
From biotic records to analysis

Introduction to the mefa package

Péter Sólymos ∗

June 13, 2008

Abstract

This document provide some insights on the general data model, which
can be used effectively in biotic data handling. Than, using a real world
example, it gives an overview of S3 object classes and methods provided
by the mefa package. Reporting options and possible ways of further data
analysis are also briefly discussed. This vignette can be used as reerence
for the dolina demo of the package.

Contents

1 What is mefa? 1

2 How to get mefa? 2

3 How to use mefa? 2
3.1 Data model . 2
3.2 Workflow in mefa . 3
3.3 Reporting with mefa . 14
3.4 Further data analysis . 16

4 How to cite mefa? 16

1 What is mefa?

Data resulting from field inventories are often stored primarily in a hard copy
notebook format, which are subsequently typed into a spreadsheet. These
spreadsheets contain location (samples) and taxon (species) specific information
and respective count data. These data can rarely be used directly in a statis-
tical analysis, because one often need sample and species specific attributes to
account for a given question or hypothesis.

The manipulation of the data (most commonly subseting and ordering) is
time consuming and may lead to mistakes, and mistakes may lead to false con-
clusions. Thus it is advisable to rigorously check each step in such manipulation

∗Péter Sólymos, Department of Ecology, Faculty of Veterinary Science, Szent István Uni-
versity, Rottenbiller Str. 50, 1077 Budapest, Hungary. e-mail: Solymos.Peter@aotk.szie.hu.

1

mailto:Solymos.Peter@aotk.szie.hu

process. These problems can be avoided by using sophisticated database servers
and database connections prior to analysis, but such instruments need IT skills
that are sometimes out of the capabilities of an individual researcher or natu-
ralist. If database connections are used, mefa objects may be useful, eg. for
analysing different layers, or segments of the results of a query.

Thus, the name mefa stands for ”metafaunistics”, indicating that handling
of basic data is only the first, but the most critical and sometimes most time
consuming part of data analysis. The aim of the mefa package is to give a
solution in R for the specific requirements needed for biotic data handling in
ecology and biogeography, shorten the time spent with data preparation and
reduce mistakes during data management. Here I give a practical guide for
installing mefa, a short overview of the general data model behind mefa objects,
main functions of the package, reporting options, and examples for further data
analysis.

2 How to get mefa?

Once you have a working R on your machine (if not, go to http://www.r-
project.org), you can install the stable version from CRAN via the menu of the R
GUI (Packages/Install package(s). . .), or typing install.packages("mefa").

After choosing a repository site, R starts to install the package. CRAN,
however, contains the latest stable version of mefa. The rather exparimen-
tal, developement verion of the package (Nightly Package Snapshot) can be ac-
cessed from https://r-forge.r-project.org/projects/mefa/ clicking on the down-
load icon, or typing install.packages("mefa", repos="http://r-forge.r-
project.org")

The project’s Subversion (SVN) repository tree can be checked out through
anonymous access with the command svn checkout svn://svn.r-forge.r-
project.org/svnroot/mefa. For further references (updates, mailing lists, fo-
rums, RSS) wisit the site http://mefa.r-forge.r-project.org/

3 How to use mefa?

3.1 Data model

General database representation of biotic (faunistic) data may include four mod-
ules according to Samu[1]: the project, sample, taxon, and results modules. The
project module describes meta-data and background circumstances of a given
field experiment. Sample module describes information relevant to the data
collecting event and variables that can vary relative to the fixed project design.
The taxon module deals with the taxonomic identity of the biological objects.
The quantitative outcome of the study is handled in the results module. For a
given analysis, only a subset of these modules are necessary, but in an organised
format.

The sample and taxon specific attributes, stored in the sample (sometimes
in the project) and taxon modules can be arranges into a hierarchy. Eg. sam-
ples, nested into layers, layers nested into sites, sites nested into regions, regions
nested into continents, and finally, continents nested into the Earth itself. And
so, individuals nested into populations, populations nested into species, species

2

http://www.r-project.org
http://www.r-project.org
https://r-forge.r-project.org/projects/mefa/
http://mefa.r-forge.r-project.org/

nested into some higher level taxonomic entities or functional groups, are all rel-
evant, and thus might be sored in the background database, or in spreadsheets.

