
Generalized nonlinear models in R: An overview of the gnm package

Heather Turner and David Firth∗

University of Warwick, UK

For gnm version 0.9-5 , 2008-06-02

Contents
1 Introduction 2

2 Generalized linear models 2
2.1 Preamble . 2
2.2 Diag and Symm . 2
2.3 Topo . 3
2.4 The wedderburn family . 4
2.5 termPredictors . 5

3 Nonlinear terms 5
3.1 Basic mathematical functions of predictors . 5
3.2 MultHomog . 6
3.3 Dref . 7
3.4 instances . 7
3.5 Custom nonlin functions . 8

3.5.1 General description . 8
3.5.2 Example: a logistic function . 8
3.5.3 Example: MultHomog . 9

4 Controlling the fitting procedure 10
4.1 Basic control parameters . 10
4.2 Using start . 10
4.3 Using constrain . 11
4.4 Using eliminate . 13

5 Methods and accessor functions 15
5.1 Methods . 15
5.2 ofInterest and pickCoef . 17
5.3 checkEstimable . 17
5.4 getContrasts, se . 19
5.5 residSVD . 21

6 gnm or (g)nls? 22

7 Examples 23
7.1 Row-column association models . 23

7.1.1 RC(1) model . 23
7.1.2 RC(2) model . 24
7.1.3 Homogeneous effects . 25

7.2 Diagonal reference models . 27
7.3 Uniform difference (UNIDIFF) models . 34
7.4 Generalized additive main effects and multiplicative interaction (GAMMI) models 35
7.5 Biplot models . 38

∗This work was supported by the Economic and Social Research Council (UK) through Professorial Fellowship RES-051-27-0055.

1

7.6 Stereotype model for multinomial response . 41
7.7 Lee-Carter model for trends in age-specific mortality . 45
7.8 Exponential and sum-of-exponentials models for decay curves . 49

7.8.1 Example: single exponential decay term . 50
7.8.2 Example: sum of two exponentials . 51

A User-level functions 53

1 Introduction
The gnm package provides facilities for fitting generalized nonlinear models, i.e., regression models in which the link-
transformed mean is described as a sum of predictor terms, some of which may be non-linear in the unknown parameters.
Linear and generalized linear models, as handled by the lm and glm functions in R, are included in the class of generalized
nonlinear models, as the special case in which there is no nonlinear term.

This document gives an extended overview of the gnm package, with some examples of applications. The primary
package documentation in the form of standard help pages, as viewed in R by, for example, ?gnm or help(gnm), is
supplemented rather than replaced by the present document.

We begin below with a preliminary note (Section 2) on some ways in which the gnm package extends R’s facilities
for specifying, fitting and working with generalized linear models. Then (Section 3 onwards) the facilities for nonlinear
terms are introduced, explained and exemplified.

The gnm package is installed in the standard way for CRAN packages, for example by using install.packages.
Once installed, the package is loaded into an R session by

> library(gnm)

2 Generalized linear models

2.1 Preamble
Central to the facilities provided by the gnm package is the model-fitting function gnm , which interprets a model formula
and returns a model object. The user interface of gnm is patterned after glm (which is included in R’s standard stats
package), and indeed gnm can be viewed as a replacement for glm for specifying and fitting generalized linear models.
In general there is no reason to prefer gnm to glm for fitting generalized linear models, except perhaps when the model
involves a large number of incidental parameters which are treatable by gnm’s eliminate mechanism (see Section 4.4).

While the main purpose of the gnm package is to extend the class of models to include nonlinear terms, some of the
new functions and methods can be used also with the familiar lm and glm model-fitting functions. These are: three new
data-manipulation functions Diag, Symm and Topo, for setting up structured interactions between factors; a new family
function, wedderburn, for modelling a continuous response variable in [0, 1] with the variance function V(µ) = µ2(1−µ)2

as in Wedderburn (1974); and a new generic function termPredictors which extracts the contribution of each term to
the predictor from a fitted model object. These functions are briefly introduced here, before we move on to the main
purpose of the package, nonlinear models, in Section 3.

2.2 Diag and Symm
When dealing with homologous factors, that is, categorical variables whose levels are the same, statistical models often
involve structured interaction terms which exploit the inherent symmetry. The functions Diag and Symm facilitate the
specification of such structured interactions.

As a simple example of their use, consider the log-linear models of quasi-independence, quasi-symmetry and symmetry
for a square contingency table. Agresti (2002), Section 10.4, gives data on migration between regions of the USA between
1980 and 1985:

> count <- c(11607, 100, 366, 124, 87, 13677, 515, 302, 172, 225,
+ 17819, 270, 63, 176, 286, 10192)
> region <- c("NE", "MW", "S", "W")
> row <- gl(4, 4, labels = region)
> col <- gl(4, 1, length = 16, labels = region)

2

The comparison of models reported by Agresti can be achieved as follows:

> independence <- glm(count ~ row + col, family = poisson)
> quasi.indep <- glm(count ~ row + col + Diag(row, col), family = poisson)
> symmetry <- glm(count ~ Symm(row, col), family = poisson)
> quasi.symm <- glm(count ~ row + col + Symm(row, col), family = poisson)
> comparison1 <- anova(independence, quasi.indep, quasi.symm)
> print(comparison1, digits = 7)

Analysis of Deviance Table

Model 1: count ~ row + col
Model 2: count ~ row + col + Diag(row, col)
Model 3: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 9 125923.29
2 5 69.51 4 125853.78
3 3 2.99 2 66.52

> comparison2 <- anova(symmetry, quasi.symm)
> print(comparison2)

Analysis of Deviance Table

Model 1: count ~ Symm(row, col)
Model 2: count ~ row + col + Symm(row, col)
Resid. Df Resid. Dev Df Deviance

1 6 243.550
2 3 2.986 3 240.564

The Diag and Symm functions also generalize the notions of diagonal and symmetric interaction to cover situations
involving more than two homologous factors.

2.3 Topo

More general structured interactions than those provided by Diag and Symm can be specified using the function Topo.
(The name of this function is short for ‘topological interaction’, which is the nomenclature often used in sociology for
factor interactions with structure derived from subject-matter theory.)

The Topo function operates on any number (k, say) of input factors, and requires an argument named spec which
must be an array of dimension L1 × . . . × Lk, where Li is the number of levels for the ith factor. The spec argument
specifies the interaction level corresponding to every possible combination of the input factors, and the result is a new
factor representing the specified interaction.

As an example, consider fitting the ‘log-multiplicative layer effects’ models described in Xie (1992). The data are 7
by 7 versions of social mobility tables from Erikson et al. (1982):

> data(erikson)
> erikson <- as.data.frame(erikson)
> lvl <- levels(erikson$origin)
> levels(erikson$origin) <- levels(erikson$destination) <- c(rep(paste(lvl[1:2],
+ collapse = " + "), 2), lvl[3], rep(paste(lvl[4:5], collapse = " + "),
+ 2), lvl[6:9])
> erikson <- xtabs(Freq ~ origin + destination + country, data = erikson)

From sociological theory — for which see Erikson et al. (1982) or Xie (1992) — the log-linear interaction between origin
and destination is assumed to have a particular structure:

3

> levelMatrix <- matrix(c(2, 3, 4, 6, 5, 6, 6,
+ 3, 3, 4, 6, 4, 5, 6,
+ 4, 4, 2, 5, 5, 5, 5,
+ 6, 6, 5, 1, 6, 5, 2,
+ 4, 4, 5, 6, 3, 4, 5,
+ 5, 4, 5, 5, 3, 3, 5,
+ 6, 6, 5, 3, 5, 4, 1), 7, 7, byrow = TRUE)

The models of table 3 of Xie (1992) can now be fitted as follows:

> ### Fit the levels models given in Table 3 of Xie (1992)
> ## Null association between origin and destination
> nullModel <- gnm(Freq ~ country:origin + country:destination,
+ family = poisson, data = erikson, verbose = FALSE)
>
> ## Interaction specified by levelMatrix, common to all countries
> commonTopo <- update(nullModel, ~ . +
+ Topo(origin, destination, spec = levelMatrix),
+ verbose = FALSE)
>
> ## Interaction specified by levelMatrix, different multiplier for
> ## each country
> multTopo <- update(nullModel, ~ . +
+ Mult(Exp(country), Topo(origin, destination, spec = levelMatrix)),
+ verbose = FALSE)
>
> ## Interaction specified by levelMatrix, different effects for
> ## each country
> separateTopo <- update(nullModel, ~ . +
+ country:Topo(origin, destination, spec = levelMatrix),
+ verbose = FALSE)
>
> anova(nullModel, commonTopo, multTopo, separateTopo)

Analysis of Deviance Table

Model 1: Freq ~ country:origin + country:destination
Model 2: Freq ~ Topo(origin, destination, spec = levelMatrix) + country:origin +

country:destination
Model 3: Freq ~ Mult(country, Topo(origin, destination, spec = levelMatrix)) +

country:origin + country:destination
Model 4: Freq ~ country:origin + country:destination + country:Topo(origin,

destination, spec = levelMatrix)
Resid. Df Resid. Dev Df Deviance

1 108 4860.0
2 103 244.3 5 4615.7
3 101 216.4 2 28.0
4 93 208.5 8 7.9

Here we have used gnm to fit all of these log-link models; the first, second and fourth are log-linear and could equally well
have been fitted using glm .

2.4 The wedderburn family
In Wedderburn (1974) it was suggested to represent the mean of a continuous response variable in [0, 1] using a quasi-
likelihood model with logit link and the variance function µ2(1 − µ)2. This is not one of the variance functions made
available as standard in R’s quasi family. The wedderburn family provides it. As an example, Wedderburn’s analysis
of data on leaf blotch on barley can be reproduced as follows:

> data(barley)
> logitModel <- glm(y ~ site + variety, family = wedderburn, data = barley)
> fit <- fitted(logitModel)
> print(sum((barley$y - fit)^2/(fit * (1 - fit))^2))

4

[1] 71.17401

This agrees with the chi-squared value reported on page 331 of McCullagh and Nelder (1989), which differs slightly from
Wedderburn’s own reported value.

2.5 termPredictors

The generic function termPredictors extracts a term-by-term decomposition of the predictor function in a linear, gen-
eralized linear or generalized nonlinear model.

As an illustrative example, we can decompose the linear predictor in the above quasi-symmetry model as follows:

> print(temp <- termPredictors(quasi.symm))

(Intercept) row col Symm(row, col)
1 -0.2641848 0.0000000 0.000000 9.62354843
2 -0.2641848 0.0000000 4.918310 -0.09198126
3 -0.2641848 0.0000000 1.539852 4.63901793
4 -0.2641848 0.0000000 5.082641 0.00000000
5 -0.2641848 4.8693457 0.000000 -0.09198126
6 -0.2641848 4.8693457 4.918310 0.00000000
7 -0.2641848 4.8693457 1.539852 0.07295506
8 -0.2641848 4.8693457 5.082641 -3.94766844
9 -0.2641848 0.7465235 0.000000 4.63901793
10 -0.2641848 0.7465235 4.918310 0.07295506
11 -0.2641848 0.7465235 1.539852 7.76583039
12 -0.2641848 0.7465235 5.082641 0.00000000
13 -0.2641848 4.4109017 0.000000 0.00000000
14 -0.2641848 4.4109017 4.918310 -3.94766844
15 -0.2641848 4.4109017 1.539852 0.00000000
16 -0.2641848 4.4109017 5.082641 0.00000000

> rowSums(temp) - quasi.symm$linear.predictors

1 2 3 4 5
0.000000e+00 -8.881784e-16 0.000000e+00 0.000000e+00 -8.881784e-16

6 7 8 9 10
0.000000e+00 0.000000e+00 -8.881784e-16 0.000000e+00 0.000000e+00

11 12 13 14 15
1.776357e-15 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

16
0.000000e+00

Such a decomposition might be useful, for example, in assessing the relative contributions of different terms or groups
of terms.

3 Nonlinear terms
The main purpose of the gnm package is to provide a flexible framework for the specification and estimation of generalized
models with nonlinear terms. The facility provided with gnm for the specification of nonlinear terms is designed to be
compatible with the symbolic language used in formula objects. Primarily, nonlinear terms are specified in the model
formula as calls to functions of the class nonlin. There are a number of nonlin functions included in the gnm package.
Some of these specify simple mathematical functions of predictors: Exp, Mult, and Inv. Others specify more specialized
nonlinear terms, in particular MultHomog specifies homogeneous multiplicative interactions and Dref specifies diagonal
reference terms. Users may also define their own nonlin functions.

3.1 Basic mathematical functions of predictors
Most of the nonlin functions included in gnm are basic mathematical functions of predictors:

Exp: the exponential of a predictor

5

Inv: the reciprocal of a predictor

Mult: the product of predictors

Predictors are specified by symbolic expressions that are interpreted as the right-hand side of a formula object, except that
an intercept is not added by default.

The predictors may contain nonlinear terms, allowing more complex functions to be built up. For example, suppose
we wanted to specify a logistic predictor with the same form as that used by SSlogis (a selfStart model for use with nls
— see section 6 for more on gnm vs. nls):

Asym
1 + exp((xmid − x)/scal)

.

This expression could be simplified by re-parameterizing in terms of xmid/scal and 1/scal, however we shall continue with
this form for illustration. We could express this predictor symbolically as follows

~ -1 + Mult(1, Inv(Const(1) + Exp(Mult(1 + offset(-x), Inv(1)))))

where Const is a convenience function to specify a constant in a nonlin term, equivalent to offset(rep(1, nObs))
where nObs is the number of observations. However, this is rather convoluted and it may be preferable to define a
specialized nonlin function in such a case. Section 3.5 explains how users can define custom nonlin functions, with a
function to specify logistic terms as an example.

One family of models usefully specified with the basic functions is the family of models with multiplicative interac-
tions. For example, the row-column association model

log µrc = αr + βc + γrδc,

also known as the Goodman RC model (Goodman, 1979), would be specified as a log-link model (for response variable
resp, say), with formula

resp ~ R + C + Mult(R, C)

where R and C are row and column factors respectively. In some contexts, it may be desirable to constrain one or more
of the constituent multipliers1 in a multiplicative interaction to be nonnegative . This may be achieved by specifying the
multiplier as an exponential, as in the following ‘uniform difference’ model (Xie, 1992; Erikson and Goldthorpe, 1992)

log µrct = αrt + βct + eγtδrc,

which would be represented by a formula of the form

resp ~ R:T + C:T + Mult(Exp(T), R:C)

3.2 MultHomog

MultHomog is a nonlin function to specify multiplicative interaction terms in which the constituent multipliers are the
effects of two or more factors and the effects of these factors are constrained to be equal when the factor levels are equal.
The arguments of MultHomog are the factors in the interaction, which are assumed to be objects of class factor.

As an example, consider the following association model with homogeneous row-column effects:

log µrc = αr + βc + θrI(r = c) + γrγc.

To fit this model, with response variable named resp, say, the formula argument to gnm would be

resp ~ R + C + Diag(R, C) + MultHomog(R, C)

If the factors passed to MultHomog do not have exactly the same levels, a common set of levels is obtained by taking
the union of the levels of each factor, sorted into increasing order.

1 A note on terminology: the rather cumbersome phrase ‘constituent multiplier’, or sometimes the abbreviation ‘multiplier’, will be used throughout
this document in preference to the more elegant and standard mathematical term ‘factor’. This will avoid possible confusion with the completely
different meaning of the word ‘factor’ — that is, a categorical variable — in R.

6

3.3 Dref

Dref is a nonlin function to fit diagonal reference terms (Sobel, 1981, 1985) involving two or more factors with a common
set of levels. A diagonal reference term comprises an additive component for each factor. The component for factor f is
given by

w fγl

for an observation with level l of factor f , where w f is the weight for factor f and γl is the “diagonal effect” for level l.
The weights are constrained to be nonnegative and to sum to one so that a “diagonal effect”, say γl, is the value of the

diagonal reference term for data points with level l across the factors. Dref specifies the constraints on the weights by
defining them as

w f =
eδ f∑
i eδi

where the δ f are the parameters to be estimated.
Factors defining the diagonal reference term are passed as unspecified arguments to Dref . For example, the following

diagonal reference model for a contingency table classified by the row factor R and the column factor C,

µrc =
eδ1

eδ1 + eδ2
γr +

eδ2

eδ1 + eδ2
γc,

would be specified by a formula of the form

resp ~ -1 + Dref(R, C)

The Dref function has one specified argument, delta, which is a formula with no left-hand side, specifying the
dependence (if any) of δ f on covariates. For example, the formula

resp ~ -1 + x + Dref(R, C, delta = ~ 1 + x)

specifies the generalized diagonal reference model

µrci = βxi +
eξ01+ξ11 xi

eξ01+ξ11 xi + eξ02+ξ12 xi
γr +

eξ02+ξ12 xi

eξ01+ξ11 xi + eξ02+ξ12 xi
γc.

