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Abstract

The R package coin implements a unified approach to permutation tests providing a huge
class of independence tests for nominal, ordered, numeric, and censored data as well as multi-
variate data at mixed scales. Based on a rich and flexible conceptual framework that embeds
different permutation test procedures into a common theory, a computational framework is es-
tablished in coin that likewise embeds the corresponding R functionality in a common S4 class
structure with associated generic functions. As a consequence, the computational tools in coin
inherit the flexibility of the underlying theory and conditional inference functions for impor-
tant special cases can be set up easily. Conditional versions of classical tests—such as tests for
location and scale problems in two or more samples, independence in two- or three-way contin-
gency tables, or association problems for censored, ordered categorical or multivariate data—
can be easily be implemented as special cases using this computational toolbox by choosing
appropriate transformations of the observations. The paper gives a detailed exposition of
both the internal structure of the package and the provided user interfaces.

Keywords: conditional inference, exact distribution, conditional Monte Carlo, categorical data
analysis, R.

1. Introduction

Conditioning on all admissible permutations of the data for testing independence hypotheses is
a very old, yet very powerful and popular, idea (Fisher 1935; Ernst 2004). Conditional inference
procedures, or simply permutation or re-randomization tests, are implemented in many different
statistical computing environments. These implementations, for example wilcox.test() for the
Wilcoxon-Mann-Whitney test or mantelhaen.test() for the Cochran-Mantel-Haenszel χ2 test
in the S language or the tools implemented in StatXact (Cytel Inc. 2003), LogXact (Cytel Inc.
2006), or Stata (StataCorp. 2003) (see Oster 2002, 2003, for an overview), all follow the classical
classification scheme of inference procedures and offer procedures for location problems, scale
problems, correlation, or nominal and ordered categorical data. Thus, each test procedure is
implemented separately, maybe with the exception of conditional versions of linear rank statistics
(Hájek, Šidák, and Sen 1999) in NPAR1WAY as available in SAS (SAS Institute Inc. 2003).

Novel theoretical insights by Strasser and Weber (1999) open up the way to a unified treatment of
a huge class of permutation tests. The coin package for conditional inference is the computational
counterpart to this theoretical framework, implemented in the R system for statistical computing
(R Development Core Team 2007). Hothorn, Hornik, van de Wiel, and Zeileis (2006) introduce
the package and illustrate the transition from theory to practice. Here, we focus on the design
principles upon which the coin implementation is based as well as on the more technical issues
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that need to be addressed in the implementation of such conceptual tools.

Formal S4 classes describe the data model and the conditional test procedures, consisting of mul-
tivariate linear statistics, univariate test statistics and a reference distribution. Generic functions
for obtaining statistics, conditional expectation and covariance matrices as well as p value, dis-
tribution, density and quantile functions for the reference distribution are available. The most
important user-visible function is independence_test(), the computational counterpart of the
theoretical framework of Strasser and Weber (1999), providing the same flexibility in software as
in the underlying theory.

2. Theory and classes

We first focus on the conceptual framework for conditional inference procedures as proposed by
Strasser and Weber (1999) along with the class structure upon which the coin package is based.
Formal S4 classes defining data objects, objects describing the inference problem and conditional
test procedure are introduced and explained.

We deal with variables Y and X from sample spaces Y and X which may be measured at arbitrary
scales and may be multivariate as well. In addition, b ∈ {1, . . . , k}, a factor measured at k levels,
indicates a certain block structure of the observations: for example study centers in a multi-center
randomized clinical trial where only a re-randomization of observations within blocks is admissible.
We are interested in testing the null hypothesis

H0 : D(Y|X, b) = D(Y|b)

of conditional independence of Y and X within blocks b against arbitrary alternatives, for example
shift or scale alternatives, linear trends, association in contingency tables etc.

2.1. Data

In the following we assume that we are provided with n observations

(Yi,Xi, bi, wi), i = 1, . . . , n.

