three values.

The information matrix for this model is a special case of that for the general

multivariate logistic model in which η =
∑p
i=1 θjxj .

By two applications of the chain rule,

∂2 log(p(η))

∂θi∂θj
=
∂2 log(p(η))

∂η2

∂η

∂θi

∂η

∂θj
(9)

because
∂2η

∂θi∂θj
= 0.

Since
∂2 log(p(η))

∂η2
=
∂2 log(1 − p(η))

∂η2
= −p(η) [1 − p(η)] , (10)

the (j.k) component of the information matrix is

p(u) [(1 − p(u)]xjxk

summed over all observations.

Computing the sample size required for a particular power at any value of c is

straightforward. Interpretation of c may not be easy for the investigator, so sample

size is presented as a function of the difference in proportion between the quadratic

and linear logistic models at z = 0.5. The sample sizes needed to provide a power

of 0.8 using a test with significance level 0.05 are shown in Figure 2.

4.2 Interaction/Synergy

A power determination was needed in planning a study of the effectiveness of

behavioral counseling and nicotine replacement in cessation of smokeless tobacco

use. The outcome variable is the proportion of subjects who have abstained from

tobacco use for the month preceding the first anniversary of entering treatment.

Estimates of the proportion who are expected to refrain under the four treatment
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Figure 2. Sample size required to provide a power of 0.8 for detecting a quadratic

term in the logistic regression. The abscissa values are the absolute difference between

the proportion of responses predicted by the linear and quadratic models at x = 0.5.

regimes, shown in Table 1, were obtained as a weighted average of the results of

several studies.

The natural model considers the probabilities of failing treatment, because to

fail treatments A and B combined, one must first fail A and then fail B. If the

probabilities of failure are independent, then the probability of joint failure is the

product of the probabilities. The µs are the logarithms of these failure probabilities.

The probabilities of failure are calculated from the proportions in Table 1. The

probability of failure with no treatment is 1 − 0.03 = 0.97, so µ = log(0.97).

The probability of failure with behavioral treatment alone, 0.88, is the product

of the probabilities of failure with no treatment and with behavioral treatment
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Table 1: Proposed Smokeless Tobacco Trial

Treatment N. Subjects Propn. Quit Model Terms

None 100 0.03 µ

Behavioral 100 0.12 µ+ µB

Patch 100 0.12 µ+ µP

Behavioral + Patch 100 0.25 µ+ µB + µP + µBP

alone. Hence, the probability of failure with behavioral treatment alone is 0.907,

so µB = log(0.0907). Similarly, the probability of failure with the nicotine patch

alone is 0.907 and µP = log(0.907). Finally, the probability of failure with both

treatments is the failure rate for both treatments, 0.75, divided by the product of

the probabilities of failure with no treatment, behavioral counseling alone, and the

patch alone. This probability is 0.940; µBP = log(0.940).

The log-linear model posits that

p(u) = exp(u),

where p(u) is the probability of treatment failure and

u = µx+ µBxB + µPxP + µBPxBP .

The x variables are zero or one-valued indicators of effects. Thus, x is identically 1,

and xB is 1 when behavioral therapy is applied, i.e., the second and fourth treatment.

The indicator xBP is 1 only if both behavioral therapy and the patch are applied, i.e.,

treatment four. A discussion of parameterization is found in Sections 3.1 through

3.5 of McCullagh and Nelder (1989).

The expected information matrix is readily obtained. If the observation is a

treatment failure, then the contribution to the log-likelihood is u and the second

derivative with respect to u is zero. If the observation is a treatment success, then

12



the contribution to the log-likelihood is ln(1 − exp(u)), and the second derivative

of this expression with respect to u is −p(u)/(1− p(u))2. Consequently, by (9), the

component of the information matrix corresponding to µi and µj for subscripts i

and j is
p(u)

(1 − p(u))
xixj .

With 100 subjects in each of the four treatment groups, using the effects as

estimated, the probability of detection of the interaction, µBP , is only 0.123 using a

significance level of 0.05. Only when the success rate of behavior and patch jointly

applied rises to 39% do we have a 0.8 probability of showing the reality of the

interaction.

4.3 Effect of a Covariate on Time to Event

The use of biological markers to predict treatment outcome in cancer receives

a great deal of attention. We examine the size of a study necessary to detect the

effect of a marker in a time-to-event study using a parametric proportional hazards

model as descibed in Kalbfleish and Prentice (1980)

The time might be the disease-free period or the time to cancer progression.

For simplicity, we term the event “death” and speak of survival time. The time is

modeled as a function of the covariate, x, by the proportional hazards assumption.

The hazard at time t for covariate value x is

h(t|x) = exp(a+ bx)h(t|0),

where h(t|0) is the hazard at covariate value 0. For brevity, let w denote exp(a+bx).

We consider the simplest case in which h(t|0) takes the constant value 1 for all t.

Survival for fixed x will thus be exponential. The case of positive values for b is

considered, so hazard will increase and survival will decrease as x increases.

The distribution of x is assumed to be normal; by translating and rescaling, x

can be assumed to have mean 0 and standard deviation 1.

13



The proposed study will last L years and during this period will accrue A sub-

jects. Each subject will enter the study at a random time between 0 and L, so the

subject’s follow-up time, U , will be uniformly distributed between 0 and L.

For a subject with covariate x and follow-up time U , there are two possible

outcomes: the subject can die at time t between 0 and U , or the subject can be

withdrawn alive at time U .