The default value of delta is ~1, so that constant weights are estimated. The coefficients returned by gnm are those that
are directly estimated, i.e. the δ f or the ξ. f , rather than the implied weights w f . However, these weights may be obtained
from a fitted model using the DrefWeights function, which computes the corresponding standard errors using the delta
method.

3.4 instances

Multiple instances of a linear term will be aliased with each other, but this is not necessarily the case for nonlinear terms.
Indeed, there are certain types of model where adding further instances of a nonlinear term is a natural way to extend the
model. For example, Goodman’s RC model, introduced in section 3.1

log µrc = αr + βc + γrδc,

is naturally extended to the RC(2) model, with a two-component interaction

log µrc = αr + βc + γrδc + θrφc.

Currently all of the nonlin functions in gnm except Dref have an inst argument to allow the specification of multiple
instances. So the RC(2) model could be specified as follows

resp ~ R + C + Mult(R, C, inst = 1) + Mult(R, C, inst = 2)

The convenience function instances allows multiple instances of a term to be specified at once

resp ~ R + C + instances(Mult(R, C), 2)

The formula is expanded by gnm , so that the instances are treated as separate terms. The instances function may be
used with any function with an inst argument.

7

3.5 Custom nonlin functions
3.5.1 General description

Users may write their own nonlin functions to specify nonlinear terms which can not (easily) be specified using the nonlin
functions in the gnm package. A function of class nonlin should return a list of arguments for the internal function
nonlinTerms. The following arguments must be specified in all cases:

predictors: a list of symbolic expressions or formulae with no left hand side which represent (possibly nonlinear)
predictors that form part of the term.

term : a function that takes the arguments predLabels and varLabels, which are labels generated by gnm for the
specified predictors and variables (see below), and returns a deparsed mathematical expression of the nonlinear
term. Only functions recognised by deriv should be used in the expression, e.g. + rather than sum .

Intercepts are added by default to predictors that are specified by formulae. If predictors are named, these names are used
as a prefix for parameter labels or as the parameter label itself in the single-parameter case.

The following arguments of nonlinTerms must be specified whenever applicable to the nonlinear term:

variables: a list of expressions representing variables in the term (variables with a coefficient of 1).

common: a numeric index of predictors with duplicated indices identifying single factor predictors for which ho-
mologous effects are to be estimated.

The arguments below are optional:

call: a call to be used as a prefix for parameter labels.

match : (if call is non-NULL) a numeric index of predictors specifying which arguments of call the predictors
match to — zero indicating no match. If NULL, predictors will not be matched to the arguments of call.

start: a function which takes a named vector of parameters corresponding to the predictors and returns a vector of
starting values for those parameters. This function is ignored if the term is nested within another nonlinear term.

Predictors which are matched to a specified argument of call should be given the same name as the argument.
Matched predictors are labelled using “dot-style” labelling, e.g. the label for the intercept in the first constituent multi-
plier of the term Mult(A, B) would be "Mult(. + A, 1 + B).(Intercept)". It is recommended that matches are
specified wherever possible, to ensure parameter labels are well-defined.

The arguments of nonlin functions are as suited to the particular term, but will usually include symbolic representations
of predictors in the term and/or the names of variables in the term. The function may also have an inst argument to allow
specification of multiple instances (see 3.4).

3.5.2 Example: a logistic function

As an example, consider writing a nonlin function for the logistic term discussed in 3.1:

Asym
1 + exp((xmid − x)/scal)

.

We can consider Asym, xmid and scal as the parameters of three separate predictors, each with a single intercept term.
Thus we specify the predictors argument to nonlinTerms as

predictors = list(Asym = 1, xmid = 1, scal = 1)

The term also depends on the variable x, which would need to be specified by the user. Suppose this is specified to
our nonlin function through an argument named x. Then our nonlin function would specify the following variables
argument

variables = list(substitute(x))

We need to use substitute here to list the variable specified by the user rather than the variable named “x” (if it exists).
Our nonlin function must also specify the term argument to nonlinTerms. This is a function that will paste together

an expression for the term, given labels for the predictors and the variables:

8

term = function(predLabels, varLabels) {
paste(predLabels[1], "/(1 + exp((", predLabels[2], "-",
varLabels[1], ")/", predLabels[3], "))")

}

We now have all the necessary ingredients of a nonlin function to specify the logistic term. Since the parameterization
does not depend on user-specified values, it does not make sense to use call-matched labelling in this case. The labels for
our parameters will be taken from the labels of the predictors argument. Since we do not anticipate fitting models with
multiple logistic terms, our nonlin function will not specify a call argument with which to prefix the parameter labels.
We do however, have some idea of useful starting values, so we will specify the start argument as

start = function(theta){
theta[3] <- 1
theta

}

which sets the initial scale parameter to one.
Putting all these ingredients together we have

Logistic <- function(x){
list(predictors = list(Asym = 1, xmid = 1, scal = 1),

variables = list(substitute(x)),
term = function(predLabels, varLabels) {

paste(predLabels[1], "/(1 + exp((", predLabels[2], "-",
varLabels[1], ")/", predLabels[3], "))")

},
start = function(theta){

theta[3] <- 1
theta

})
}
class(Logistic) <- "nonlin"

3.5.3 Example: MultHomog

The MultHomog function included in the gnm package provides a further example of a nonlin function, showing how to
specify a term with quite different features from the preceding example. The definition is

MultHomog <- function(..., inst = NULL){
dots <- match.call(expand.dots = FALSE)[["..."]]
list(predictors = dots,

common = rep(1, length(dots)),
term = function(predLabels, ...) {

paste("(", paste(predLabels, collapse = ")*("), ")", sep = "")},
call = as.expression(match.call()))

}
class(MultHomog) <- "nonlin"

Firstly, the interaction may be based on any number of factors, hence the use of the special “...” argument. The use of
match.call is analogous to the use of substitute in the Logistic function: to obtain expressions for the factors as
specified by the user.

The returned common argument specifies that homogeneous effects are to be estimated across all the specified factors.
The term only depends on these factors, but the term function allows for the empty varLabels vector that will be passed
to it, by having a “...” argument.

Since the user may wish to specify multiple instances, the call argument to nonlinTerms is specified, so that
parameters in different instances of the term will have unique labels (due to the inst argument in the call). However as
the expressions passed to “...” may only represent single factors, rather than general predictors, it is not necessary to
use call-matched labelling, so the match argument is not specified here.

9

4 Controlling the fitting procedure
The gnm function has a number of arguments which affect the way a model will be fitted. Basic control parameters can
be set using the arguments lsMethod , ridge, tolerance, iterStart and iterMax. Starting values for the parameter
estimates can be set by start and parameters can be constrained via constrain and constrainTo arguments. Param-
eters of a stratification factor can be handled more efficiently by specifying the factor in an eliminate argument. These
options are described in more detail below.

4.1 Basic control parameters
The arguments iterStart and iterMax control respectively the number of starting iterations (where applicable) and the
number of main iterations used by the fitting algorithm. The progress of these iterations can be followed by setting either
verbose or trace to TRUE. If verbose is TRUE and trace is FALSE, which is the default setting, progress is indicated
by printing the character “.” at the beginning of each iteration. If trace is TRUE, the deviance is printed at the beginning
of each iteration (over-riding the printing of “.” if necessary). Whenever verbose is TRUE, additional messages indicate
each stage of the fitting process and diagnose any errors that cause that cause the algorithm to restart.

The lsMethod argument specifies what numerical method is to be used to solve the (typically rank-deficient) least
squares problem at the heart of the gnm fitting algorithm: the options are direct solution using a QR decomposition
(“qr”), and matrix inversion via Cholesky decomposition (“chol”). In both cases, the design matrix is standardized and
regularized (in the Levenberg-Marquardt sense) prior to solving; the ridge argument provides a degree of control over the
regularization performed (smaller values may sometimes give faster convergence but can lead to numerical instability). If
lsMethod is left unspecified, the default is “qr”, unless eliminate is used in which case the default lsMethod used is
“chol”.

The fitting algorithm will terminate before the number of main iterations has reached iterMax if the convergence
criteria have been met, with tolerance specified by tolerance. Convergence is judged by comparing the squared com-
ponents of the score vector with corresponding elements of the diagonal of the Fisher information matrix. If, for all
components of the score vector, the ratio is less than toleranceˆ2, or the corresponding diagonal element of the Fisher
information matrix is less than 1e-20, the algorithm is deemed to have converged.

4.2 Using start
In some contexts, the default starting values may not be appropriate and the fitting algorithm will fail to converge, or
perhaps only converge after a large number of iterations. Alternative starting values may be passed on to gnm by specifying
a start argument. This should be a numeric vector of length equal to the number of parameters (or possibly the non-
eliminated parameters, see Section 4.4), however missing starting values (NAs) are allowed.

If there is no user-specified starting value for a parameter, the default value is used. This feature is particularly useful
when adding terms to a model, since the estimates from the original model can be used as starting values, as in this
example:

model1 <- gnm(mu ~ R + C + Mult(R, C))
model2 <- gnm(mu ~ R + C + instances(Mult(R, C), 2),

start = c(coef(model1), rep(NA, 10)))

The gnm call can be made with method = "coefNames" to identify the parameters of a model prior to estimation, to
assist with the specification of arguments such as start. For example, to get the number 10 for the value of start above,
we could have done

gnm(mu ~ R + C + instances(Mult(R, C), 2), method = "coefNames")

from whose output it would be seen that there are 10 new coefficients in model2. When called with method = "coefNames",
gnm makes no attempt to fit the specified model; instead it returns just the names that the coefficients in the fitted model
object would have.

The starting procedure used by gnm is as follows:

1. Begin with all parameters set to NA .

2. Replace NA values with any starting values set by nonlin functions.

3. Replace current values with any (non-NA) starting values specified by the start argument of gnm .

10

4. Set any values specified by the constrain argument to the values specified by the constrainTo argument (see
Section 4.3).

5. Categorise remaining NA parameters as linear or nonlinear, treating non-NA parameters as fixed. Initialise the
nonlinear parameters by generating values θi from the Uniform(−0.1, 0.1) distribution and shifting these values
away from zero as follows

θi =

θi − 0.1 if θi < 1
θi + 0.1 otherwise

6. Compute the glm estimate of the linear parameters, offsetting the contribution to the predictor of any terms fully
determined by steps 2 to 5.

7. Run starting iterations: update nonlinear parameters one at a time, jointly re-estimating linear parameters after each
round of updates.

Note that no starting iterations (step 7) will be run if all parameters are linear, or if all nonlinear parameters are specified
by start, constrain or a nonlin function.

4.3 Using constrain
By default, gnm only imposes identifiability constraints according to the general conventions used by R to handle linear
aliasing. Therefore models that have any nonlinear terms will be typically be over-parameterized, and gnm will return a
random parameterization for unidentified coefficients (determined by the randomly chosen starting values for the iterative
algorithm, step 5 above).

To illustrate this point, consider the following application of gnm , discussed later in Section 7.1:

> data(occupationalStatus)
> set.seed(1)
> RChomog1 <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ MultHomog(origin, destination), family = poisson, data = occupationalStatus,
+ verbose = FALSE)

Running the analysis again from a different seed

> set.seed(2)
> RChomog2 <- update(RChomog1)

gives a different representation of the same model:

> compareCoef <- cbind(coef(RChomog1), coef(RChomog2))
> colnames(compareCoef) <- c("RChomog1", "RChomog2")
> round(compareCoef, 4)

RChomog1 RChomog2
(Intercept) 0.1281 -0.0753
origin2 0.5184 0.5329
origin3 1.6237 1.6777
origin4 1.9422 2.0349
origin5 0.7228 0.8167
origin6 2.7843 2.9121
origin7 1.4574 1.6128
origin8 1.1954 1.3669
destination2 0.9374 0.9519
destination3 1.9681 2.0221
destination4 2.2306 2.3234
destination5 1.6222 1.7161
destination6 3.0878 3.2156
destination7 2.2090 2.3644
destination8 1.7708 1.9423
Diag(origin, destination)1 1.5267 1.5267
Diag(origin, destination)2 0.4560 0.4560

11

Diag(origin, destination)3 -0.0160 -0.0160
Diag(origin, destination)4 0.3892 0.3892
Diag(origin, destination)5 0.7385 0.7385
Diag(origin, destination)6 0.1347 0.1347
Diag(origin, destination)7 0.4576 0.4576
Diag(origin, destination)8 0.3885 0.3885
MultHomog(origin, destination)1 1.5024 -1.5686
MultHomog(origin, destination)2 1.2841 -1.3504
MultHomog(origin, destination)3 0.6860 -0.7522
MultHomog(origin, destination)4 0.1021 -0.1683
MultHomog(origin, destination)5 0.0849 -0.1511
MultHomog(origin, destination)6 -0.4268 0.3606
MultHomog(origin, destination)7 -0.8430 0.7768
MultHomog(origin, destination)8 -1.0866 1.0203

Even though the linear terms are constrained, the parameter estimates for the main effects of origin and destination
still change, because these terms are aliased with the higher order multiplicative interaction, which is unconstrained.

Standard errors are only meaningful for identified parameters and hence the output of summary.gnm will show clearly
which coefficients are estimable:

> summary(RChomog2)

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +

MultHomog(origin, destination), family = poisson, data = occupationalStatus,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6588 -0.4297 0.0000 0.3862 1.7208

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.07530 NA NA NA
origin2 0.53285 NA NA NA
origin3 1.67773 NA NA NA
origin4 2.03492 NA NA NA
origin5 0.81670 NA NA NA
origin6 2.91210 NA NA NA
origin7 1.61278 NA NA NA
origin8 1.36691 NA NA NA
destination2 0.95187 NA NA NA
destination3 2.02215 NA NA NA
destination4 2.32335 NA NA NA
destination5 1.71612 NA NA NA
destination6 3.21558 NA NA NA
destination7 2.36438 NA NA NA
destination8 1.94228 NA NA NA
Diag(origin, destination)1 1.52667 0.44658 3.419 0.00063 ***
Diag(origin, destination)2 0.45600 0.34595 1.318 0.18747
Diag(origin, destination)3 -0.01598 0.18098 -0.088 0.92965
Diag(origin, destination)4 0.38918 0.12748 3.053 0.00227 **
Diag(origin, destination)5 0.73852 0.23329 3.166 0.00155 **
Diag(origin, destination)6 0.13474 0.07934 1.698 0.08945 .
Diag(origin, destination)7 0.45764 0.15103 3.030 0.00245 **
Diag(origin, destination)8 0.38847 0.22172 1.752 0.07976 .
MultHomog(origin, destination)1 -1.56865 NA NA NA
MultHomog(origin, destination)2 -1.35035 NA NA NA
MultHomog(origin, destination)3 -0.75219 NA NA NA
MultHomog(origin, destination)4 -0.16831 NA NA NA
MultHomog(origin, destination)5 -0.15114 NA NA NA
MultHomog(origin, destination)6 0.36062 NA NA NA

12

MultHomog(origin, destination)7 0.77676 NA NA NA
MultHomog(origin, destination)8 1.02033 NA NA NA

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 32.561 on 34 degrees of freedom
AIC: 414.9

Number of iterations: 7

Additional constraints may be specified through the constrain and constrainTo arguments of gnm . These argu-
ments specify respectively parameters that are to be constrained in the fitting process and the values to which they should
be constrained. Parameters may be specified by a regular expression to match against the parameter names, a numeric
vector of indices, a character vector of names, or, if constrain = "[?]" they can be selected through a Tk dialog. The
values to constrain to should be specified by a numeric vector; if constrainTo is missing, constrained parameters will
be set to zero.