A mefa object is a project-oriented representation (subset) of the general
database that can be used in subsequent analyses, were the data stored in the
results module determines subsets taken from the sample and taxon modules
based on the relational links provided by sample and taxon specific identifiers.
Project module may also contain information for manipulating sample and re-
sults modules in the pre-processing phase (eg. subseting results or combining
sample attributes). The concepts of attribue hierarchy and attribue du-
ality and the use of segments are central to the handling of data via mefa
objects.

3.2 Workflow in mefa

First, we have to load the installed package:

> library(mefa)

This is mefa 1.1-2

At this point you might want to use the demo by typing demo(dolina).
A basic table of count data resembles a sheet in a notebook, where one takes

notes during the identification process, like in the dolina example data set (only
first ten rows for brevity):

> data(dol.count)

> str(dol.count)

'data.frame': 125 obs. of 4 variables:
$ sample : Factor w/ 16 levels "1A1","1A2","1A3",..: 1 2 NA 3 NA NA NA NA NA NA ...
$ species: Factor w/ 20 levels "amin","apur",..: 20 1 17 1 NA NA 10 16 17 18 ...
$ segment: Factor w/ 4 levels "adult","broken",..: 1 3 2 1 3 4 3 3 1 3 ...
$ count : int 1 1 1 1 3 1 1 1 1 1 ...

> dol.count[1:10,]

sample species segment count
1 1A1 zero.count adult 1
2 1A2 amin fresh 1
3 <NA> pvic broken 1
4 1A3 amin adult 1
5 <NA> <NA> fresh 3
6 <NA> <NA> juvenile 1
7 <NA> dper fresh 1
8 <NA> pinc fresh 1
9 <NA> pvic adult 1
10 <NA> tuni fresh 1

This data frame contanis four columns. Samples are the samples taken in
the field. Heere we used five minutes search for snails in a one meter radius.
Sample identifiers contain two numbers and a letter. First (numeric) charac-
ter indicates sampling location, second (nonnumeric) character stands for the

3

investigeted microhabitat (A: litter, H: coarse woody debris, L: living trees, R:
rock), third (numeric) character indicates the replicate within microhabitats as
strata. Eg. 1A1 is the sample taken from the first location (one out of the studied
dolinas), it is a litter microhabitat, and the first replicate out of seven, etc.

Species names are short identifiers (discussed later), segment refers to life
stages of the individuals found (broken: broken shells of dead animals, fresh:
intact shells of dead animals, adult: adult live animal, juvenile: juvenile
live animal). Count column indicates the number of specimens that can be
characterised by the information in the rorresponding row.

What are <NA>-s? This data frame contains sample and taxonomic informa-
tion in shortened way, sample and species identifiers are shown only for the first
cases for easier input. This ”notebook-style” data can be filled with respective
data by the function sscount (see also helper function fill.count):

> (ssc <- sscount(dol.count, zc = "zero.count", fill = TRUE))

Object of class 'sscount'
Call: sscount(sstable = dol.count, zc = "zero.count", fill = TRUE)
Data type: count
Number of samples: 16
Number of species: 19
Zero count identifier: zero.count
Number of segments: 4 with levels:
[1] "adult" "broken" "fresh" "juvenile"

In this way, ”notebook-style” data can be readily converted into an sscount
(Species/Sample/COUNT) object, with data filled up (first 10 rows):

> ssc$data[1:10,]

sample species segment count
1 1A1 zero.count <NA> 1
2 1A2 amin fresh 1
3 1A2 pvic broken 1
4 1A3 amin adult 1
5 1A3 amin fresh 3
6 1A3 amin juvenile 1
7 1A3 dper fresh 1
8 1A3 pinc fresh 1
9 1A3 pvic adult 1
10 1A3 tuni fresh 1

The zc flag is important, because it contains information on the (arbitrarily
named) ”pseudo-species” used in dol.count object referring to samples where
total count was zero, like in the first row (sample 1A1). Default for zc is NULL.

In this sscount object, rows represent the basic units (lots) containing sam-
ple, species and segment identifiers (character) and the count (numeric). First
three columns are treated as factors. Basically, count should be integer, but
when the result of an experiment is not an integer vaue (eg. biomass, as a
measurement variable), decimal numeric values can be used by specifying the
digits argument in the sscount function (see manual for further references).