First, consider the case of death. The density of time to event for an exponential

distribution with hazard w is

w exp(−wt), (11)

and the logarithm of this value is the contribution to the log-likelihood of a death

at time t. The matrix of second derivatives of the log-likelihood is

−wt







1 x

x x2





 , (12)

where the upper-left entry of the matrix is the second derivative with respect to a

twice, the lower-right entry is with respect to b twice, and the off-diagonals are the

cross derivatives.

To obtain the expected contribution of the failure to the information, each ele-

ment of the matrix in (12) must be integrated twice. First, the element is multiplied

by the probability of death at t from (11), and then it is integrated with respect

to t from 0 to U . Since U is uniformly distributed on 0 to L, this result is then

integrated over U from 0 to L and multiplied by 1/L (the uniform density). The

result, negated to be a contribution to the information matrix, is

exp(−wL)(wL+ 2) + wL− 2

wL







1 x

x x2





 . (13)

In the second case failure does not occur, and the subject will be censored at the

end of the study, i.e., at time U after his entry. The probability of this is

S(U |x) = exp(−wU).
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The logarithm of this expression is the contribution of the censored observation

to the log-likelihood. To calculate the contribution to the information matrix the

contribution to the log-likelihood is differentiated twice with respect to a and b.

These derivatives are multiplied by S(U |x), and the result is integrated over U from

0 to L then multiplied by 1/L. The negated result is

−
exp(−wL)(wL+ 1) − 1

wL







1 x

x x2





 . (14)

The sum of (13) and (14) is the expected information given x. This must be

multiplied by the normal density for x and integrated over x. The integral was

numerically evaluated over x from -4 to 4 using a 10-point Gaussian formula.

Calculations are performed for a 3-year study, i.e., L = 3. To reduce the dimen-

sionality of the problem from two parameters to one, we suppose that 70% of all

patients fail by 3 years. Then,
∫

∞

−∞

exp(−3e(a+bx))dnor(x)dx = 0.3,

where dnor(x) is the unit normal density at x. This can be solved numerically to

obtain a as a function of b as shown in Figure 3.

The results of these calculations could be presented in several ways. The obvious

presentation shows the requisite sample size for a particular power as a function of

b. The investigator may not, however, have an intuitive grasp of the import of b.

Hence, we present sample size as a function of the 3-year expected survival of a

subject whose x-value is at the upper-quartile; this survival figure is a monotone

function of b. The results appear in Figure 4.

A sample size of 209 is required for an 80% probability of detecting a nonzero

b if the expected survival of the upper-quartile observation is 0.22. This survival

corresponds to b = 0.3. A sample size of 40 is required when the expected survival

is 0.13, corresponding to b = 0.7.

The reader may notice a lack of realism in this example. Calculations have been

made for a fixed sample size, whereas in most trials patients are accrued as they
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Figure 3. Plot of a (intercept of proportional hazards model) versus b (coefficient

of covariate). The relation between a and b was determined by the condition that

overall 3-year survival was 30%.

appear and thus the sample size is random. To accommodate this consideration, the

number of patients accruing to the trial can be considered Poisson. Power can be

calculated for various numbers of subjects near the center of the Poisson distribution

and these power values can be averaged with Poisson weights.

5 Implementation

Likelihood ratio, power, and sample size calculations should be implemented in

a high-level scientific/statistical language such as Gauss, Matlab, S, or SAS, since

these languages allow easy incorporation of additional models. Adding C or Fortran
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Figure 4. Sample size required for 0.8 power for a test with significance level 0.05 as

a function of the three year expected survival of a subject whose covariate is at the

upper-quartile. The null value (corresponding to b = 0 is 0.30).

code to a package is more difficult.

Our implementation is in S. It contains several routines that calculate the in-

formation matrix for particular generalized linear models. One program calculates

the noncentrality parameter from the information matrix, the alternative hypothe-

sis parameter values, and a list of constraints defining the null hypothesis. Other

routines calculate sample size or power from the noncentrality parameter and the

number of constraints.

Computing the second derivatives of the log-likelihood can be tedious. Symbolic

manipulation programs, such as MacSyma, Maple, Mathematica, or Reduce accu-

rately perform analytic differentiation. If analytic forms of the information matrix
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exist, the same tools can also perform the summation or integration required to

obtain the expectation of the second derivatives. Several of these systems will write

C or Fortran code that is readily converted to the scientific/statistical computer

language.

If the outcome of the trial is continuous, calculation of the information matrix

requires integration, possibly over several dimensions. The proportional hazards

example above required three nested integrals. Because the underlying hazard was

chosen to be constant in the example, two of the integrals could be evaluated ana-

lytically. Were a more complex form of hazard chosen, all three integrations would

be evaluated numerically. Numeric multi-dimensional integration is not standard in

all scientific/statistical languages, and interested readers might investigate Berntsen

(1991). Fortran code for this algorithm is available on netlib.

Computations involving the noncentral χ2 may also not be available in the sci-

entific/statistical language. A recent review by Boomsma and Molenaar (1994)

compares four commercial products that perform these calculations. Routines are

also available by anonymous ftp from the current authors, both as Fortran and C

subroutines and as a stand-alone package.

Finding a zero of a monotone function is used to handle constraints on model

parameters. For this purpose, we use Algorithm R of Bus and Dekker (1975).

The authors’ code can be obtained by anonymous ftp to odin.mda.uth.tmc.edu

(129.106.3.17), and it will be submitted to statlib. An index to routines available

by ftp is in file ./pub/index, which can also be obtained by executing the Unix

command

‘finger software@odin.mda.uth.tmc.edu’.
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