In the case above, constraining one level of the homogeneous multiplicative factor is sufficient to make the parameters
of the nonlinear term identifiable, and hence all parameters in the model identifiable. For example, setting the last level of
the homogeneous multiplicative factor to zero,

> multCoef <- coef(RChomog1)[pickCoef(RChomog1, "Mult")]
> set.seed(1)
> RChomogConstrained1 <- update(RChomog1, constrain = 31, start = c(rep(NA,
+ 23), multCoef - multCoef[8]))
> set.seed(2)
> RChomogConstrained2 <- update(RChomogConstrained1)
> identical(coef(RChomogConstrained1), coef(RChomogConstrained2))

[1] TRUE

gives the same results regardless of the random seed set beforehand.
It is not usually so straightforward to constrain all the parameters in a generalized nonlinear model. However use of

constrain in conjunction with constrainTo is usually sufficient to make coefficients of interest identifiable . The func-
tions checkEstimable or getContrasts, described in Section 5, may be used to check whether particular combinations
of parameters are estimable.

4.4 Using eliminate
When a model contains the additive effect of a factor which has a large number of levels, the iterative algorithm by which
maximum likelihood estimates are computed can usually be accelerated by use of the eliminate argument to gnm .

The factor to be eliminate-d should be specified by an expression, which is then interpreted as the first term in the
model formula, replacing any intercept term. So, for example, in terms of the structure of the model,

gnm(mu ~ A + B + Mult(A, B), eliminate = strata1:strata2)

is equivalent to

gnm(mu ~ -1 + strata1:strata2 + A + B + Mult(A, B))

However, specifying a factor through eliminate has two advantages over the standard specification. First, the structure of
the eliminated factor is exploited so that computational speed is improved — substantially so if the number of eliminated
parameters is large. Second, unless otherwise specified through the ofInterest argument to gnm , the ofInterest
component of the returned model object indexes the non-eliminated parameters. Thus eliminated parameters are excluded
from printed model summaries and default selection by gnm methods. See Section 5.2 for further details on the use of the
ofInterest component.

The eliminate feature is useful, for example, when multinomial-response models are fitted by using the well known
equivalence between multinomial and (conditional) Poisson likelihoods. In such situations the sufficient statistic involves a

13

potentially large number of fixed multinomial row totals, and the corresponding parameters are of no substantive interest.
For an application see Section 7.6 below. Here we give an artificial illustration: 1000 randomly-generated trinomial
responses, and a single predictor variable (whose effect on the data generation is null):

> set.seed(1)
> n <- 1000
> x <- rep(rnorm(n), rep(3, n))
> counts <- as.vector(rmultinom(n, 10, c(0.7, 0.1, 0.2)))
> rowID <- gl(n, 3, 3 * n)
> resp <- gl(3, 1, 3 * n)

The logistic model for dependence on x can be fitted as a Poisson log-linear model2, using either glm or gnm :

> ## Timings on a Pentium M 1.6GHz, under Linux
> system.time(temp.glm <- glm(counts ~ rowID + resp + resp:x,

family = poisson))[1]

[1] 121.007

> system.time(temp.gnm <- gnm(counts ~ resp + resp:x, eliminate = rowID,
family = poisson, verbose = FALSE))[1]

[1] 19.985

> c(deviance(temp.glm), deviance(temp.gnm))

[1] 2462.556 2462.556

Here the use of eliminate causes the gnm calculations to run more quickly than glm . The speed advantage3 increases
with the number of eliminated parameters (here 1000). Since the default behaviour has not been over-ridden by an
ofInterest argument, the eliminated parameters do not appear in printed model summaries:

> summary(temp.gnm)

Call:

gnm(formula = counts ~ resp + resp:x, eliminate = rowID, family = poisson,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.852038 -0.786172 -0.004534 0.645278 2.755013

Coefficients of interest:
Estimate Std. Error z value Pr(>|z|)

resp2 -1.9614483 0.0340074 -57.68 <2e-16
resp3 -1.2558460 0.0253589 -49.52 <2e-16
resp1:x 0.0001049 NA NA NA
resp2:x -0.0155083 NA NA NA
resp3:x 0.0078314 NA NA NA

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 2462.6 on 1996 degrees of freedom
AIC: 12028

Number of iterations: 3

2For this particular example, of course, it would be more economical to fit the model directly using multinom (from the recommended package
nnet). But fitting as here via the ‘Poisson trick’ allows the model to be elaborated within the gnm framework using Mult or other nonlin terms.

3In fact eliminate is, in principle, capable of much bigger time savings than this: its implementation in the current version of gnm is really just a
proof of concept, and it has not yet been optimized for speed.

14

As usual, gnm has worked here with an over-parameterized representation of the model. The parameterization used by
glm can be seen from

> coef(temp.glm)[-(1:1000)]

resp2 resp3 resp1:x resp2:x resp3:x
-1.96145 -1.25585 -0.00773 -0.02334 NA

(we will not print the full summary of temp.glm here, since it gives details of all 1005 parameters!), which easily can be
obtained, if required, by using getContrasts:

> getContrasts(temp.gnm, ofInterest(temp.gnm)[5:3])

estimate SE quasiSE quasiVar
resp3:x 0.00000 0.00000 0.02163 0.000468
resp2:x -0.02334 0.03761 0.03077 0.000947
resp1:x -0.00773 0.02452 0.01154 0.000133

See Section 5.4 for further details of the getContrasts function.
The eliminate feature as implemented in gnm extends the earlier work of Hatzinger and Francis (2004) to a broader

class of models and to over-parameterized model representations.

5 Methods and accessor functions

5.1 Methods
The gnm function returns an object of class c("gnm", "glm", "lm"). There are several methods that have been written
for objects of class glm or lm to facilitate inspection of fitted models. Out of the generic functions in the base, stats and
graphics packages for which methods have been written for glm or lm objects, Figure 1 shows those that can be used to
analyse gnm objects, whilst Figure 2 shows those that are not implemented for gnm objects.

anova formula print
case.names hatvalues profile
coef labels residuals
cooks.distance logLik rstandard
confint model.frame summary
deviance model.matrix variable.names
extractAIC plot vcov
family predict weights

Figure 1: Generic functions in the base, stats and graphics packages that can be used to analyse gnm objects.

add1 effects
alias influence
dfbeta kappa
dfbetas proj
drop1
dummy.coef

Figure 2: Generic functions in the base, stats and graphics packages for which methods have been written for glm or lm
objects, but which are not implemented for gnm objects.

In addition to the accessor functions shown in Figure 1, the gnm package provides a new generic function called
termPredictors that has methods for objects of class gnm, glm and lm. This function returns the additive contribution
of each term to the predictor. See Section 2.5 for an example of its use.

Most of the functions listed in Figure 1 can be used as they would be for glm or lm objects, however care must be
taken with vcov.gnm , as the variance-covariance matrix will depend on the parameterization of the model. In particular,

15

standard errors calculated using the variance-covariance matrix will only be valid for parameters or contrasts that are
estimable!

Similarly, profile.gnm and confint.gnm are only applicable to estimable parameters. The deviance function of
a generalized nonlinear model can sometimes be far from quadratic and profile.gnm attempts to detect assymetry or
asymptotic behaviour in order to return a sufficient profile for a given parameter. As an example, consider the following
model, described later in Section 7.3:

data(yaish)
unidiff <- gnm(Freq ~ educ*orig + educ*dest + Mult(Exp(educ), orig:dest),

constrain = "[.]educ1", family = poisson, data = yaish,
subset = (dest != 7))

prof <- profile(unidiff, which = 61:65, trace = TRUE)

If the deviance is quadratic in a given parameter, the profile trace will be linear. We can plot the profile traces as
follows:

−0.6 −0.2 0.2

−
2

0
1

2
3

Mult(Exp(.), orig:dest).educ2

z

−1.5 −1.0 −0.5 0.0

−
2

0
1

2
3

Mult(Exp(.), orig:dest).educ3

z

−2.5 −1.5 −0.5

−
2

0
1

2
3

Mult(Exp(.), orig:dest).educ4

z

−8 −6 −4 −2 0

−
1

0
1

2

Mult(Exp(.), orig:dest).educ5

z

Profile traces for the multipliers of the orig:dest association

Figure 3: Profile traces for the multipliers of the orig:dest association

From these plots we can see that the deviance is approximately quadratic in Mult(Exp(.), orig:dest).educ2, as-
symetric in Mult(Exp(.), orig:dest).educ3 and Mult(Exp(.), orig:dest).educ4 and asymptotic in Mult(Exp(.),
orig:dest).educ5. When the deviance is approximately quadratic in a given parameter, profile.gnm uses the same
stepsize for profiling above and below the original estimate:

> diff(prof[[2]]$par.vals[, "Mult(Exp(.), orig:dest).educ2"])

[1] 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072 0.1053072
[8] 0.1053072 0.1053072 0.1053072

When the deviance is assymmetric, profile.gnm uses different stepsizes to accommodate the skew:

> diff(prof[[4]]$par.vals[, "Mult(Exp(.), orig:dest).educ4"])

16

[1] 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393 0.2018393
[8] 0.2018393 0.2018393 0.2243673 0.2243673 0.2243673 0.2243673 0.2243673

Finally, the presence of an asymptote is recorded in the "asymptote" attribute of the returned profile:

> attr(prof[[5]], "asymptote")

[1] TRUE FALSE

This information is used by confint.gnm to return infinite limits for confidence intervals, as appropriate:

> confint(prof, level = 0.95)

2.5 % 97.5 %
Mult(Exp(.), orig:dest).educ1 NA NA
Mult(Exp(.), orig:dest).educ2 -0.5978901 0.1022447
Mult(Exp(.), orig:dest).educ3 -1.4836854 -0.2362378
Mult(Exp(.), orig:dest).educ4 -2.5792398 -0.2953420
Mult(Exp(.), orig:dest).educ5 -Inf -0.7006889

5.2 ofInterest and pickCoef
It is quite common for a statistical model to have a large number of parameters, but for only a subset of these parameters
be of interest when it comes to interpreting the model. An example of this has been seen in Section 4.4, where a factor
is required in the model in order to represent a structural aspect of the data, but the estimated factor effects have no
substantive interpretation. Even for models in which all parameters correspond to variables of potential interest, the
substantive focus may still be on a subset of parameters.

The ofInterest argument to gnm allows the user to specify a subset of the parameters which are of interest, so that
gnm methods will focus on these parameters. In particular, printed model summaries will only show the parameters of
interest, whilst methods for which a subset of parameters may be selected will by default select the parameters of interest,
or where this may not be appropriate, provide a Tk dialog for selection from the parameters of interest. Parameters may
be specified to the ofInterest argument by a regular expression to match against parameter names, by a numeric vector
of indices, by a character vector of names, or, if ofInterest = "[?]" they can be selected through a Tk dialog.

The information regarding the parameters of interest is held in the ofInterest component of gnm objects, which is
a named vector of numeric indices, or NULL if all parameters are of interest. This component may be accessed or replaced
using ofInterest or ofInterest<- respectively.

The pickCoef function provides a simple way to obtain the indices of coefficients from any model object. It takes the
model object as its first argument and has an optional regexp argument. If a regular expression is passed to regexp, the
coefficients are selected by matching this regular expression against the coefficient names. Otherwise, coefficients may be
selected via a Tk dialog.

So, returning to the example from the last section, if we had set ofInterest to index the education multipliers as
follows

ofInterest(unidiff) <- pickCoef(unidiff, "[.]educ")

then it would not have been necessary to specify the which argument of profile as these parameters would have been
selected by default.

5.3 checkEstimable

The checkEstimable function can be used to check the estimability of a linear combination of parameters. For non-
linear combinations the same function can be used to check estimability based on the (local) vector of partial derivatives.
The checkEstimable function provides a numerical version of the sort of algebraic test described in Catchpole and
Morgan (1997).

Consider the following model, which is described later in Section 7.3:

> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election:vote + election:class:religion +
+ Mult(Exp(election), religion:vote) + Mult(Exp(election),
+ class:vote), family = poisson, data = cautres)

17

Initialising
Running start-up iterations..
Running main iterations...........
Done

The effects of the first constituent multiplier in the first multiplicative interaction are identified when the parameter for
one of the levels — say for the first level — is constrained to zero. The parameters to be estimated are then the differences
between each other level and the first. These differences can be represented by a contrast matrix as follows:
> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep(", religion:vote", coefs)]
> nContr <- length(contrCoefs)
> contrMatrix <- matrix(0, length(coefs), nContr, dimnames = list(coefs,
+ contrCoefs))
> contr <- contr.sum(contrCoefs)
> contr <- rbind(contr[nContr,], contr[-nContr,])
> contrMatrix[contrCoefs, 2:nContr] <- contr
> contrMatrix[contrCoefs, 2:nContr]

Mult(Exp(.), religion:vote).election2
Mult(Exp(.), religion:vote).election1 -1
Mult(Exp(.), religion:vote).election2 1
Mult(Exp(.), religion:vote).election3 0
Mult(Exp(.), religion:vote).election4 0

Mult(Exp(.), religion:vote).election3
Mult(Exp(.), religion:vote).election1 -1
Mult(Exp(.), religion:vote).election2 0
Mult(Exp(.), religion:vote).election3 1
Mult(Exp(.), religion:vote).election4 0

Mult(Exp(.), religion:vote).election4
Mult(Exp(.), religion:vote).election1 -1
Mult(Exp(.), religion:vote).election2 0
Mult(Exp(.), religion:vote).election3 0
Mult(Exp(.), religion:vote).election4 1

Then their estimability can be checked using checkEstimable

> checkEstimable(doubleUnidiff, contrMatrix)

Mult(Exp(.), religion:vote).election1 Mult(Exp(.), religion:vote).election2
NA TRUE

Mult(Exp(.), religion:vote).election3 Mult(Exp(.), religion:vote).election4
TRUE TRUE

which confirms that the effects for the other three levels are estimable when the parameter for the first level is set to zero.
However, applying the equivalent constraint to the second constituent multiplier in the interaction is not sufficient to

make the parameters in that multiplier estimable:
> coefs <- names(coef(doubleUnidiff))
> contrCoefs <- coefs[grep("[.]religion", coefs)]
> nContr <- length(contrCoefs)
> contrMatrix <- matrix(0, length(coefs), length(contrCoefs), dimnames = list(coefs,
+ contrCoefs))
> contr <- contr.sum(contrCoefs)
> contrMatrix[contrCoefs, 2:nContr] <- rbind(contr[nContr,], contr[-nContr,
+])
> checkEstimable(doubleUnidiff, contrMatrix)

Mult(Exp(election), .).religion1:vote1 Mult(Exp(election), .).religion2:vote1
NA FALSE

Mult(Exp(election), .).religion3:vote1 Mult(Exp(election), .).religion4:vote1
FALSE FALSE

Mult(Exp(election), .).religion1:vote2 Mult(Exp(election), .).religion2:vote2
FALSE FALSE

Mult(Exp(election), .).religion3:vote2 Mult(Exp(election), .).religion4:vote2
FALSE FALSE

18

5.4 getContrasts, se
To investigate simple “sum to zero” contrasts such as those above, it is easiest to use the getContrasts function, which
checks the estimability of possibly scaled contrasts and returns the parameter estimates with their standard errors. Return-
ing to the example of the first constituent multiplier in the first multiplicative interaction term, the differences between
each election and the first can be obtained as follows:

> myContrasts <- getContrasts(doubleUnidiff, pickCoef(doubleUnidiff,
+ ", religion:vote"))
> myContrasts

estimate SE quasiSE
Mult(Exp(.), religion:vote).election1 0.0000000 0.0000000 0.09803075
Mult(Exp(.), religion:vote).election2 -0.0878181 0.1136832 0.05702819
Mult(Exp(.), religion:vote).election3 -0.2615200 0.1184134 0.06812239
Mult(Exp(.), religion:vote).election4 -0.3283459 0.1221302 0.07168290

quasiVar
Mult(Exp(.), religion:vote).election1 0.009610029
Mult(Exp(.), religion:vote).election2 0.003252214
Mult(Exp(.), religion:vote).election3 0.004640660
Mult(Exp(.), religion:vote).election4 0.005138439

Visualization of estimated contrasts using ‘quasi standard errors’ (Firth, 2003; Firth and de Menezes, 2004) is achieved
by plotting the resulting object:

> plot(myContrasts, main = "Relative strength of religion-vote association, log scale",
+ xlab = "Election", levelNames = 1:4)

1 2 3 4

−
0.