In addition to variables X, Y, and b, it is convenient (for example to efficiently represent large
contingency tables) to allow for some integer-valued case weights wi, indicating that wi observa-
tions with realizations Yi, Xi and bi are available, with default wi ≡ 1. This data structure is
represented by class ‘IndependenceProblem’:

Class ‘IndependenceProblem’

Slot Class
x ‘data.frame’
y ‘data.frame’
weights ‘numeric’
block ‘factor’

2.2. Inference problem and linear statistic

Strasser and Weber (1999) suggest to derive scalar test statistics for testing H0 from multivariate
linear statistics of the form

T =
k∑

j=1

Tj ∈ Rpq (1)
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where the linear statistic for each block is given by

Tj = vec

(
n∑

i=1

I(bi = j)wig(Xi)h(Yi)>
)
∈ Rpq.

The function I(·) is the indicator function and vec denotes the vec operator (which stacks the
columns of a matrix one underneath the other). Here, g : X → Rp×1 is a transformation of
the X measurements and h : Y → Rq×1 is called influence function. The function h(Yi) =
h(Yi, (Y1, . . . ,Yn)) may depend on the full vector of responses (Y1, . . . ,Yn), however only in
a permutation symmetric way, i.e., the value of the function must not depend on the order in
which Y1, . . . ,Yn appear. The transformation g and influence function h as well as g(Xi) and
h(Yi), i = 1, . . . , n, are attached to the data structure by extending class ‘IndependenceProblem’:

Class ‘IndependenceTestProblem’
Contains ‘IndependenceProblem’

Slot Class
xtrans ‘matrix’
ytrans ‘matrix’
xtrafo ‘function’
ytrafo ‘function’

The ytrafo and xtrafo slots correspond to the influence function h and transformation g, respec-
tively. The ith row of the n× q matrix ytrans corresponds to h(Yi). Similar, the rows of xtrans
(n× p) correspond to g(Xi).

In the simplest case of both X and Y being univariate factors at p and q levels, g and h are the
corresponding dummy codings and the linear statistic T is the (vectorized) p×q contingency table
of X and Y.

2.3. Conditional expectation and covariance

The distribution of T depends on the joint distribution of Y and X, which is unknown under almost
all practical circumstances. At least under the null hypothesis one can dispose of this dependency
by fixing X1, . . . ,Xn and conditioning on all possible permutations Sj of the responses Y1, . . . ,Yn

within block j, j = 1, . . . , k.

The conditional expectation µ ∈ Rpq and covariance Σ ∈ Rpq×pq of T under H0 given all permu-
tations σ ∈ S of the responses are derived by Strasser and Weber (1999) and are re-stated in the
following.

Let w·j =
∑n

i=1 I(bi = j)wi denote the sum of the weights in block j. The conditional expectation
of the influence function h in block j

E(h|Sj) = w−1
·j

∑
i

I(bi = j)wih(Yi) ∈ Rq

with corresponding q × q covariance matrix

COV(h|Sj) = w−1
·j

∑
i

I(bi = j)wi (h(Yi)− E(h|Sj)) (h(Yi)− E(h|Sj))> .

The conditional expectation and covariance of the linear statistic Tj in block j are

µj = E(Tj |Sj) = vec

((
n∑

i=1

I(bi = j)wig(Xi)

)
E(h|Sj)>

)
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and

Σj = COV(Tj |Sj)

=
w·j

w·j − 1
COV(h|Sj)⊗

(∑
i

I(bi = j)wi

(
g(Xi)⊗ g(Xi)>

))

− 1
w·j − 1

COV(h|Sj)⊗

(∑
i

I(bi = j)wig(Xi)

)
⊗

(∑
i

I(bi = j)wig(Xi)

)>
respectively, where ⊗ is the Kronecker product. The conditional expectation and covariance of T,
aggregated over all k blocks, are then given by

E(T|Sj) = µ =
k∑

j=1

µj =
k∑

j=1

E(Tj |Sj),

COV(T|Sj) = Σ =
k∑

j=1

Σj =
k∑

j=1

COV(Tj |Sj).

The linear statistic T, its conditional expectation µ and covariance Σ are stored in objects of class
‘IndependenceLinearStatistic’:

Class ‘IndependenceLinearStatistic’
Contains ‘IndependenceTestProblem’

Slot Class
linearstatistic ‘numeric’
expectation ‘numeric’
covariance ‘VarCovar’

Class ‘VarCovar’ represents either a complete covariance matrix or its diagonal elements only.