4

ssc$data contains the data taken from the filled data frame of dol.count.
Cross-tabulation of an sscount object results in an xcount object. Crosstabu-
lation can be done for segments, listed by

> ssc$segment.levels

[1] "adult" "broken" "fresh" "juvenile"

or for all segments depending on the value of the segment specifier (default
is segment = "all" (or equivalently segment = 0), meaning all the segments
are summed up within lots). A list of segments can also be specified (eg.
textttc(”adult”, ”juvenile”)). For all segments, simply use:

> (xc.all <- xcount(ssc))

Object of class 'xcount'
Call: xcount(ssc = ssc)
Data type: count
Segment: all
Number of samples: 16
Number of species: 19
Total count : 208
Matrix fill: 0.299 with (91 presences)
Samples with zero total count:
[1] "1A1"

For broken shells only:

> (xc.broken <- xcount(ssc, 2))

Object of class 'xcount'
Call: xcount(ssc = ssc, segment = 2)
Data type: count
Segment: broken
Number of samples: 16
Number of species: 19
Total count : 108
Matrix fill: 0.164 with (50 presences)
Samples with zero total count:
[1] "1A1" "1A7"
Species with zero total count:
[1] "ctri" "druf" "mbor"

The pseudo-species for zero count samples is removed from the resulting
xcount object, but an empty row is placed in the table for sample 1A1. Empty
rows of an xcount object can be removed by the function exclmf, detailed later.

Data tables can also be converted into sscount or xcount objects by using
the functions ttsscount (data without unique row identifiers, use drtsscount)
or as.xcount respectively (for details, see manual). Two sscount or xcount
objects can be merged by functions msscount and mxcount respectively (for
details, see manual).

Plot method is available for xcount objects (Figure 1), plotting histograms
by default:

5

Species richness

(within samples)
Species richness

F
re

qu
en

cy

0 5 10 15

0
2

4
6

8
10

Species occurences

(within species)
Occurence

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
1

2
3

4
5

6

Number of individuals

(within samples)
Number of individuals

F
re

qu
en

cy

0 10 20 30 40 50

0
2

4
6

8
10

Species abundances

(within species)
Abundance

F
re

qu
en

cy

0 5 10 15 20 25 30 35

0
2

4
6

8

Figure 1: Plotting method for xcount objects showing histograms.

> plot(xc.all)

But type can be set to ”rank” (Figure 2) or ”biplot” as well (for ”biplot”, see
manual):

> plot(xc.all, type = "rank", logscale = TRUE)

When we have the faunistic data, that is half way of a data inicialization.
To have attributes of the samples and the taxa with the same consistency is also
desirable. These attributes often are very basic. Eg. for samples, the sample
identifier, location, date of collection and name of collector (basic biotic data):

> data(dol.sample)

> str(dol.sample)

'data.frame': 16 obs. of 7 variables:
$ sample : Factor w/ 16 levels "1A1","1A2","1A3",..: 1 2 3 4 5 6 7 8 9 10 ...
$ microhabitat : Factor w/ 4 levels "dead.wood","litter",..: 2 2 2 2 2 2 2 1 1 1 ...
$ replicate : int 1 2 3 4 5 6 7 1 2 3 ...

6

●

●
● ●

●

●

● ● ●

● ●

●

● ● ●

●

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Species richness

(within samples)
Rank

R
ic

hn
es

s

●

● ●

● ● ● ●

●

● ●

●

● ●

● ●

● ● ● ●

5 10 15

0.
4

0.
6

0.
8

1.
0

Species occurences

(within species)
Rank

O
cc

ur
en

ce

● ●

●

● ●
●

● ●

●
● ●

●

● ● ●

●

5 10 15

0.
0

0.
5

1.
0

1.
5

Number of individuals

(within samples)
Rank

N
um

be
r

of
 in

di
vi

du
al

s

●

●

●

●
● ●

●
●

●

● ●

● ●

● ●

● ●

● ●

5 10 15

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Species abundances

(within species)
Rank

A
bu

nd
an

ce

Figure 2: Plotting method for xcount objects showing rank-abundance and
-occurrence curves.

$ aspect : Factor w/ 5 levels "eastern","flat",..: 4 4 4 2 3 3 3 4 5 2 ...
$ depth : Factor w/ 4 levels "bottom","edge",..: 4 2 3 1 3 2 4 3 3 1 ...
$ litter.moisture : num 2 2 2.5 2 2 1 1.5 2 2 1.5 ...
$ litter.thickness.cm: num 3 3 4 5 3 2 5 4 12 5 ...