4
−

0.
2

0.
0

0.
2

Relative strength of religion−vote association, log scale

Election

es
tim

at
e

●

●

●

●

Figure 4: Relative strength of religion-vote association, log scale

By default, getContrasts uses the first parameter of the specified set as the reference level; alternatives may be set via
the ref argument.

19

In the above example, the simple contrasts are estimable without scaling. In certain other applications, for example
row-column association models (see Section 7.1), the contrasts are identified only after fixing their scale. A more general
family of scaled contrasts for a set of parameters γr, r = 1, . . . ,R is given by

γ∗r =
γr − γw√∑

r vr(γr − γu)2

where γw =
∑

wrγr is the reference level against which the contrasts are taken, γu =
∑

urγr is a possibly different
weighted mean of the parameters to be used as reference level for a set of “scaling contrasts”, and vr is a further set of
weights. Thus, for example, the choice

wr =

1 (r = 1)
0 (otherwise)

, ur = vr = 1/R

specifies contrasts with the first level, with the coefficients scaled to have variance 1. This general type of scaling can be
obtained by specifying the form of γu and vr via the scaleRef and scaleWeights arguments of getContrasts.

As an example, consider the following model, described in Section 7.1:

> data(mentalHealth)
> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)
> RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson,
+ data = mentalHealth)

Initialising
Running start-up iterations..
Running main iterations........
Done

The effects of the constituent multipliers of the multiplicative interaction are identified when both their scale and location
are constrained. A simple way to achieve this is to set the first parameter to zero and the last parameter to one:

> RC1model2 <- gnm(count ~ SES + MHS + Mult(1, SES, MHS), constrain = "[.]SES[AF]",
+ constrainTo = c(0, 1), ofInterest = "[.]SES", family = poisson,
+ data = mentalHealth)

Initialising
Running start-up iterations..
Running main iterations..........
Done

> summary(RC1model2)

Call:

gnm(formula = count ~ SES + MHS + Mult(1, SES, MHS), ofInterest = "[.]SES",
constrain = "[.]SES[AF]", constrainTo = c(0, 1), family = poisson,
data = mentalHealth)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.87231 -0.30983 0.01026 0.29898 0.87866

Coefficients of interest:
Estimate Std. Error z value Pr(>|z|)

Mult(1, ., MHS).SESA NA NA NA NA
Mult(1, ., MHS).SESB -0.003107 0.181567 -0.017 0.986
Mult(1, ., MHS).SESC 0.252939 0.158922 1.592 0.111
Mult(1, ., MHS).SESD 0.388785 0.144164 2.697 0.007 **
Mult(1, ., MHS).SESE 0.724329 0.172325 4.203 2.63e-05 ***
Mult(1, ., MHS).SESF NA NA NA NA

20

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 3.5706 on 8 degrees of freedom
AIC: 179.74

Number of iterations: 10

Note that a constant multiplier must be incorporated into the interaction term, i.e., the multiplicative term Mult(SES,
MHS) becomes Mult(1, SES, MHS), in order to maintain equivalence with the original model specification. The con-
straints specified for RC1model2 result in the estimation of scaled contrasts with level A of SES, in which the scaling fixes
the magnitude of the contrast between level F and level A to be equal to 1. The equivalent use of getContrasts, together
with the unconstrained fit (RC1model), in this case is as follows:

> getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = "first",
+ scaleRef = "first", scaleWeights = c(rep(0, 5), 1))

Estimate Std. Error
Mult(., MHS).SESA 0.000000000 0.0000000
Mult(., MHS).SESB 0.003107335 0.1815673
Mult(., MHS).SESC -0.252939313 0.1589219
Mult(., MHS).SESD -0.388785381 0.1441637
Mult(., MHS).SESE -0.724329033 0.1723248
Mult(., MHS).SESF -1.000000000 0.0000000

Quasi-variances and standard errors are not returned here as they can not (currently) be computed for scaled contrasts.
When the scaling uses the same reference level as the contrasts, equal scale weights produce “spherical” contrasts, whilst
unequal weights produce “elliptical” contrasts. Further examples are given in Sections 7.1 and 7.4.

For more general linear combinations of parameters than contrasts, the lower-level se function (which is called inter-
nally by getContrasts and by the summary method) can be used directly. See help(se) for details.

5.5 residSVD

Sometimes it is useful to operate on the residuals of a model in order to create informative summaries of residual variation,
or to obtain good starting values for additional parameters in a more elaborate model. The relevant arithmetical operations
are weighted means of the so-called working residuals.

The residSVD function facilitates one particular residual analysis that is often useful when considering multiplicative
interaction between factors as a model elaboration: in effect, residSVD provides a direct estimate of the parameters of
such an interaction, by performing an appropriately weighted singular value decomposition on the working residuals.

As an illustration, consider the biplot model described in Section 7.5 below. We can proceed by fitting a smaller
model, then use residSVD to obtain starting values for the parameters in the bilinear term:

> emptyModel <- gnm(y ~ -1, family = wedderburn, data = barley)
> biplotStart <- residSVD(emptyModel, barley$site, barley$variety,
+ d = 2)
> biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2),
+ family = wedderburn, data = barley, start = biplotStart)

Running main iterations...
..
..
Done

In this instance, the use of purposive (as opposed to the default, random) starting values had little effect: the fairly large
number of iterations needed in this example is caused by a rather flat (quasi-)likelihood surface near the maximum, not by
poor starting values. In other situations, the use of residSVD may speed the calculations dramatically (see for example

21

Section 7.4), or it may be crucial to success in locating the MLE (for example see help(House2001), where the number
of multiplicative parameters is in the hundreds).

The residSVD result in this instance provides a crude approximation to the MLE of the enlarged model, as can be
seen in 5:

●●

● ●●●

●

●

●

●●●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 0 2 4

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Comparison of residSVD and MLE for a 2−dimensional
 biplot model

coef(biplotModel)

bi
pl

ot
S

ta
rt

Figure 5: Comparison of residSVD and the MLE for a 2-dimensional biplot model

6 gnm or (g)nls?
The nls function in the stats package may be used to fit a nonlinear model via least-squares estimation. Statistically
speaking, gnm is to nls as glm is to lm , in that a nonlinear least-squares model is equivalent to a generalized nonlinear
model with family = gaussian. A nls model assumes that the responses are distributed either with constant variance
or with fixed relative variances (specified via the weights argument). The gnls function in the nlme package extends
nls to allow correlated responses. On the other hand, gnm allows for responses distributed with variances that are a
specified (via the family argument) function of the mean; as with nls, no correlation is allowed.

The gnm function also differs from nls/gnls in terms of the interface. Models are specified to nls and gnls in terms
of a mathematical formula or a selfStart function based on such a formula, which is convenient for models that have a
small number of parameters. For models that have a large number of parameters, or can not easily be represented by a
mathematical formula, the symbolic model specification used by gnm may be more convenient. This would usually be the
case for models involving factors, which would need to be represented by dummy variables in a nls formula.

When working with artificial data, gnm has the minor advantage that it does not fail when a model is an exact fit to
the data (see help(nls)). Therefore it is not necessary with gnm to add noise to artificial data, which can be useful when
testing methods.

22

7 Examples

7.1 Row-column association models
There are several models that have been proposed for modelling the relationship between the cell means of a contingency
table and the cross-classifying factors. The following examples consider the row-column association models proposed by
Goodman (1979). The examples shown use data from two-way contingency tables, but the gnm package can also be used
to fit the equivalent models for higher order tables.

7.1.1 RC(1) model

The RC(1) model is a row and column association model with the interaction between row and column factors represented
by one component of the multiplicative interaction. If the rows are indexed by r and the columns by c, then the log-
multiplicative form of the RC(1) model for the cell means µrc is given by

log µrc = αr + βc + γrδc.

We shall fit this model to the mentalHealth data set from Agresti (2002, page 381), which is a two-way contingency
table classified by the child’s mental impairment (MHS) and the parents’ socioeconomic status (SES). Although both of
these factors are ordered, we do not wish to use polynomial contrasts in the model, so we begin by setting the contrasts
attribute of these factors to treatment:

> set.seed(1)
> data(mentalHealth)
> mentalHealth$MHS <- C(mentalHealth$MHS, treatment)
> mentalHealth$SES <- C(mentalHealth$SES, treatment)

The gnm model is then specified as follows, using the poisson family with a log link function:

> RC1model <- gnm(count ~ SES + MHS + Mult(SES, MHS), family = poisson,
+ data = mentalHealth)

Initialising
Running start-up iterations..
Running main iterations........
Done

> RC1model

Call:
gnm(formula = count ~ SES + MHS + Mult(SES, MHS), family = poisson,

data = mentalHealth)

Coefficients:
(Intercept) SESB SESC

3.84143 -0.06741 0.10999
SESD SESE SESF

0.40502 0.02535 -0.20055
MHSmild MHSmoderate MHSimpaired
0.70380 0.19416 0.23331

Mult(., MHS).SESA Mult(., MHS).SESB Mult(., MHS).SESC
-0.41864 -0.42216 -0.13207

Mult(., MHS).SESD Mult(., MHS).SESE Mult(., MHS).SESF
0.02183 0.40198 0.71429

Mult(SES, .).MHSwell Mult(SES, .).MHSmild Mult(SES, .).MHSmoderate
-0.73671 -0.07475 0.04471

Mult(SES, .).MHSimpaired
0.59453

Deviance: 3.570562
Pearson chi-squared: 3.568088
Residual df: 8

23

The row scores (parameters 10 to 15) and the column scores (parameters 16 to 19) of the multiplicative interaction can be
normalized as in Agresti’s eqn (9.15):

> rowProbs <- with(mentalHealth, tapply(count, SES, sum)/sum(count))
> colProbs <- with(mentalHealth, tapply(count, MHS, sum)/sum(count))
> rowScores <- coef(RC1model)[10:15]
> colScores <- coef(RC1model)[16:19]
> rowScores <- rowScores - sum(rowScores * rowProbs)
> colScores <- colScores - sum(colScores * colProbs)
> beta1 <- sqrt(sum(rowScores^2 * rowProbs))
> beta2 <- sqrt(sum(colScores^2 * colProbs))
> assoc <- list(beta = beta1 * beta2, mu = rowScores/beta1, nu = colScores/beta2)
> assoc

$beta
[1] 0.1664874

$mu
Mult(., MHS).SESA Mult(., MHS).SESB Mult(., MHS).SESC Mult(., MHS).SESD

-1.11233093 -1.12143720 -0.37107614 0.02702955
Mult(., MHS).SESE Mult(., MHS).SESF

1.01036159 1.81823273

$nu
Mult(SES, .).MHSwell Mult(SES, .).MHSmild Mult(SES, .).MHSmoderate

-1.6775143 -0.1403989 0.1369924
Mult(SES, .).MHSimpaired

1.4136910

Alternatively, the elliptical contrasts mu and nu can be obtained using getContrasts, with the advantage that the standard
errors for the contrasts will also be computed:

> mu <- getContrasts(RC1model, pickCoef(RC1model, "[.]SES"), ref = rowProbs,
+ scaleWeights = rowProbs)
> nu <- getContrasts(RC1model, pickCoef(RC1model, "[.]MHS"), ref = colProbs,
+ scaleWeights = colProbs)
> mu

Estimate Std. Error
Mult(., MHS).SESA -1.11136061 0.2992108
Mult(., MHS).SESB -1.12045893 0.3142156
Mult(., MHS).SESC -0.37075244 0.3191514
Mult(., MHS).SESD 0.02700597 0.2732755
Mult(., MHS).SESE 1.00948022 0.3146991
Mult(., MHS).SESF 1.81664662 0.2809531

> nu

Estimate Std. Error
Mult(SES, .).MHSwell -1.6737832 0.1904282
Mult(SES, .).MHSmild -0.1400866 0.2001792
Mult(SES, .).MHSmoderate 0.1366877 0.2794787
Mult(SES, .).MHSimpaired 1.4105467 0.1741818

Since the value of beta is dependent upon the particular scaling used for the contrasts, it is typically not of interest to
conduct inference on this parameter directly. The standard error for beta could be obtained, if desired, via the delta
method.

7.1.2 RC(2) model

The RC(1) model can be extended to an RC(m) model with m components of the multiplicative interaction. For example,
the RC(2) model is given by

log µrc = αr + βc + γrδc + θrφc.

24

Extra instances of the multiplicative interaction can be specified by the multiplicity argument of Mult, so the RC(2)
model can be fitted to the mentalHealth data as follows

> RC2model <- gnm(count ~ SES + MHS + instances(Mult(SES, MHS),
+ 2), family = poisson, data = mentalHealth)

Initialising
Running start-up iterations..
Running main iterations..............
Done

> RC2model

Call:
gnm(formula = count ~ SES + MHS + instances(Mult(SES, MHS), 2),

family = poisson, data = mentalHealth)

Coefficients:
(Intercept) SESB

3.81539 -0.06452
SESC SESD

0.11327 0.38762
SESE SESF

0.01619 -0.17718
MHSmild MHSmoderate
0.72796 0.22209

MHSimpaired Mult(., MHS, inst = 1).SESA
0.27738 -0.19609

Mult(., MHS, inst = 1).SESB Mult(., MHS, inst = 1).SESC
-0.23247 -0.10207

Mult(., MHS, inst = 1).SESD Mult(., MHS, inst = 1).SESE
0.15618 0.23954

Mult(., MHS, inst = 1).SESF Mult(SES, ., inst = 1).MHSwell
0.03515 -1.00815

Mult(SES, ., inst = 1).MHSmild Mult(SES, ., inst = 1).MHSmoderate
-0.04298 -0.21716

Mult(SES, ., inst = 1).MHSimpaired Mult(., MHS, inst = 2).SESA
1.11729 0.39218

Mult(., MHS, inst = 2).SESB Mult(., MHS, inst = 2).SESC
0.25985 0.01665

Mult(., MHS, inst = 2).SESD Mult(., MHS, inst = 2).SESE
0.68097 0.05502

Mult(., MHS, inst = 2).SESF Mult(SES, ., inst = 2).MHSwell
-1.75425 0.32550

Mult(SES, ., inst = 2).MHSmild Mult(SES, ., inst = 2).MHSmoderate
0.05297 -0.07626

Mult(SES, ., inst = 2).MHSimpaired
-0.17352

Deviance: 0.5225353
Pearson chi-squared: 0.523331
Residual df: 3

7.1.3 Homogeneous effects

If the row and column factors have the same levels, or perhaps some levels in common, then the row-column interaction
could be modelled by a multiplicative interaction with homogeneous effects, that is

log µrc = αr + βc + γrγc.

For example, the occupationalStatus data set from Goodman (1979) is a contingency table classified by the occupa-
tional status of fathers (origin) and their sons (destination). Goodman (1979) fits a row-column association model with

25

homogeneous effects to these data after deleting the cells on the main diagonal. Equivalently we can account for the
diagonal effects by a separate Diag term:

> data(occupationalStatus)
> RChomog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ MultHomog(origin, destination), family = poisson, data = occupationalStatus)

Initialising
Running start-up iterations..
Running main iterations.........
Done

> RChomog

Call:
gnm(formula = Freq ~ origin + destination + Diag(origin, destination) +

MultHomog(origin, destination), family = poisson, data = occupationalStatus)

Coefficients:
(Intercept) origin2
-1.55466 0.62373
origin3 origin4
2.01762 2.61788
origin5 origin6
1.40681 3.71525
origin7 origin8
2.58917 2.44470

destination2 destination3
1.04274 2.36204

destination4 destination5
2.90631 2.30623

destination6 destination7
4.01873 3.34077

destination8 Diag(origin, destination)1
3.02008 1.52667

Diag(origin, destination)2 Diag(origin, destination)3
0.45600 -0.01598

Diag(origin, destination)4 Diag(origin, destination)5
0.38918 0.73852

Diag(origin, destination)6 Diag(origin, destination)7
0.13474 0.45764

Diag(origin, destination)8 MultHomog(origin, destination)1
0.38847 -1.98495

MultHomog(origin, destination)2 MultHomog(origin, destination)3
-1.76665 -1.16849

MultHomog(origin, destination)4 MultHomog(origin, destination)5
-0.58461 -0.56744

MultHomog(origin, destination)6 MultHomog(origin, destination)7
-0.05568 0.36046

MultHomog(origin, destination)8
0.60403

Deviance: 32.56098
Pearson chi-squared: 31.20716
Residual df: 34

To determine whether it would be better to allow for heterogeneous effects on the association of the fathers’ occupa-
tional status and the sons’ occupational status, we can compare this model to the RC(1) model for these data:

> data(occupationalStatus)
> RCheterog <- gnm(Freq ~ origin + destination + Diag(origin, destination) +
+ Mult(origin, destination), family = poisson, data = occupationalStatus)

26

Initialising
Running start-up iterations..
Running main iterations.........
Done

> anova(RChomog, RCheterog)

Analysis of Deviance Table

Model 1: Freq ~ origin + destination + Diag(origin, destination) + MultHomog(origin,
destination)

Model 2: Freq ~ origin + destination + Diag(origin, destination) + Mult(origin,
destination)

Resid. Df Resid. Dev Df Deviance
1 34 32.561
2 28 29.149 6 3.412

In this case there is little gain in allowing heterogeneous effects.