2.4. Test statistics

Univariate test statistics c mapping an observed linear statistic t ∈ Rpq into the real line can
be of arbitrary form. Having the conditional expectation and covariance at hand we are able to
standardize an observed linear statistic t ∈ Rpq of the form given in Equation 1 by

z =
t− µ

diag(Σ)1/2
. (2)

Test statistics are represented by class ‘IndependenceTestStatistic’

Class ‘IndependenceTestStatistic’
Contains ‘IndependenceLinearStatistic’

Slot Class
estimates ‘list’
teststatistic ‘numeric’
standardizedlinearstatistic ‘numeric’

The slot standardizedlinearstatistic contains z, the (possibly multivariate) linear statistic
standardized by its conditional expectation and variance (Equation 2). A univariate test statistic
c is stored in slot teststatistic. The estimates slot may contain parameter estimates where
available, for example an estimate and corresponding confidence interval for a shift parameter
derived from a conditional Wilcoxon-Mann-Whitney test.
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In case of univariate linear statistics t (with pq = 1), the test statistic c is simply the standardized
linear statistic

cscalar(t, µ,Σ) =
t− µ√

Σ
.

In the multivariate case (pq > 1), a maximum-type statistic of the form

cmax(t, µ,Σ) = max |z|

is appropriate. This version for the two-sided situation is to be replaced by

min (z) (less) and max (z) (greater)

in the one-sided case. The definition of one- and two-sided p values used for the computations in
the coin package is

less: P(c(T, µ,Σ) ≤ c(t, µ,Σ))
greater: P(c(T, µ,Σ) ≥ c(t, µ,Σ))
two-sided: P(|c(T, µ,Σ)| ≤ |c(t, µ,Σ)|).

For univariate statistics cscalar(t, µ,Σ) a special class

Class ‘ScalarIndependenceTestStatistic’
Contains ‘IndependenceTestStatistic’

Slot Class
alternative ‘character’

is available. For the more general case, maximum-type statistics are represented by objects of
class ‘MaxTypeIndependenceTestStatistic’:

Class ‘MaxTypeIndependenceTestStatistic’
Contains ‘IndependenceTestStatistic’

Slot Class
alternative ‘character’

both defining a character vector specifying the alternative to test against ("two.sided", "greater"
and "less").
Alternatively, a quadratic form cquad(t, µ,Σ) = (t−µ)Σ+(t−µ)> can be used as test statistic. It
is computationally more expensive because the Moore-Penrose inverse Σ+ of Σ is involved. Such
statistics are represented by objects of class ‘QuadTypeIndependenceTestStatistic’ defining slots
for Σ+ and its rank (degrees of freedom):

Class ‘QuadTypeIndependenceTestStatistic’
Contains ‘IndependenceTestStatistic’

Slot Class
covarianceplus ‘matrix’
df ‘numeric’

2.5. Conditional null distribution

The conditional distribution (or an approximation thereof) and thus the p value corresponding
to the statistic c(t, µ,Σ) can be computed in several different ways. For some special forms of
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the linear statistic, the exact distribution of the test statistic is tractable. For 2-sample problems,
the shift-algorithm by Streitberg and Röhmel (1986, 1987) and the split-up algorithm by van de
Wiel (2001) are implemented as part of the package. Conditional Monte-Carlo procedures can
always be used to approximate the exact distribution. Strasser and Weber (1999, Theorem 2.3)
proved that the conditional distribution of linear statistics T with conditional expectation µ and
covariance Σ tends to a multivariate normal distribution with parameters µ and Σ as w·j → ∞
for all j = 1, . . . , k. Thus, the asymptotic conditional distribution of test statistics of the form
cmax is normal and can be computed directly in the univariate case (pq = 1) or approximated by
numerical algorithms (quasi-randomized Monte-Carlo procedures Genz 1992) in the multivariate
setting. For quadratic forms cquad which follow a χ2 distribution with degrees of freedom given
by the rank of Σ (see Johnson and Kotz 1970, Chapter 29), precise asymptotic probabilities can
be computed efficiently.
A null distribution is represented by either a distribution (and p value) function only

Class ‘PValue’

Slot Class
pvalue ‘function’
p ‘function’
name ‘character’

or, where possible, is enriched by its density and quantile function:

Class ‘NullDistribution’
Contains ‘PValue’