Once we have the crosstabulated data (xc) and attributes for samples and
species, we have to checks the compatibility of the sample attribute table and a
given xcount object:

> check.attrib(xc.all, which = "samples", dol.sample, 1)

$call
check.attrib(xc = xc.all, which = "samples", attrib = dol.sample,

index = 1)

$set.relation
[1] "equal"

7

$duplicate
NULL

$missing
NULL

$na
[1] 0

If check results indicate full match of sample identifiers (without duplicates
and missing elements), an xorder object can be created from an attribute table:

> (xo1 <- xorder(xc.all, which = "samples", dol.sample, 1))

Object of class 'xorder'
Call: xorder(xc = xc.all, which = "samples", attrib = dol.sample, index = 1)
Attribute table for samples
Match of 'xcount' object and attribute table: equal
Attribute table contains 7 variables for 16 samples
NA values were not found in the table

And this can be done for the species attributes as well:

> data(landsnail)

> str(landsnail)

'data.frame': 121 obs. of 8 variables:
$ order : int 1 2 3 4 5 6 7 8 9 10 ...
$ spec.short : Factor w/ 121 levels "aacu","aarb",..: 6 3 75 80 30 38 90 89 67 28 ...
$ spec.name : Factor w/ 121 levels "Acanthinula aculeata",..: 3 2 81 82 16 17 92 93 72 32 ...
$ author : Factor w/ 65 levels "(A. Schmidt, 1853)",..: 22 45 36 15 63 40 28 59 40 37 ...
$ shell.dimension: num 3.4 5.5 16 16 2.2 2.3 17 8 12 7.5 ...
$ familia : Factor w/ 21 levels "Aciculidae","Bradybaenidae",..: 1 1 14 14 6 6 17 17 17 5 ...
$ subfamilia : Factor w/ 31 levels "Acanthinulinae",..: 2 2 23 23 11 11 26 26 26 9 ...
$ genus : Factor w/ 57 levels "Acanthinula",..: 2 2 40 40 8 8 48 48 36 14 ...

And again, compatibility check:

> check.attrib(xc.all, which = "species", landsnail, 2)

$call
check.attrib(xc = xc.all, which = "species", attrib = landsnail,

index = 2)

$set.relation
[1] "inclusion"

$duplicate
NULL

$missing

8

NULL

$na
[1] 5

Here, set relation value is "inclusion", that means the original species
attribute table landsnail contained more cases than the object xc.all. To get
the object of xorder for species attributes:

> (xo2 <- xorder(xc.all, which = "species", landsnail, 2))

Object of class 'xorder'
Call: xorder(xc = xc.all, which = "species", attrib = landsnail, index = 2)
Attribute table for species
Match of 'xcount' object and attribute table: inclusion
Attribute table contains 8 variables for 19 species
Number of NA values in the table: 1

In these xorder objects (xo1 and xo2), original data are subsetted and or-
dered according to the row/column names of the xcount (xc) object. A mefa
object is a bundle of an xcount and one or two xorder (one for sample and one
for species attributes, one can be NULL) objects:

> (mf <- mefa(xc.all, xo1, xo2))

Object of class 'mefa'
Call: mefa(xc = xc.all, xorder.samples = xo1, xorder.species = xo2)
Data type: count
Segment: all
Number of samples: 16
Number of species: 19
Total count : 208
Matrix fill: 0.299 with (91 presences)
Samples with zero total count:
[1] "1A1"
Both attribute tables are attached:

check.setrel variables na
sample.attr "equal" "7" "0"
species.attr "inclusion" "8" "1"
Variables in the sample attribute table:
[1] "sample" "microhabitat" "replicate"
[4] "aspect" "depth" "litter.moisture"
[7] "litter.thickness.cm"
Variables in the species attribute table:
[1] "order" "spec.short" "spec.name" "author"
[5] "shell.dimension" "familia" "subfamilia" "genus"

As you can see, the mefa object contains all necessary information for re-
porting and further analysis. Additional attributes can be added later to a mefa
object by the function add.attrib (for details, see manual).