7.2 Diagonal reference models
Diagonal reference models, proposed by Sobel (1981, 1985), are designed for contingency tables classified by factors
with the same levels. The cell means are modelled as a function of the diagonal effects, i.e., the mean responses of the
‘diagonal’ cells in which the levels of the row and column factors are the same.

Dref example 1: Political consequences of social mobility

To illustrate the use of diagonal reference models we shall use the voting data from Clifford and Heath (1993). The data
come from the 1987 British general election and are the percentage voting Labour in groups cross-classified by the class
of the head of household (destination) and the class of their father (origin). In order to weight these percentages by
the group size, we first back-transform them to the counts of those voting Labour and those not voting Labour:

> set.seed(1)
> data(voting)
> count <- with(voting, percentage/100 * total)
> yvar <- cbind(count, voting$total - count)

The grouped percentages may be modelled by a basic diagonal reference model, that is, a weighted sum of the diagonal
effects for the corresponding origin and destination classes. This model may be expressed as

µod =
eδ1

eδ1 + eδ2
γo +

eδ2

eδ1 + eδ2
γd.

See Section 3.3 for more detail on the parameterization.
The basic diagonal reference model may be fitted using gnm as follows

> classMobility <- gnm(yvar ~ Dref(origin, destination), family = binomial,
+ data = voting)

Initialising
Running main iterations........
Done

> classMobility

Call:
gnm(formula = yvar ~ Dref(origin, destination), family = binomial,

data = voting)

Coefficients:
(Intercept) Dref(origin, destination)delta1
-1.34325 -0.30736

27

Dref(origin, destination)delta2 Dref(., .).origin|destination1
-0.05501 -0.83454

Dref(., .).origin|destination2 Dref(., .).origin|destination3
0.21066 -0.61159

Dref(., .).origin|destination4 Dref(., .).origin|destination5
0.76500 1.38370

Deviance: 21.22093
Pearson chi-squared: 18.95311
Residual df: 19

and the origin and destination weights can be evaluated as below

> DrefWeights(classMobility)

$origin
weight se

0.43724694 0.03996404

$destination
weight se

0.56275306 0.03996404

These results are slightly different from those reported by Clifford and Heath (1993). The reason for this is unclear: we
are confident that the above results are correct for the data as given in Clifford and Heath (1993), but have not been able
to confirm that the data as printed in the journal were exactly as used in Clifford and Heath’s analysis.

Clifford and Heath (1993) suggest that movements in and out of the salariat (class 1) should be treated differently
from movements between the lower classes (classes 2 - 5), since the former has a greater effect on social status. Thus they
propose the following model

µod =

eδ1

eδ1 + eδ2
γo +

eδ2

eδ1 + eδ2
γd if o = 1

eδ3

eδ3 + eδ4
γo +

eδ4

eδ3 + eδ4
γd if d = 1

eδ5

eδ5 + eδ6
γo +

eδ6

eδ5 + eδ6
γd if o , 1 and d , 1

To fit this model we define factors indicating movement in (upward) and out (downward) of the salariat

> upward <- with(voting, origin != 1 & destination == 1)
> downward <- with(voting, origin == 1 & destination != 1)

Then the diagonal reference model with separate weights for socially mobile groups can be estimated as follows

> socialMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~1 +
+ downward + upward), family = binomial, data = voting)

Initialising
Running main iterations..........
Done

> socialMobility

Call:
gnm(formula = yvar ~ Dref(origin, destination, delta = ~1 + downward +

upward), family = binomial, data = voting)

Coefficients:
(Intercept)

-1.3211

28

Dref(origin, destination, delta = ~ . + downward + upward).delta1(Intercept)
0.2753

Dref(origin, destination, delta = ~ 1 + . + upward).delta1downwardTRUE
0.2122

Dref(origin, destination, delta = ~ 1 + downward + .).delta1upwardTRUE
0.1474

Dref(origin, destination, delta = ~ . + downward + upward).delta2(Intercept)
0.6620

Dref(origin, destination, delta = ~ 1 + . + upward).delta2downwardTRUE
-0.5986

Dref(origin, destination, delta = ~ 1 + downward + .).delta2upwardTRUE
0.2076

Dref(., ., delta = ~ 1 + downward + upward).origin|destination1
-0.7365

Dref(., ., delta = ~ 1 + downward + upward).origin|destination2
0.2084

Dref(., ., delta = ~ 1 + downward + upward).origin|destination3
-0.6737

Dref(., ., delta = ~ 1 + downward + upward).origin|destination4
0.7519

Dref(., ., delta = ~ 1 + downward + upward).origin|destination5
1.3787

Deviance: 18.97407
Pearson chi-squared: 17.07493
Residual df: 17

The weights for those moving into the salariat, those moving out of the salariat and those in any other group, can be
evaluated as below

> DrefWeights(socialMobility)

$origin
downward upward weight se

1 FALSE FALSE 0.4044959 0.05918141
2 TRUE FALSE 0.6044393 0.12371032
3 FALSE TRUE 0.3900792 0.08134359

$destination
downward upward weight se

1 FALSE FALSE 0.5955041 0.05918141
2 TRUE FALSE 0.3955607 0.12371032
3 FALSE TRUE 0.6099208 0.08134359

Again, the results differ slightly from those reported by Clifford and Heath (1993), but the essence of the results is the
same: the origin weight is much larger for the downwardly mobile group than for the other groups. The weights for the
upwardly mobile group are very similar to the base level weights, so the model may be simplified by only fitting separate
weights for the downwardly mobile group:

> downwardMobility <- gnm(yvar ~ Dref(origin, destination, delta = ~1 +
+ downward), family = binomial, data = voting)

Initialising
Running main iterations.........
Done

> downwardMobility

Call:
gnm(formula = yvar ~ Dref(origin, destination, delta = ~1 + downward),

family = binomial, data = voting)

29

Coefficients:
(Intercept)
-1.31336

Dref(origin, destination, delta = ~ . + downward).delta1(Intercept)
-0.04679

Dref(origin, destination, delta = ~ 1 + .).delta1downwardTRUE
0.58421

Dref(origin, destination, delta = ~ . + downward).delta2(Intercept)
0.36199

Dref(origin, destination, delta = ~ 1 + .).delta2downwardTRUE
-0.22653

Dref(., ., delta = ~ 1 + downward).origin|destination1
-0.75650

Dref(., ., delta = ~ 1 + downward).origin|destination2
0.20684

Dref(., ., delta = ~ 1 + downward).origin|destination3
-0.67829

Dref(., ., delta = ~ 1 + downward).origin|destination4
0.74029

Dref(., ., delta = ~ 1 + downward).origin|destination5
1.36966

Deviance: 18.99389
Pearson chi-squared: 17.09981
Residual df: 18

> DrefWeights(downwardMobility)

$origin
downward weight se

1 FALSE 0.3992031 0.04750643
2 TRUE 0.5991569 0.11951340

$destination
downward weight se

1 FALSE 0.6007969 0.04750643
2 TRUE 0.4008431 0.11951340

Dref example 2: conformity to parental rules

Another application of diagonal reference models is given by van der Slik et al. (2002). The data from this paper are not
publicly available4, but we shall show how the models presented in the paper may be estimated using gnm .

The data relate to the value parents place on their children conforming to their rules. There are two response variables:
the mother’s conformity score (MCFM) and the father’s conformity score (FCFF). The data are cross-classified by two
factors describing the education level of the mother (MOPLM) and the father (FOPLF), and there are six further covariates
(AGEM, MRMM, FRMF, MWORK, MFCM and FFCF).

In their baseline model for the mother’s conformity score, van der Slik et al. (2002) include five of the six covariates
(leaving out the father’s family conflict score, FCFF) and a diagonal reference term with constant weights based on the
two education factors. This model may be expressed as

µrci = β1x1i + β2x2i + β3x3i + β4x4i + β5x5i +
eδ1

eδ1 + eδ2
γr +

eδ2

eδ1 + eδ2
γc.

The baseline model can be fitted as follows:

> set.seed(1)
> A <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
+ verbose = FALSE)
> A

4 We thank Frans van der Slik for his kindness in sending us the data.

30

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM FRMF

0.06363 -0.32425 -0.25324
MWORK MFCM Dref(MOPLM, FOPLF)delta1

-0.06430 -0.06043 -0.33731
Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2

-0.02505 4.95121 4.86329
Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5

4.86458 4.72343 4.43516
Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7

4.18873 4.43378

Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

The coefficients of the covariates are not aliased with the parameters of the diagonal reference term and thus the basic
identifiability constraints that have been imposed are sufficient for these parameters to be identified. The diagonal effects
do not need to be constrained as they represent contrasts with the off-diagonal cells. Therefore the only unidentified
parameters in this model are the weight parameters. This is confirmed in the summary of the model:

> summary(A)

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
verbose = FALSE)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.63688 -0.50383 0.01714 0.56753 2.25139

Coefficients:
Estimate Std. Error t value Pr(>|t|)

AGEM 0.06363 0.07375 0.863 0.38859
MRMM -0.32425 0.07766 -4.175 3.44e-05 ***
FRMF -0.25324 0.07681 -3.297 0.00104 **
MWORK -0.06430 0.07431 -0.865 0.38727
MFCM -0.06043 0.07123 -0.848 0.39663
Dref(MOPLM, FOPLF)delta1 -0.33731 NA NA NA
Dref(MOPLM, FOPLF)delta2 -0.02505 NA NA NA
Dref(., .).MOPLM|FOPLF1 4.95121 0.16639 29.757 < 2e-16 ***
Dref(., .).MOPLM|FOPLF2 4.86329 0.10436 46.602 < 2e-16 ***
Dref(., .).MOPLM|FOPLF3 4.86458 0.12855 37.842 < 2e-16 ***
Dref(., .).MOPLM|FOPLF4 4.72343 0.13523 34.929 < 2e-16 ***
Dref(., .).MOPLM|FOPLF5 4.43516 0.19314 22.963 < 2e-16 ***
Dref(., .).MOPLM|FOPLF6 4.18873 0.17142 24.435 < 2e-16 ***
Dref(., .).MOPLM|FOPLF7 4.43378 0.16903 26.231 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 0.7384355)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 425.34 on 576 degrees of freedom
AIC: 1507.8

31

Number of iterations: 15

The weights have been constrained to sum to one as described in Section 3.3, so the weights themselves may be estimated
as follows:

> prop.table(exp(coef(A)[6:7]))

Dref(MOPLM, FOPLF)delta1 Dref(MOPLM, FOPLF)delta2
0.4225638 0.5774362

However, in order to estimate corresponding standard errors, the parameters of one of the weights must be constrained. If
no such constraints were applied when the model was fitted, DrefWeights will refit the model constraining the parameters
of the first weight to zero:

> DrefWeights(A)

Refitting with parameters of first Dref weight constrained to zero
$MOPLM
weight se

0.4225636 0.1439829

$FOPLF
weight se

0.5774364 0.1439829

giving the values reported by van der Slik et al. (2002). All the other coefficients of model A are the same as those
reported by van der Slik et al. (2002) except the coefficients of the mother’s gender role (MRMM) and the father’s gender
role (FRMF). van der Slik et al. (2002) reversed the signs of the coefficients of these factors since they were coded in
the direction of liberal values, unlike the other covariates. However, simply reversing the signs of these coefficients does
not give the same model, since the estimates of the diagonal effects depend on the estimates of these coefficients. For
consistent interpretation of the covariate coefficients, it is better to recode the gender role factors as follows:

> MRMM2 <- as.numeric(!conformity$MRMM)
> FRMF2 <- as.numeric(!conformity$FRMF)
> A <- gnm(MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +
+ Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
+ verbose = FALSE)
> A

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM2 + FRMF2 + MWORK + MFCM +

Dref(MOPLM, FOPLF), family = gaussian, data = conformity,
verbose = FALSE)

Coefficients:
AGEM MRMM2 FRMF2

0.06363 0.32425 0.25324
MWORK MFCM Dref(MOPLM, FOPLF)delta1

-0.06430 -0.06043 0.08440
Dref(MOPLM, FOPLF)delta2 Dref(., .).MOPLM|FOPLF1 Dref(., .).MOPLM|FOPLF2

0.39666 4.37371 4.28579
Dref(., .).MOPLM|FOPLF3 Dref(., .).MOPLM|FOPLF4 Dref(., .).MOPLM|FOPLF5

4.28708 4.14593 3.85767
Dref(., .).MOPLM|FOPLF6 Dref(., .).MOPLM|FOPLF7

3.61123 3.85629

Deviance: 425.3389
Pearson chi-squared: 425.3389
Residual df: 576

32

The coefficients of the covariates are now as reported by van der Slik et al. (2002), but the diagonal effects have been
adjusted appropriately.

van der Slik et al. (2002) compare the baseline model for the mother’s conformity score to several other models in
which the weights in the diagonal reference term are dependent on one of the covariates. One particular model they
consider incorporates an interaction of the weights with the mother’s conflict score as follows:

µrci = β1x1i + β2x2i + β3x3i + β4x4i + β5x5i +
eξ01+ξ11 x5i

eξ01+ξ11 x5i + eξ02+ξ12 x5i
γr +

eξ02+ξ12 x5i

eξ01+ξ11 x5i + eξ02+ξ12 x5i
γc.

This model can be fitted as below, using the original coding for the gender role factors for ease of comparison to the
results reported by van der Slik et al. (2002),

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
+ Dref(MOPLM, FOPLF, delta = ~ 1 + MFCM), family = gaussian,
+ data = conformity, verbose = FALSE)
> F

Call:
gnm(formula = MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +

Dref(MOPLM, FOPLF, delta = ~1 + MFCM), family = gaussian,
data = conformity, verbose = FALSE)

Coefficients:
AGEM

0.05818
MRMM

-0.32701
FRMF

-0.25772
MWORK

-0.07847
MFCM

-0.01694
Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta1(Intercept)

1.03515
Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta1MFCM

-1.77756
Dref(MOPLM, FOPLF, delta = ~ . + MFCM).delta2(Intercept)

-0.03515
Dref(MOPLM, FOPLF, delta = ~ 1 + .).delta2MFCM

2.77756
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF1

4.82476
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF2

4.88066
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF3

4.83969
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF4

4.74850
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF5

4.42020
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF6

4.17957
Dref(., ., delta = ~ 1 + MFCM).MOPLM|FOPLF7

4.40819

Deviance: 420.9022
Pearson chi-squared: 420.9022
Residual df: 575

In this case there are two sets of weights, one for when the mother’s conflict score is less than average (coded as zero) and
one for when the score is greater than average (coded as one). These can be evaluated as follows:

33

> DrefWeights(F)

Refitting with parameters of first Dref weight constrained to zero
$MOPLM
MFCM weight se

1 1 0.02974675 0.2277711
2 0 0.74465224 0.2006916

$FOPLF
MFCM weight se

1 1 0.9702532 0.2277711
2 0 0.2553478 0.2006916

giving the same weights as in Table 4 of van der Slik et al. (2002), though we obtain a lower standard error in the case
where MFCM is equal to one.