Slot Class
q ‘function’
d ‘function’
support ‘function’
parameters ‘list’

Currently, there are three classes extending ‘NullDistribution’ (without defining additional slots
at the moment): ‘ExactNullDistribution’ (exact conditional null distribution, computed for
example via the shift-algorithm), ‘ApproxNullDistribution’ (approximations of the exact con-
ditional distribution using conditional Monte-Carlo procedures) and ‘AsymptNullDistribution’
(asymptotic approximations via multivariate normal or χ2 distribution). A new method for com-
puting or approximating the conditional distribution can be implemented by defining a dedicated
class (and corresponding methods) extending ‘NullDistribution’.
For maximum-type statistics cmax, single-step and step-down multiplicity adjusted p values based
on the limiting distribution and conditional Monte-Carlo methods (see Westfall and Young 1993)
are available as well.

2.6. Conditional tests

A conditional test is represented by a test statistic and its conditional null distribution (or an
approximation thereof). In addition, a character string giving the name of the test procedure is
defined in class ‘IndependenceTest’:

Class ‘IndependenceTest’

Slot Class
distribution ‘NullDistribution’
statistic ‘IndependenceTestStatistic’
method ‘character’
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3. Generic functions

Methods for the following generic functions are defined for class ‘IndependenceTestStatistic’:

statistic(): extracts the linear statistic t, the standardized statistic z or test statistic c(t, µ,Σ).

expectation(): extracts the conditional expectation µ.

covariance(): extracts the complete conditional covariance matrix Σ (if available).

variance(): extracts the diagonal elements of the conditional covariance matrix diag(Σ).

For conditional null distributions (class ‘NullDistribution’), the following methods are available:

pvalue(): computes the p value (plus a confidence interval if Monte-Carlo procedures have been
used) based on an observed test statistic c and its conditional null distribution.

pperm(): evaluates the cumulative distribution function.

dperm(): evaluates the probability density function.

qperm(): evaluates the quantile function.

support(): returns the support of the null distribution.

Of course, all methods are defined for objects inheriting from class ‘IndependenceTest’ as well. In
addition, show() methods are defined for classes ‘ScalarIndependenceTest’,
‘MaxTypeIndependenceTest’ and ‘QuadTypeIndependenceTest’, converting these S4 objects to
an informal S3 object of class ‘htest’ for which a print() method is available that most R users
are familiar with.
For the conditional versions of 2-sample linear rank statistics for location and scale parameters (Há-
jek et al. 1999), e.g., Wilcoxon-Mann-Whitney, normal scores and Ansari-Bradley tests, parameter
estimates and confidence intervals based on the conditional distribution of the test statistics are
implemented following the methods proposed by Bauer (1972). A confint() method is available
for these special cases.

4. User interfaces

While the internal structures presented in the previous sections make use of the S4 class system, the
user interface is written in S3 style to mimic the familiar user interfaces of the classical tests. The
workhorse is the independence_test() method for ‘IndependenceProblem’ objects. In addition,
corresponding ‘formula’ and ‘table’ methods provide the user with the same type of interfaces
they are used to from base R. Existing methods for ‘htest’ objects are utilized for formatting
output.

4.1. General independence tests

The S3 generic function independence_test() has a method for ‘IndependenceProblem’ ob-
jects (as defined in Section 2.1). Additional convenience interfaces for ‘formula’ and ‘table’
objects (in case both X and Y are univariate factors) are provided which simply set up an
‘IndependenceProblem’ and call the corresponding method. The latter is defined as

independence_test(object,

teststat = c("max", "quad", "scalar"),

distribution = c("asymptotic", "approximate", "exact"),

alternative = c("two.sided", "less", "greater"),

xtrafo = trafo, ytrafo = trafo, scores = NULL,

check = NULL, ...)
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Here, object describes the data and thus the null hypothesis. Argument xtrafo refers to the
transformation g and ytrafo to the influence function h (function trafo() implements reason-
able defaults, see below) defining the linear statistic and its conditional expectation and covari-
ance. Three types of test statistics are hard-coded. The (approximation) of the null distri-
bution to be used as reference distribution can be chosen either by a character string or by
functions exact(), approximate() and asymptotic() which also take care of the correct spec-
ification of additional arguments, such as the number of permutations to draw randomly in a
conditional Monte-Carlo procedure. This mechanism allows for user-supplied algorithms to com-
pute or approximate the exact conditional distribution: A function taking an object inheriting
from ‘IndependenceTestStatistic’ and returning an object of class ‘NullDistribution’ can be
specified as distribution() argument to independence_test().
By default, the identify transformation is used for both g and h in case of numeric variables
X and Y, respectively (function id_trafo()). Factors are dummy-encoded by a set of indicator
variables (function f_trafo()) and censored variables are transformed to log rank scores (function
logrank_trafo()):