7.3 Uniform difference (UNIDIFF) models
Uniform difference models (Xie, 1992; Erikson and Goldthorpe, 1992) use a simplified three-way interaction to provide
an interpretable model of contingency tables classified by three or more variables. For example, the uniform difference
model for a three-way contingency table, also known as the UNIDIFF model, is given by

µi jk = αik + β jk + exp(δk)γi j.

The γi j represent a pattern of association that varies in strength over the dimension indexed by k, and exp(δk) represents
the relative strength of that association at level k.

This model can be applied to the yaish data set (Yaish, 1998, 2004), which is a contingency table cross-classified by
father’s social class (orig), son’s social class (dest) and son’s education level (educ). In this case, we can consider the
importance of the association between the social class of father and son across the education levels. We omit the sub-table
which corresponds to level 7 of dest, because its information content is negligible:

> set.seed(1)
> data(yaish)
> unidiff <- gnm(Freq ~ educ * orig + educ * dest + Mult(Exp(educ),
+ orig:dest), ofInterest = "[.]educ", family = poisson, data = yaish,
+ subset = (dest != 7))

Initialising
Running start-up iterations..
Running main iterations..
Done

> coef(unidiff)

Coefficients of interest:
Mult(Exp(.), orig:dest).educ1 Mult(Exp(.), orig:dest).educ2

-0.2364828 -0.4618546
Mult(Exp(.), orig:dest).educ3 Mult(Exp(.), orig:dest).educ4

-0.9799063 -1.2754212
Mult(Exp(.), orig:dest).educ5

-2.4859851

The ofInterest component has been set to index the multipliers of the association between the social class of father
and son. We can contrast each multiplier to that of the lowest education level and obtain the standard errors for these
parameters as follows:

> getContrasts(unidiff, ofInterest(unidiff))

estimate SE quasiSE quasiVar
Mult(Exp(.), orig:dest).educ1 0.0000000 0.0000000 0.09757438 0.00952076
Mult(Exp(.), orig:dest).educ2 -0.2253718 0.1611874 0.12885847 0.01660450
Mult(Exp(.), orig:dest).educ3 -0.7434235 0.2335083 0.21182122 0.04486823
Mult(Exp(.), orig:dest).educ4 -1.0389385 0.3434256 0.32609377 0.10633714
Mult(Exp(.), orig:dest).educ5 -2.2495024 0.9453762 0.93560622 0.87535900

34

Four-way contingency tables may sometimes be described by a “double UNIDIFF” model

µi jkl = αil + β jkl + exp(δl)γi j + exp(φl)θik,

where the strengths of two, two-way associations with a common variable are estimated across the levels of the fourth
variable. The cautres data set, from Cautres et al. (1998), can be used to illustrate the application of the double UNIDIFF
model. This data set is classified by the variables vote, class, religion and election. Using a double UNIDIFF model, we
can see how the association between class and vote, and the association between religion and vote, differ between the
most recent election and the other elections:

> set.seed(1)
> data(cautres)
> doubleUnidiff <- gnm(Freq ~ election * vote + election * class *
+ religion + Mult(Exp(election), religion:vote) + Mult(Exp(election),
+ class:vote), family = poisson, data = cautres)

Initialising
Running start-up iterations..
Running main iterations...........
Done

> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", class:vote")))

estimate SE quasiSE quasiVar
Mult(Exp(.), class:vote).election4 0.0000000 0.0000000 0.10934796 0.011956977
Mult(Exp(.), class:vote).election3 0.6817374 0.1446833 0.09475939 0.008979341
Mult(Exp(.), class:vote).election2 0.4493745 0.1320022 0.07395886 0.005469914
Mult(Exp(.), class:vote).election1 0.3618304 0.2534754 0.22854401 0.052232364

> getContrasts(doubleUnidiff, rev(pickCoef(doubleUnidiff, ", religion:vote")))

estimate SE quasiSE
Mult(Exp(.), religion:vote).election4 0.0000000 0.00000000 0.07168290
Mult(Exp(.), religion:vote).election3 -0.0878181 0.09906916 0.06812239
Mult(Exp(.), religion:vote).election2 -0.2615200 0.09116479 0.05702819
Mult(Exp(.), religion:vote).election1 -0.3283459 0.12213023 0.09803075

quasiVar
Mult(Exp(.), religion:vote).election4 0.005138439
Mult(Exp(.), religion:vote).election3 0.004640660
Mult(Exp(.), religion:vote).election2 0.003252214
Mult(Exp(.), religion:vote).election1 0.009610029

7.4 Generalized additive main effects and multiplicative interaction (GAMMI) models
Generalized additive main effects and multiplicative interaction models, or GAMMI models, were motivated by two-way
contingency tables and comprise the row and column main effects plus one or more components of the multiplicative
interaction. The singular value corresponding to each multiplicative component is often factored out, as a measure of the
strength of association between the row and column scores, indicating the importance of the component, or axis.

For cell means µrc a GAMMI-K model has the form

g(µrc) = αr + βc +

K∑
k=1

σkγkrδkc, (1)

in which g is a link function, αr and βc are the row and column main effects, γkr and δkc are the row and column scores
for multiplicative component k and σk is the singular value for component k. The number of multiplicative components,
K, is less than or equal to the rank of the matrix of residuals from the main effects.

The row-column association models discussed in Section 7.1 are examples of GAMMI models, with a log link and
poisson variance. Here we illustrate the use of an AMMI model, which is a GAMMI model with an identity link and a
constant variance.

We shall use the wheat data set taken from Vargas et al. (2001), which gives wheat yields measured over ten years.
First we scale these yields and create a new treatment factor, so that we can reproduce the analysis of Vargas et al. (2001):

35

> set.seed(1)
> data(wheat)
> yield.scaled <- wheat$yield * sqrt(3/1000)
> treatment <- interaction(wheat$tillage, wheat$summerCrop, wheat$manure,
+ wheat$N, sep = "")

Now we can fit the AMMI-1 model, to the scaled yields using the combined treatment factor and the year factor from
the wheat dataset. We will proceed by first fitting the main effects model, then using residSVD (see Section 5.5) for the
parameters of the multiplicative term:

> mainEffects <- gnm(yield.scaled ~ year + treatment, family = gaussian,
+ data = wheat)

Linear predictor - using glm.fit

> svdStart <- residSVD(mainEffects, year, treatment, 3)
> bilinear1 <- update(mainEffects, . ~ . + Mult(year, treatment),
+ start = c(coef(mainEffects), svdStart[, 1]))

Running main iterations
Done

We can compare the AMMI-1 model to the main effects model,

> anova(mainEffects, bilinear1, test = "F")

Analysis of Deviance Table

Model 1: yield.scaled ~ year + treatment
Model 2: yield.scaled ~ year + treatment + Mult(year, treatment)
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 207 279515
2 176 128383 31 151133 6.6835 < 2.2e-16 ***

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

giving the same results as in Table 1 of Vargas et al. (2001) (up to error caused by rounding).
Thus the significance of the multiplicative interaction can be tested without applying constraints to this term. If the

multiplicative interaction is significant, we may wish to apply constraints to obtain estimates of the row and column
scores. We illustrate this using the barleyHeights data, which records the average height for 15 genotypes of barley
over 9 years.

For this small dataset the AMMI-1 model is easily estimated with the default settings:

> set.seed(1)
> data(barleyHeights)
> barleyModel <- gnm(height ~ year + genotype + Mult(year, genotype),
+ data = barleyHeights)

Initialising
Running start-up iterations..
Running main iterations...........
Done

To obtain the parameterization of Equation 1 in which σk is the singular value for component k, the row and column scores
must be constrained so that the scores sum to zero and the squared scores sum to one. These contrasts can be obtained
using getContrasts:

> gamma <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]y"),
+ ref = "mean", scaleWeights = "unit")
> delta <- getContrasts(barleyModel, pickCoef(barleyModel, "[.]g"),
+ ref = "mean", scaleWeights = "unit")
> gamma

36

Estimate Std. Error
Mult(., genotype).year1974 -0.22662083 0.05621029
Mult(., genotype).year1975 -0.51350519 0.04856519
Mult(., genotype).year1976 -0.43898738 0.05124785
Mult(., genotype).year1977 0.20046457 0.05658391
Mult(., genotype).year1978 0.53320299 0.04775769
Mult(., genotype).year1979 -0.14181352 0.05724921
Mult(., genotype).year1980 0.33249439 0.05418746
Mult(., genotype).year1981 0.17553769 0.05689550
Mult(., genotype).year1982 0.07922728 0.05770322

> delta

Estimate Std. Error
Mult(year, .).genotype1 -0.079143299 0.05913864
Mult(year, .).genotype10 0.335345230 0.05564859
Mult(year, .).genotype11 0.375909514 0.05466190
Mult(year, .).genotype12 -0.285239059 0.05669279
Mult(year, .).genotype13 0.168316670 0.05843057
Mult(year, .).genotype14 -0.293052674 0.05654225
Mult(year, .).genotype15 -0.460366628 0.05216774
Mult(year, .).genotype2 -0.007543292 0.05933628
Mult(year, .).genotype3 -0.169718828 0.05841527
Mult(year, .).genotype4 0.047168474 0.05926732
Mult(year, .).genotype5 -0.181497848 0.05828153
Mult(year, .).genotype6 -0.129417612 0.05880326
Mult(year, .).genotype7 -0.013581892 0.05933222
Mult(year, .).genotype8 0.422242964 0.05337051
Mult(year, .).genotype9 0.270578281 0.05696326

Confidence intervals based on the assumption of asymptotic normality can be computed as follows:

> gamma[[2]][, 1] + (gamma[[2]][, 2]) %o% c(-1.96, 1.96)

[,1] [,2]
[1,] -0.33679300 -0.11644866
[2,] -0.60869296 -0.41831741
[3,] -0.53943316 -0.33854160
[4,] 0.08956010 0.31136904
[5,] 0.43959792 0.62680805
[6,] -0.25402198 -0.02960507
[7,] 0.22628697 0.43870182
[8,] 0.06402252 0.28705286
[9,] -0.03387103 0.19232559

> delta[[2]][, 1] + (delta[[2]][, 2]) %o% c(-1.96, 1.96)

[,1] [,2]
[1,] -0.19505504 0.03676844
[2,] 0.22627399 0.44441647
[3,] 0.26877219 0.48304683
[4,] -0.39635693 -0.17412119
[5,] 0.05379275 0.28284059
[6,] -0.40387548 -0.18222986
[7,] -0.56261539 -0.35811786
[8,] -0.12384240 0.10875582
[9,] -0.28421275 -0.05522490
[10,] -0.06899548 0.16333242
[11,] -0.29572965 -0.06726605
[12,] -0.24467200 -0.01416322
[13,] -0.12987305 0.10270927
[14,] 0.31763676 0.52684916
[15,] 0.15893028 0.38222628

37

which broadly agree with Table 8 of Chadouef and Denis (1991), allowing for the change in sign.
On the basis of such confidence intervals we can investigate simplifications of the model such as combining levels of

the factors or fitting an additive model to a subset of the data.
The singular value σk may be obtained as follows

> height <- matrix(scale(barleyHeights$height, scale = FALSE),
+ 15, 9)
> R <- height - outer(rowMeans(height), colMeans(height), "+")
> svd(R)$d[1]

[1] 43.49599

This parameter is of little interest in itself, given that the significance of the term as a whole can be tested using ANOVA.

7.5 Biplot models
Biplots are used to display two-dimensional data transformed into a space spanned by linearly independent vectors, such
as the principal components or singular vectors. The plot represents the levels of the two classifying factors by their scores
on the two axes which show the most information about the data, for example the first two principal components.

A rank-n model is a model based on the first n components of the decomposition. In the case of a singular value
decomposition, this is equivalent to a model with n components of the multiplicative interaction.

To illustrate the use of biplot models, we shall use the barley data set which describes the incidence of leaf blotch
over ten varieties of barley grown at nine sites (Wedderburn, 1974; Gabriel, 1998). The biplot model is fitted as follows:

> data(barley)
> set.seed(1)
> biplotModel <- gnm(y ~ -1 + instances(Mult(site, variety), 2),
+ family = wedderburn, data = barley)

Initialising
Running start-up iterations..
Running main iterations...
...
Done

using the wedderburn family function introduced in Section 2. Matrices of the row and column scores for the first two
singular vectors can then be obtained by:

> barleySVD <- svd(matrix(biplotModel$predictors, 10, 9))
> A <- sweep(barleySVD$v, 2, sqrt(barleySVD$d), "*")[, 1:2]
> B <- sweep(barleySVD$u, 2, sqrt(barleySVD$d), "*")[, 1:2]
> A

[,1] [,2]
[1,] 4.1948224 -0.39186730
[2,] 2.7642412 -0.33951379
[3,] 1.4250454 -0.04654265
[4,] 1.8463067 0.33365988
[5,] 1.2704088 0.15776724
[6,] 1.1562913 0.40048201
[7,] 1.0172048 0.72727987
[8,] 0.6451366 1.46162701
[9,] -0.1470898 2.13234201

> B

[,1] [,2]
[1,] -2.0673648 -0.97420446
[2,] -3.0599796 -0.50683007
[3,] -2.9598030 -0.33190625
[4,] -1.8086247 -0.49758478
[5,] -1.5579477 -0.08444511

38

[6,] -1.8939995 1.08460552
[7,] -1.1790432 0.40687014
[8,] -0.8490092 1.14671349
[9,] -0.9704664 1.26558201
[10,] -0.6036789 1.39655882

These matrices are essentially the same as in Gabriel (1998). From these the biplot can be produced, for sites A . . . I and
varieties 1 . . . 9, X:

> plot(rbind(A, B), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot for barley data")

AB
C

DE
F

G

H

I

1
23 4

5

6

7

89
X

−4 −2 0 2 4

−
4

−
2

0
2

4

Biplot for barley data

rbind(A, B)[,1]

rb
in

d(
A

, B
)[

,2
]

Figure 6: Biplot for barley data

The product of the matrices A and B is unaffected by rotation or reciprocal scaling along either axis, so we can rotate the
data so that the points for the sites are roughly parallel to the horizontal axis and the points for the varieties are roughly
parallel to the vertical axis. In addition, we can scale the data so that points for the sites are about the line one unit about
the horizontal axis, roughly

> a <- pi/5
> rotation <- matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2,
+ byrow = TRUE)
> rA <- (2 * A/3) %*% rotation
> rB <- (3 * B/2) %*% rotation
> plot(rbind(rA, rB), pch = c(levels(barley$site), levels(barley$variety)),
+ xlim = c(-4, 4), ylim = c(-4, 4), main = "Biplot (rotated) for barley data")

In the original biplot, the co-ordinates for the sites and varieties were given by the rows of A and B respectively, i.e

αT
i =

√
(d)(u1i, u2i)

βT
j =

√
(d)(v1 j, v2 j)

39

A

B
C
D

EFG
HI

1
2
3

4

5

6 7

89
X

−4 −2 0 2 4

−
4

−
2

0
2

4

Biplot (rotated) for barley data

rbind(rA, rB)[,1]

rb
in

d(
rA

, r
B

)[
,2

]

Figure 7: Rotated biplot for barley data

The rotated and scaled biplot suggests the simpler model

αT
i = (γi, 1)
βT

j = (δ j, τ j)

which implies the following model for the logits of the leaf blotch incidence:

αT
i β j = γiδ j + τ j.

Gabriel (1998) describes this as a double additive model, which we can fit as follows:

> variety.binary <- factor(match(barley$variety, c(2, 3, 6), nomatch = 0) >
+ 0, labels = c("rest", "2,3,6"))
> doubleAdditive <- gnm(y ~ variety + Mult(site, variety.binary),
+ family = wedderburn, data = barley)

Initialising
Running start-up iterations..
Running main iterations.......................
Done

Comparing the chi-squared statistics, we see that the double additive model is an adequate model for the leaf blotch
incidence:

> biplotModChiSq <- sum(residuals(biplotModel, type = "pearson")^2)
> doubleAddChiSq <- sum(residuals(doubleAdditive, type = "pearson")^2)
> c(doubleAddChiSq - biplotModChiSq, doubleAdditive$df.residual -
+ biplotModel$df.residual)

[1] 9.513774 15.000000

40

7.6 Stereotype model for multinomial response
The stereotype model was proposed by Anderson (1984) for ordered categorical data. It is a linear logistic model, in
which there is assumed to be a common relationship between the response and the covariates in the model, but the scale
of this association varies between categories and there is an additional category main effect or category-specific intercept:

log µic = β0c + γc

∑
r

βr xir.

This model can be estimated by re-expressing the categorical data as counts and using a gnm model with a log link and
poisson variance function. The gnm package includes the utility function expandCategorical to facilitate the required
data processing.

For example, the backPain data set from Anderson (1984) describes the progress of patients with back pain. The
data set consists of an ordered factor quantifying the progress of each patient, and three prognostic variables. These data
can be re-expressed as follows:

> set.seed(1)
> data(backPain)
> backPain[1:2,]

x1 x2 x3 pain
1 1 1 1 same
2 1 1 1 marked.improvement

> backPainLong <- expandCategorical(backPain, "pain")
> backPainLong[1:12,]

x1 x2 x3 pain count id
1 1 1 1 worse 0 1
1.1 1 1 1 same 1 1
1.2 1 1 1 slight.improvement 0 1
1.3 1 1 1 moderate.improvement 0 1
1.4 1 1 1 marked.improvement 0 1
1.5 1 1 1 complete.relief 0 1
2 1 1 1 worse 0 2
2.1 1 1 1 same 0 2
2.2 1 1 1 slight.improvement 0 2
2.3 1 1 1 moderate.improvement 0 2
2.4 1 1 1 marked.improvement 1 2
2.5 1 1 1 complete.relief 0 2

We can now fit the stereotype model to these data:

> oneDimensional <- gnm(count ~ pain + Mult(pain, x1 + x2 + x3),
+ eliminate = id, family = "poisson", data = backPainLong)

Initialising
Running start-up iterations..
Running main iterations..............
Done

> oneDimensional

Call:
gnm(formula = count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id,

family = "poisson", data = backPainLong)

Coefficients of interest:
painsame
16.1578

painslight.improvement
15.6848

painmoderate.improvement

41

12.4556
painmarked.improvement

19.9140
paincomplete.relief

21.6653
Mult(., x1 + x2 + x3).painworse

0.3950
Mult(., x1 + x2 + x3).painsame

-3.0297
Mult(., x1 + x2 + x3).painslight.improvement

-2.8450
Mult(., x1 + x2 + x3).painmoderate.improvement

-2.0356
Mult(., x1 + x2 + x3).painmarked.improvement

-3.8622
Mult(., x1 + x2 + x3).paincomplete.relief

-4.5641
Mult(pain, . + x2 + x3).x1

1.0832
Mult(pain, x1 + . + x3).x2

0.6213
Mult(pain, x1 + x2 + .).x3

0.5470

Deviance: 303.1003
Pearson chi-squared: 433.3727
Residual df: 493

specifying the id factor through eliminate so that the 101 id effects are estimated more efficiently and are excluded
from printed model summaries by default. This model is one dimensional since it involves only one function of x =

(x1, x2, x3). We can compare this model to one with category-specific coefficents of the x variables, as may be used for a
qualitative categorical response:

> threeDimensional <- gnm(count ~ pain + pain:(x1 + x2 + x3), eliminate = id,
+ family = "poisson", data = backPainLong)

Initialising
Running main iterations...........
Done

> threeDimensional

Call:
gnm(formula = count ~ pain + pain:(x1 + x2 + x3), eliminate = id,

family = "poisson", data = backPainLong)

Coefficients of interest:
painsame painslight.improvement
36.3326 35.9518

painmoderate.improvement painmarked.improvement
32.8344 40.0350

paincomplete.relief painworse:x1
42.4830 10.2481

painsame:x1 painslight.improvement:x1
-3.4248 -3.0952

painmoderate.improvement:x1 painmarked.improvement:x1
-2.8318 -4.6550

paincomplete.relief:x1 painworse:x2
-5.1669 0.3331

painsame:x2 painslight.improvement:x2
-2.3409 -2.2183

painmoderate.improvement:x2 painmarked.improvement:x2

42

-1.3389 -2.5107
paincomplete.relief:x2 painworse:x3

-2.9419 -2.9783
painsame:x3 painslight.improvement:x3

-4.1338 -4.2704
painmoderate.improvement:x3 painmarked.improvement:x3

-3.7246 -4.6699
paincomplete.relief:x3

-5.9190

Deviance: 299.0152
Pearson chi-squared: 443.0043
Residual df: 485

This model has the maximum dimensionality of three (as determined by the number of covariates). To obtain the log-
likelihoods as reported in Anderson (1984) we need to adjust for the extra parameters introduced to formulate the models
as Poisson models. We write a simple function to do this and compare the log-likelihoods of the one dimensional model
and the three dimensional model:

> logLikMultinom <- function(model) {
+ object <- get(model)
+ if (inherits(object, "gnm")) {
+ l <- logLik(object) + object$eliminate
+ c(nParameters = attr(l, "df") - object$eliminate, logLikelihood = l)
+ }
+ else c(nParameters = object$edf, logLikelihood = -deviance(object)/2)
+ }
> t(sapply(c("oneDimensional", "threeDimensional"), logLikMultinom))

nParameters logLikelihood
oneDimensional 12 -151.5501
threeDimensional 20 -149.5076

which show that the oneDimensional model is adequate.
To obtain estimates of the category-specific multipliers in the stereotype model, we need to constrain both the location

and the scale of these parameters. The latter constraint can be imposed by fixing the slope of one of the covariates in the
second multiplier to 1, which may be achieved by specifying the covariate as an offset:

> summary(oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain, x1 + x2 + x3), eliminate = id,

family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients of interest:
Estimate Std. Error z value

painsame 16.1578 6.5742 2.458
painslight.improvement 15.6848 6.5274 2.403
painmoderate.improvement 12.4556 6.4312 1.937
painmarked.improvement 19.9140 6.4976 3.065
paincomplete.relief 21.6653 6.5571 3.304
Mult(., x1 + x2 + x3).painworse 0.3950 NA NA
Mult(., x1 + x2 + x3).painsame -3.0297 NA NA
Mult(., x1 + x2 + x3).painslight.improvement -2.8450 NA NA
Mult(., x1 + x2 + x3).painmoderate.improvement -2.0356 NA NA
Mult(., x1 + x2 + x3).painmarked.improvement -3.8622 NA NA
Mult(., x1 + x2 + x3).paincomplete.relief -4.5641 NA NA
Mult(pain, . + x2 + x3).x1 1.0832 NA NA

43

Mult(pain, x1 + . + x3).x2 0.6213 NA NA
Mult(pain, x1 + x2 + .).x3 0.5470 NA NA

Pr(>|z|)
painsame 0.013980 *
painslight.improvement 0.016265 *
painmoderate.improvement 0.052777 .
painmarked.improvement 0.002178 **
paincomplete.relief 0.000953 ***
Mult(., x1 + x2 + x3).painworse NA
Mult(., x1 + x2 + x3).painsame NA
Mult(., x1 + x2 + x3).painslight.improvement NA
Mult(., x1 + x2 + x3).painmoderate.improvement NA
Mult(., x1 + x2 + x3).painmarked.improvement NA
Mult(., x1 + x2 + x3).paincomplete.relief NA
Mult(pain, . + x2 + x3).x1 NA
Mult(pain, x1 + . + x3).x2 NA
Mult(pain, x1 + x2 + .).x3 NA

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 14

> oneDimensional <- gnm(count ~ pain + Mult(pain, offset(x1) +
+ x2 + x3), eliminate = id, family = "poisson", data = backPainLong)

Initialising
Running start-up iterations..
Running main iterations.............
Done

> summary(oneDimensional)

Call:
gnm(formula = count ~ pain + Mult(pain, offset(x1) + x2 + x3),

eliminate = id, family = "poisson", data = backPainLong)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9708 -0.6506 -0.4438 -0.1448 2.1385

Coefficients of interest:
Estimate Std. Error

painsame 16.1578 6.5741
painslight.improvement 15.6848 6.5274
painmoderate.improvement 12.4556 6.4312
painmarked.improvement 19.9140 6.4975
paincomplete.relief 21.6653 6.5571
Mult(., x2 + x3 + offset(x1)).painworse 1.3471 NA
Mult(., x2 + x3 + offset(x1)).painsame -2.3626 NA
Mult(., x2 + x3 + offset(x1)).painslight.improvement -2.1626 NA
Mult(., x2 + x3 + offset(x1)).painmoderate.improvement -1.2858 NA
Mult(., x2 + x3 + offset(x1)).painmarked.improvement -3.2645 NA
Mult(., x2 + x3 + offset(x1)).paincomplete.relief -4.0247 NA
Mult(pain, . + x3 + offset(x1)).x2 0.5736 0.2178
Mult(pain, x2 + . + offset(x1)).x3 0.5050 0.2431

44

z value Pr(>|z|)
painsame 2.458 0.013980 *
painslight.improvement 2.403 0.016265 *
painmoderate.improvement 1.937 0.052777 .
painmarked.improvement 3.065 0.002178 **
paincomplete.relief 3.304 0.000953 ***
Mult(., x2 + x3 + offset(x1)).painworse NA NA
Mult(., x2 + x3 + offset(x1)).painsame NA NA
Mult(., x2 + x3 + offset(x1)).painslight.improvement NA NA
Mult(., x2 + x3 + offset(x1)).painmoderate.improvement NA NA
Mult(., x2 + x3 + offset(x1)).painmarked.improvement NA NA
Mult(., x2 + x3 + offset(x1)).paincomplete.relief NA NA
Mult(pain, . + x3 + offset(x1)).x2 2.633 0.008451 **
Mult(pain, x2 + . + offset(x1)).x3 2.077 0.037807 *

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Std. Error is NA where coefficient has been constrained or is unidentified

Residual deviance: 303.1 on 493 degrees of freedom
AIC: 731.1

Number of iterations: 13

The location of the category-specific multipliers can constrained by setting one of the parameters to zero, either through
the constrain argument of gnm or with getContrasts:

> getContrasts(oneDimensional, pickCoef(oneDimensional, "Mult.*pain"))

Note: the following contrasts are unestimable:
[1] "Mult(pain, . + x3 + offset(x1)).x2" "Mult(pain, x2 + . + offset(x1)).x3"

estimate SE
Mult(., x2 + x3 + offset(x1)).painworse 0.000000 0.000000
Mult(., x2 + x3 + offset(x1)).painsame -3.709726 1.825562
Mult(., x2 + x3 + offset(x1)).painslight.improvement -3.509687 1.791726
Mult(., x2 + x3 + offset(x1)).painmoderate.improvement -2.632933 1.669251
Mult(., x2 + x3 + offset(x1)).painmarked.improvement -4.611586 1.895234
Mult(., x2 + x3 + offset(x1)).paincomplete.relief -5.371844 1.999652

quasiSE quasiVar
Mult(., x2 + x3 + offset(x1)).painworse 1.7797297 3.16743768
Mult(., x2 + x3 + offset(x1)).painsame 0.4281332 0.18329802
Mult(., x2 + x3 + offset(x1)).painslight.improvement 0.4024681 0.16198057
Mult(., x2 + x3 + offset(x1)).painmoderate.improvement 0.5518545 0.30454334
Mult(., x2 + x3 + offset(x1)).painmarked.improvement 0.3133219 0.09817061
Mult(., x2 + x3 + offset(x1)).paincomplete.relief 0.4919551 0.24201985

giving the required estimates.

7.7 Lee-Carter model for trends in age-specific mortality
In the study and projection of population mortality rates, the model proposed by Lee and Carter (1992) forms the basis of
many if not most current analyses. Here we consider the quasi-Poisson version of the model (Wilmoth, 1993; Alho, 2000;
Brouhns et al., 2002; Renshaw and Haberman, 2003), in which the death count Day for individuals of age a in year y has
mean µay and variance φµay (where φ is 1 for Poisson-distributed counts, and is respectively greater than or less than 1 in
cases of over-dispersion or under-dispersion). In the Lee-Carter model, the expected counts follow the log-bilinear form

log(µay/eay) = αa + βaγy,

where eay is the ‘exposure’ (number of lives at risk). This is a generalized nonlinear model with a single multiplicative
term.

45

The use of gnm to fit this model is straightforward. We will illustrate by using data from the Human Mortality
Database5 (HMD, at http://www.mortality.org) on male deaths in Canada between 1921 and 2003. The data are
not made available as part of gnm because of license restrictions; but they are readily available via the web simply by
registering with the HMD. We assume that the data for Canadian males (both deaths and exposure-to-risk) have been
downloaded from the HMD and organised into a data frame named Canada in R, with columns Year (a factor, with levels
1921 to 2003), Age (a factor, with levels 20 to 99), mDeaths and mExposure (both quantitative). The Lee-Carter model
may then be specified as

LCmodel.male <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year),
offset = log(mExposure), family = "quasipoisson",
data = Canada)

Here we have acknowledged the fact that the model only really makes sense if all of the βa parameters, which represent
the ‘sensitivity’ of age group a to a change in the level of general mortality (e.g., Brouhns et al., 2002), have the same
sign. Without loss of generality we assume βa > 0 for all a, and we impose this constraint by using Exp(Age) instead
of just Age in the multiplicative term. Convergence is to a fitted model with residual deviance 32422.68 on 6400 degrees
of freedom — representing clear evidence of substantial overdispersion relative to the Poisson distribution. In order to
explore the lack of fit a little further, we plot the distribution of Pearson residuals in Figure 8:

par(mfrow = c(2,2))
age <- as.numeric(as.character(Canada$Age))
with(Canada,{

res <- residuals(LCmodel.male, type = "pearson")
plot(Age, res, xlab="Age", ylab="Pearson residual",

main = "(a) Residuals by age")
plot(Year, res, xlab="Year", ylab="Pearson residual",

main = "(b) Residuals by year")
plot(Year[(age>24) & (age<36)], res[(age>24) & (age<36)],

xlab = "Year", ylab = "Pearson residual",
main = "(c) Age group 25-35")

plot(Year[(age>49) & (age<66)], res[(age>49) & (age<66)],
xlab = "Year", ylab = "Pearson residual",
main = "(d) Age group 50-65")

})

Panel (a) of Figure 8 indicates that the overdispersion is not evenly spread through the data, but is largely concentrated in
two age groups, roughly ages 25–35 and 50–65. Panels (c) and (d) focus on the residuals in each of these two age groups:
there is a clear (and roughly cancelling) dependence on Year, indicating that the assumed bilinear interaction between
Age and Year does not hold for the full range of ages and years considered here.

A somewhat more satisfactory Lee-Carter model fit is obtained if only a subset of the data is used, namely only those
males aged 45 or over:

LCmodel.maleOver45 <- gnm(mDeaths ~ Age + Mult(Exp(Age), Year),
offset = log(mExposure), family = "quasipoisson",
data = Canada[age>44,])

The residual deviance now is 12595.44 on 4375 degrees of freedom: still substantially overdispersed, but less severely
so than before. Again we plot the distributions of Pearson residuals (Figure 9). Still clear departures from the assumed
bilinear structure are evident, especially for age group 81–89; but they are less pronounced than in the previous model fit.