trafo(data, numeric_trafo = id_trafo,

factor_trafo = f_trafo, surv_trafo = logrank_trafo,

var_trafo = NULL, block = NULL)

The framework is extensible by user-supplied transformations g or influence functions h specified
as arguments to trafo().

4.2. Methods for ‘formula’ and ‘table’ objects

A ‘formula’ interface as well as a ‘table’ method for independence_test() are available in
addition. The left hand side variables of a formula are interpreted as Y variables (univariate or
possibly multivariate), the right hand side is taken for X (univariate or multivariate as well). The
blocking factor can specified after a vertical bar. So, for example, the formula

y1 + y2 ~ x1 + x2 | block

leads to a test of independence between two Y variables and two X variables (in case all variables
are numeric the linear statistic is four-dimensional with p = 2 and q = 2) for each level in block.
As usual, data, weights and subset arguments can be specified as well.
Two- and three-dimensional tables can be supplied to the ‘table’ method of
independence_test(). The third variable is then interpreted as block.

4.3. Conditional versions of classical tests

For a variety of classical tests (some of them already implemented in base package stats), their
conditional counterpart is made easily accessible. Some of the most important procedures, such
as the Wilcoxon-Mann-Whitney or Cochran-Mantel-Haenszel tests, can be obtained as listed in
Table 1, just by setting the xtrafo, ytrafo and teststat arguments appropriately. Almost all
special-purpose functionality implemented in packages exactRankTests (Hothorn 2001; Hothorn
and Hornik 2002, 2006) and maxstat (Hothorn and Lausen 2002; Hothorn 2005) can conveniently
be provided within the coin framework, so that both these packages will become deprecated in the
future.

5. Internal functionality

The core functionality, i.e., a small set of functions computing the linear statistic T (both for the
original and permuted data), the conditional expectation µ and conditional covariance matrix Σ, is
coded in C. The shift and split-up algorithms (Streitberg and Röhmel 1986, 1987; van de Wiel 2001)
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for computing the exact null distribution in 2-sample problems with univariate response as well as
conditional Monte-Carlo procedures for approximating the exact conditional null distribution are
implemented in C as well. (In addition, some helper functions, e.g., the Kronecker product etc.,
are coded in C.) The complete C source code and its documentation can be accessed via

R> browseURL(system.file("documentation", "html", "index.html",

+ package = "coin"))

The naming scheme of the C routines distinguishes between functions only called at C level (C_foo)
and functions which can be called from R via the .Call() interface (R_foo). Such functions are
available for most of the internal C functions to enable unit testing.
The coin package imports packages mvtnorm (Genz, Bretz, and Hothorn 2006) for the evaluation
of the multivariate normal distribution and package modeltools (Hothorn, Leisch, and Zeileis 2007)
for formula parsing.

6. An example

The job satisfaction data (Table 7.8, Agresti 2002), see Figure 1, is a three-dimensional ‘table’
with variables Income and Job.Satisfaction according to Gender (labels slightly modified for
convenience):

R> js <- jobsatisfaction

R> dimnames(js)[[2]] <- c("VeryDiss", "ModDiss", "ModSat", "VerySat")

R> ftable(Job.Satisfaction ~ Gender + Income, data = js)

Job.Satisfaction VeryDiss ModDiss ModSat VerySat
Gender Income
Female <5000 1 3 11 2

5000-15000 2 3 17 3
15000-25000 0 1 8 5
>25000 0 2 4 2

Male <5000 1 1 2 1
5000-15000 0 3 5 1
15000-25000 0 0 7 3
>25000 0 1 9 6

Here, we focus on conditional tests for independence of income and job satisfaction. The con-
ditional Cochran-Mantel-Haenszel test is based on a cquad statistic derived from the contingency
table and a χ2 approximation of the null distribution is utilized traditionally:

R> it <- independence_test(js, teststat = "quad", distribution = asymptotic())

R> it

Asymptotic General Independence Test

data: Job.Satisfaction by
Income (<5000, 5000-15000, 15000-25000, >25000)
stratified by Gender

chi-squared = 10.2001, df = 9, p-value = 0.3345

with linear statistic

R> statistic(it, "linear")
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Gender = Female

●● ●●

<5000

VerySat

ModSat

ModDiss

VeryDiss

5000−15000 15000−25000 >25000

Gender = Male

●● ●●●● ●●

<5000

VerySat

ModSat

ModDiss

VeryDiss

5000−15000 15000−25000 >25000

Figure 1: Conditional mosaic plot of job satisfaction and incoming given gender.

VeryDiss ModDiss ModSat VerySat
<5000 2 4 13 3
5000-15000 2 6 22 4
15000-25000 0 1 15 8
>25000 0 3 13 8

This is exactly the two-way classification

R> margin.table(js, 1:2)

Job.Satisfaction
Income VeryDiss ModDiss ModSat VerySat
<5000 2 4 13 3
5000-15000 2 6 22 4
15000-25000 0 1 15 8
>25000 0 3 13 8

i.e., the three-dimensional table aggregated over the block factor Gender. This contingency table
in standardized form reads

R> statistic(it, "standardized")

VeryDiss ModDiss ModSat VerySat
<5000 1.3112789 0.69201053 -0.2478705 -0.9293458
5000-15000 0.6481783 0.83462550 0.5175755 -1.6257547
15000-25000 -1.0958361 -1.50130926 0.2361231 1.4614123
>25000 -1.0377629 -0.08983052 -0.5946119 1.2031648

Instead of using a χ2 statistic collapsing the whole table via a quadratic form, one might want to
use the maximum of the absolute values of the standardized cells as test statistic. This maximum-
type test is set up easily:
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R> independence_test(js, teststat = "max")

Asymptotic General Independence Test

data: Job.Satisfaction by
Income (<5000, 5000-15000, 15000-25000, >25000)
stratified by Gender

maxT = 1.6258, p-value = 0.7214

with its conditional asymptotical null distribution being available immediately (due to the joint
multivariate normal distribution for the contingency table T). Single-step adjusted p values for
each cell of the contingency table corresponding to this maximum test can be computed via

R> pvalue(independence_test(js, teststat = "max"),

+ method = "single-step")

VeryDiss ModDiss ModSat VerySat
<5000 0.9009726 0.9987769 0.9999998 0.9888039
5000-15000 0.9992718 0.9948674 0.9998852 0.7214172
15000-25000 0.9660244 0.8034652 0.9999999 0.8268942
>25000 0.9761806 1.0000000 0.9996381 0.9394831

Taking the ordinal scale level of both variables into account, a linear by linear association test
(Agresti 2002) is easily performed

R> it <- independence_test(js,

+ scores = list(Job.Satisfaction = c(1, 3, 4, 5),

+ Income = c(3, 10, 20, 35)),

+ distribution = approximate(B = 10000))

R> pvalue(it)

[1] 0.0107
99 percent confidence interval:
0.008233232 0.013643997

For more practical examples, including applications with numeric variables, we refer to Hothorn
et al. (2006).

7. Quality assurance

The test procedures implemented in package coin are continuously checked against results obtained
by the corresponding implementations in package stats (where available). In addition, the test
statistics and exact, approximate and asymptotic p values for data examples given in the StatXact 6
user manual (Cytel Inc. 2003) are compared with the results reported there. Step-down multiple
adjusted p values have been checked against results reported by mt.maxT() from package multtest
(Pollard, Ge, and Dudoit 2005). For details on the test procedures we refer to the R transcript
files in directory coin/tests of the coin package sources.

8. Computational details

The class structure, internal functionality, user interface and examples are based on coin version
0.6-9, available under the terms of the General Public License from http://CRAN.R-project.
org/. R version 2.7.0 was used for the computations, see http://www.R-project.org/.

http://CRAN.R-project.org/
http://CRAN.R-project.org/
http://www.R-project.org/
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