The main purpose here is only to illustrate how straightforward it is to work with the Lee-Carter model using gnm ,
but we will take this example a little further by examining the estimated βa parameters from the last fitted model. We can
use getContrasts to compute quasi standard errors for the logarithms of β̂a — the logarithms being the result of having
used Exp(Age) in the model specification — and use these in a plot of the coefficients:

AgeContrasts <- getContrasts(LCmodel.maleOver45, 56:100) ## ages 45 to 89 only

The plot shows that sensitivity to the general level of mortality is highest at younger ages, as expected. An unexpected
feature is the clear outlying positions occupied by the estimates for ages 51, 61, 71 and 81: for each of those ages,
the estimated βa coefficient is substantially less than it is for the neighbouring age groups (and the error bars indicate

5Thanks to Iain Currie for helpful advice relating to this section

46

●
●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

20 26 32 38 44 50 56 62 68 74 80 86 92 98

−
5

0
5

(a) Residuals by age

Age

P
ea

rs
on

 r
es

id
ua

l

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●●

●

●
●

●

●

●
●●

1921 1931 1941 1951 1961 1971 1981 1991 2001

−
5

0
5

(b) Residuals by year

Year

P
ea

rs
on

 r
es

id
ua

l

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1921 1931 1941 1951 1961 1971 1981 1991 2001

−
6

−
4

−
2

0
2

4
6

8

(c) Age group 25−35

Year

P
ea

rs
on

 r
es

id
ua

l

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

1921 1931 1941 1951 1961 1971 1981 1991 2001

−
6

−
4

−
2

0
2

4
6

(d) Age group 50−65

Year

P
ea

rs
on

 r
es

id
ua

l

Figure 8: Canada, males: plots of residuals from the Lee-Carter model of mortality

47

●

●

●

●

●
●

●
●

●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●●

●

●
●

●

●

20 26 32 38 44 50 56 62 68 74 80 86 92 98

−
6

−
4

−
2

0
2

4
6

8

(a) Residuals by age

Age

P
ea

rs
on

 r
es

id
ua

l

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●●
●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

1921 1931 1941 1951 1961 1971 1981 1991 2001

−
6

−
4

−
2

0
2

4
6

8

(b) Residuals by year

Year

P
ea

rs
on

 r
es

id
ua

l

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1921 1931 1941 1951 1961 1971 1981 1991 2001

−
6

−
4

−
2

0
2

4
6

(c) Age group 50−65

Year

P
ea

rs
on

 r
es

id
ua

l

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

1921 1931 1941 1951 1961 1971 1981 1991 2001

−
4

−
2

0
2

4

(d) Age group 81−89

Year

P
ea

rs
on

 r
es

id
ua

l

Figure 9: Canada, males over 45: plots of residuals from the Lee-Carter model of mortality

48

●

● ● ●
●

●

●

●

●
● ●

●
●

●

●
●

●

● ●
●

●

●
●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

● ●
●

●
●

●

● ●

50 60 70 80 90

−
1.

5
−

1.
0

−
0.

5
0.

0

Canada, males over 45, Lee−Carter model: relative sensitivity
of different ages to change in total mortality

Age

lo
g(

be
ta

)

Age 81

Age 71

Age 61

Age 51

Figure 10: Canada, males over 45, Lee-Carter model: relative sensitivity of different ages to change in total mortality.

clearly that the deviations are larger than could plausibly be due to chance variation). This is a curious finding. A partial
explanation comes from a look back at the raw death-count data. In the years between 1921 and 1940, the death counts
for ages 31, 41, 51, 61, 71 and 81 all stand out as being very substantially lower than those of neighbouring ages (Figure
11: the ages concerned are highlighted in solid red). The same does not hold for later years: after about 1940, the ‘1’ ages
fall in with the general pattern. We do not know the reason for this, but it does explain our finding above regarding the βa

coefficients: whilst all age groups have benefited from the general trend of reduced mortality, the ‘1’ age groups appear
to have benefited least because their starting point (in the 1920s and 1930s) was lower than would have been indicated by
the general pattern — hence β̂a is smaller for ages a = 31, a = 41,. . . , a = 81.

7.8 Exponential and sum-of-exponentials models for decay curves
A class of nonlinear functions which arise in various application contexts — a notable one being pharmacokinetic studies
– involves one or more exponential decay terms. For example, a simple decay model with additive error is

y = α + exp(β + γx) + e (2)

(with γ < 0), while a more complex (‘sum of exponentials’) model might involve two decay terms:

y = α + exp(β1 + γ1x) + exp(β2 + γ2x) + e. (3)

Estimation and inference with such models are typically not straightforward, partly on account of multiple local maxima
in the likelihood (e.g., Seber and Wild, 1989, Ch.3). We illustrate the difficulties here, with a couple of artificial examples.
These examples will make clear the value of making repeated calls to gnm , in order to use different, randomly-generated
parameterizations and starting values and thus improve the chances of locating both the global maximum and all local
maxima of the likelihood.

49

●●●●
●●●●

●
●●

●

●●●

●
●●

●
●

●

●

●

●●

●

●
●

●●

●

●

●
●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●

20 40 60 80 100

0
50

00
10

00
0

15
00

0
20

00
0

Canada, males: Total deaths 1921−1940 by age

Age

T
ot

al
 d

ea
th

s

Figure 11: Canada, males: Deaths 1921 to 1940 by age

7.8.1 Example: single exponential decay term

Let us first construct some data from model (2). For our illustrative purposes here, we will use noise-free data, i.e., we fix
the variance of e to be zero; for the other parameters we will use α = 0, β = 0, γ = −0.1.

> x <- 1:100
> y <- exp(-x/10)
> set.seed(1)
> saved.fits <- list()
> for (i in 1:100) saved.fits[[i]] <- gnm(y ~ Exp(1 + x), verbose = FALSE)
> table(zapsmall(sapply(saved.fits, deviance)))

0 3.612654
45 55

The saved.fits object thus contains the results of 100 calls to gnm , each using a different, randomly-generated starting
value for the vector of parameters (α, β, γ). Out of 100 fits, 52 reproduce the data exactly, to machine accuracy. The
remaining 48 fits are all identical to one another, but they are far from globally optimal, with residual sum of squares
3.61: they result from divergence of γ̂ to +∞, and correspondingly of β̂ to −∞, such that the fitted ‘curve’ is in fact just a
constant, with level equal to ȳ = 0.09508. For example, the second of the 100 fits is of this kind:

> saved.fits[[2]]

Call:
gnm(formula = y ~ Exp(1 + x), verbose = FALSE)

Coefficients:
(Intercept) Exp(. + x).(Intercept) Exp(1 + .).x
9.508e-02 -1.424e+03 1.377e+01

50

Deviance: 3.612654
Pearson chi-squared: 3.612654
Residual df: 99

The use of repeated calls to gnm , as here, allows the local and global maxima to be easily distinguished.

7.8.2 Example: sum of two exponentials

We can conduct a similar exercise based on the more complex model (3):

> x <- 1:100
> y <- exp(-x/10) + 2 * exp(-x/50)
> set.seed(1)
> saved.fits <- list()
> for (i in 1:100) saved.fits[[i]] <- suppressWarnings(gnm(y ~
+ Exp(1 + x, inst = 1) + Exp(1 + x, inst = 2), verbose = FALSE))
> round(unlist(sapply(saved.fits, deviance)), 4)

[1] 0.1589 0.1589 0.0000 0.0000 0.1589 41.6439 0.1589 0.0000 41.6439
[10] 0.0000 0.1589 0.1589 0.0000 41.6439 0.1589 0.1589 41.6439 0.1589
[19] 0.1589 0.1589 0.1589 0.0000 0.1589 0.1589 0.1589 0.1589 0.1589
[28] 0.0000 0.0000 0.0000 0.1589 41.6439 0.1589 0.0000 0.1589 0.1589
[37] 0.1589 0.1589 0.1589 41.6439 0.0000

In this instance, only 37 of the 100 calls to gnm have successfully located a local maximum of the likelihood: in the
remaining 63 cases the starting values generated were such that numerical problems resulted, and the fitting algorithm
was abandoned (giving a NULL result). Among the 37 ‘successful’ fits, it is evident that there are three distinct solutions
(with respective residual sums of squares equal to 0.1589, 41.64, and essentially zero — the last of these, the exact fit to
the data, having been found 12 times out of the above 37). The two non-optimal local maxima here correspond to the
best fit with a single exponential (which has residual sum of squares 0.1589) and to the fit with no dependence at all on x
(residual sum of squares 41.64), as we can see by comparing with:

> singleExp <- gnm(y ~ Exp(1 + x), start = c(NA, NA, -0.1), verbose = FALSE)
> singleExp

Call:
gnm(formula = y ~ Exp(1 + x), start = c(NA, NA, -0.1), verbose = FALSE)

Coefficients:
(Intercept) Exp(. + x).(Intercept) Exp(1 + .).x

0.25007 0.93664 -0.03465

Deviance: 0.1589496
Pearson chi-squared: 0.1589496
Residual df: 97

> meanOnly <- gnm(y ~ 1, verbose = FALSE)
> meanOnly

Call:
gnm(formula = y ~ 1, verbose = FALSE)

Coefficients:
(Intercept)

0.9511

Deviance: 41.6439
Pearson chi-squared: 41.6439
Residual df: 99

> plot(x, y, main = "Two sub-optimal fits to a sum-of-exponentials curve")
> lines(x, fitted(singleExp))
> lines(x, fitted(meanOnly), lty = "dashed")

51

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

2.
5

Two sub−optimal fits to a sum−of−exponentials curve

x

y

Figure 12: Two sub-optimal fits to a sum-of-exponentials curve

In this example, it is clear that even a small amount of noise in the data would make it practically impossible to
distinguish between competing models containing one and two exponential-decay terms.

In summary: the default gnm setting of randomly-chosen starting values is useful for identifying multiple local maxima
in the likelihood; and reasonably good starting values are needed if the global maximum is to be found. In the present
example, knowing that γ1 and γ2 should both be small and negative, we might perhaps have tried

> gnm(y ~ instances(Exp(1 + x), 2), start = c(NA, NA, -0.1, NA,
+ -0.1), verbose = FALSE)

Call:
gnm(formula = y ~ instances(Exp(1 + x), 2), start = c(NA, NA,

-0.1, NA, -0.1), verbose = FALSE)

Coefficients:
(Intercept) Exp(. + x, inst = 1).(Intercept)
1.844e-12 -3.640e-12

Exp(1 + ., inst = 1).x Exp(. + x, inst = 2).(Intercept)
-1.000e-01 6.931e-01

Exp(1 + ., inst = 2).x
-2.000e-02

Deviance: 1.520979e-24
Pearson chi-squared: 1.520979e-24
Residual df: 95

which reliably yields the (globally optimal) perfect fit to the data.

52

A User-level functions
We list here, for easy reference, all of the user-level functions in the gnm package. For full documentation see the package
help pages.

Model Fitting

gnm fit generalized nonlinear models

Model Specification

Diag create factor differentiating diagonal elements
Symm create symmetric interaction of factors
Topo create ‘topological’ interaction factors
Const specify a constant in a nonlin function predictor
Dref specify a diagonal reference term in a gnm model formula
Mult specify a product of predictors in a gnm formula
MultHomog specify a multiplicative interaction with homogeneous effects in a gnm formula
Exp specify the exponential of a predictor in a gnm formula
Inv specify the reciprocal of a predictor in a gnm formula
wedderburn specify the Wedderburn quasi-likelihood family

Methods and Accessor Functions

confint.gnm compute confidence intervals of gnm parameters based on the profiled deviance
confint.profile.gnm compute confidence intervals of parameters from a profile.gnm object
predict.gnm predict from a gnm model
profile.gnm profile deviance for parameters in a gnm model
plot.profile.gnm plot profile traces from a profile.gnm object
summary.gnm summarize gnm fits
residSVD multiplicative approximation of model residuals
exitInfo print numerical details of last iteration when gnm has not converged
ofInterest extract the ofInterest component of a gnm object
ofInterest<- replace the ofInterest component of a gnm object
parameters get model parameters from a gnm object, including parameters that were con-

strained
pickCoef get indices of model parameters
getContrasts estimate contrasts and their standard errors for parameters in a gnm model
checkEstimable check whether one or more parameter combinations in a gnm model is identified
se get standard errors of linear parameter combinations in gnm models
Dref estimate weights and corresponding standard errors for a diagonal reference term

in a gnm model
termPredictors (generic) extract term contributions to predictor

Auxiliary Functions

asGnm coerce an object of class lm or glm to class gnm
expandCategorical expand a data frame by re-expressing categorical data as counts
getModelFrame get the model frame in use by gnm
MPinv Moore-Penrose pseudoinverse of a real-valued matrix
qrSolve Minimum-length solution of a linear system

53

References
Agresti, A. (2002). Categorical Data Analysis (2nd ed.). New York: Wiley.

Alho, J. M. (2000). Discussion of Lee (2000). North American Actuarial Journal 4, 91–93.

Anderson, J. A. (1984). Regression and ordered categorical variables. J. R. Statist. Soc. B 46(1), 1–30.

Brouhns, N., M. Denuit, and J. K. Vermunt (2002). A poisson log-bilinear regression approach to the construction of
projected lifetables. Insurance Mathematics and Economics 31, 373–393.

Catchpole, E. and B. Morgan (1997). Detecting parameter redundancy. Biometrika 84, 187–196.

Cautres, B., A. F. Heath, and D. Firth (1998). Class, religion and vote in Britain and France. La Lettre de la Maison
Française 8.

Clifford, P. and A. F. Heath (1993). The political consequences of social mobility. J. Roy. Stat. Soc. A 156(1), 51–61.

Erikson, R. and J. H. Goldthorpe (1992). The Constant Flux. Oxford: Clarendon Press.

Erikson, R., J. H. Goldthorpe, and L. Portocarero (1982). Social fluidity in industrial nations: England, France and
Sweden. British Journal of Sociology 33, 1–34.

Firth, D. (2003). Overcoming the reference category problem in the presentation of statistical models. Sociological
Methodology 33, 1–18.

Firth, D. and R. X. de Menezes (2004). Quasi-variances. Biometrika 91, 65–80.

Gabriel, K. R. (1998). Generalised bilinear regression. Biometrika 85, 689–700.

Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories.
J. Amer. Statist. Assoc. 74, 537–552.

Hatzinger, R. and B. J. Francis (2004). Fitting paired comparison models in R. Technical Report 3, Department of
Statistics and Mathematics, Wirtschaftsuniversität Wien.

Lee, R. D. and L. Carter (1992). Modelling and forecasting the time series of US mortality. Journal of the American
Statistical Association 87, 659–671.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (Second Edition). Chapman & Hall Ltd.

Renshaw, A. and S. Haberman (2003). Lee-carter mortality forecasting: a parallel generalized linear modelling approach
for England and Wales mortality projections. Applied Statistics 52, 119–137.

Seber, G. A. F. and C. J. Wild (1989). Nonlinear Regression. Wiley.

Sobel, M. E. (1981). Diagonal mobility models: A substantively motivated class of designs for the analysis of mobility
effects. Amer. Soc. Rev. 46, 893–906.

Sobel, M. E. (1985). Social mobility and fertility revisited: Some new models for the analysis of the mobility effects
hypothesis. Amer. Soc. Rev. 50, 699–712.

van der Slik, F. W. P., N. D. de Graaf, and J. R. M. Gerris (2002, 4). Conformity to parental rules: Asymmetric influences
of father’s and mother’s levels of education. Europ. Soc. Rev. 18, 489–502.

Vargas, M., J. Crossa, F. van Eeuwijk, K. D. Sayre, and M. P. Reynolds (2001). Interpreting treatment by environment
interaction in agronomy trials. Agronomy Journal 93, 949–960.

Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method.
Biometrika 61, 439–447.

Wilmoth, J. R. (1993). Computational methods for fitting and extrapolating the Lee-Carter model of mortality change.
Technical report, Department of Demography, University of California, Berkeley.

54

Xie, Y. (1992). The log-multiplicative layer effect model for comparing mobility tables. American Sociological Review 57,
380–395.

Yaish, M. (1998). Opportunities, Little Change. Class Mobility in Israeli Society, 1974–1991. Ph. D. thesis, Nuffield
College, University of Oxford.

Yaish, M. (2004). Class Mobility Trends in Israeli Society, 1974-1991. Lewiston: Edwin Mellen Press.

55

	Introduction
	Generalized linear models
	Preamble
	Diag and Symm
	Topo
	The wedderburn family
	termPredictors

	Nonlinear terms
	Basic mathematical functions of predictors
	MultHomog
	Dref
	instances
	Custom nonlin functions
	General description
	Example: a logistic function
	Example: MultHomog

	Controlling the fitting procedure
	Basic control parameters
	Using start
	Using constrain
	Using eliminate

	Methods and accessor functions
	Methods
	ofInterest and pickCoef
	checkEstimable
	getContrasts, se
	residSVD

	gnm or (g)nls?
	Examples
	Row-column association models
	RC(1) model
	RC(2) model
	Homogeneous effects

	Diagonal reference models
	Uniform difference (UNIDIFF) models
	Generalized additive main effects and multiplicative interaction (GAMMI) models
	Biplot models
	Stereotype model for multinomial response
	Lee-Carter model for trends in age-specific mortality
	Exponential and sum-of-exponentials models for decay curves
	Example: single exponential decay term
	Example: sum of two exponentials

	User-level functions