Plotting method is also available for mefa objects (Figure 3):

9

dead.wood live.wood rock

0
5

10
15

Species richness

microhabitat

S
pe

ci
es

 r
ic

hn
es

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

2
4

6
8

10
12

Species occurences

shell.dimension

O
cc

ur
en

ce

dead.wood live.wood rock

0
10

20
30

40

Number of individuals

microhabitat

N
um

be
r

of
 in

di
vi

du
al

s

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

5 10 15 20

0
5

10
15

20
25

30
35

Species abundances

shell.dimension

A
bu

nd
an

ce

Figure 3: Plotting method for mefa objects showing scatterplots or boxplots for
variables in the attribute tables.

> plot(mf, "microhabitat", "shell.dimension")

The mefa object (and xcount as well) can be stratified according to sam-
ple/species groups, eg. in case of hierarchical sampling design:

> (mic <- strify(mf, "microhabitat", "samples"))

Object of class 'mefa'
Call: strify(xc = mf, strata = "microhabitat", which = "samples")
Data type: count
Segment: all
Number of samples: 4
Number of species: 19
Total count : 208
Matrix fill: 0.632 with (48 presences)
Only species attribute table is attached:
check.setrel variables na

10

"equal" "8" "1"
Variables in the species attribute table:
[1] "order" "spec.short" "spec.name" "author"
[5] "shell.dimension" "familia" "subfamilia" "genus"

The resultant mefa object contains the original species attribute table, while
its sample attribute table became NULL.

Or one can use taxonomic or trophic groups of species for stratification
similarly:

> (fam <- strify(mf, "familia", "species"))

Object of class 'mefa'
Call: strify(xc = mf, strata = "familia", which = "species")
Data type: count
Segment: all
Number of samples: 16
Number of species: 5
Total count : 208
Matrix fill: 0.55 with (44 presences)
Samples with zero total count:
[1] "1A1"
Only sample attribute table is attached:
check.setrel variables na

"equal" "7" "0"
Variables in the sample attribute table:
[1] "sample" "microhabitat" "replicate"
[4] "aspect" "depth" "litter.moisture"
[7] "litter.thickness.cm"

or both:

> (mic.fam <- strify(as.xcount(mic), mf$species.attr$familia, "species"))

Object of class 'xcount'
Call: strify(xc = as.xcount(mic), strata = mf$species.attr$familia,

which = "species")
Data type: count
Segment: all
Number of samples: 4
Number of species: 5
Total count : 208
Matrix fill: 0.85 with (17 presences)

> mic.fam$data

Clausiliidae Ellobiidae Endodontidae Helicidae Zonitidae
dead.wood 10 0 2 13 12
litter 1 0 2 16 14
live.wood 2 0 2 4 9
rock 17 1 3 85 15

11

Note, that object mic.fam is no more a mefa object, but of class xcount.
Parts of a mefa (or xcount) object can be excluded in this way:

> (ex1 <- exclmf(mf, which = "samples", empty = TRUE, excl = which(mf$sample.attr$microhabitat !=

+ "litter")))

Object of class 'mefa'
Call: mefa(xc = xc.out, xorder.samples = xorder(xc.out, "samples",

xc$sample.attr), xorder.species = xorder(xc.out, "species",
xc$species.attr))

Data type: count
Segment: all
Number of samples: 7
Number of species: 9
Total count : 33
Matrix fill: 0.333 with (21 presences)
Samples with zero total count:
[1] "1A1"
Both attribute tables are attached:

check.setrel variables na
sample.attr "inclusion" "7" "0"
species.attr "inclusion" "8" "0"
Variables in the sample attribute table:
[1] "sample" "microhabitat" "replicate"
[4] "aspect" "depth" "litter.moisture"
[7] "litter.thickness.cm"
Variables in the species attribute table:
[1] "order" "spec.short" "spec.name" "author"
[5] "shell.dimension" "familia" "subfamilia" "genus"

We get samples of the litter microhabitat. Since these were collected along
a north-to-south transect (meaning southern-to-northern aspect), we can have
a look at the transect (Figure 4):

> plot(ex1, "replicate", type = "b")

We might exclude some families with low count numbers:

> (ex2 <- exclmf(mic.fam, "species", c("Ellobiidae", "Endodontidae"),

+ empty = TRUE))

Object of class 'xcount'
Call: as.xcount(table = matr.ex, segment = xc$segment)
Data type: count
Segment: all
Number of samples: 4
Number of species: 3
Total count : 198
Matrix fill: 1 with (12 presences)

In the resulting mefa object, respective parts will be excluded for both the
crosstabulation and attribute table. Empty rows or columns can be removed by
specifying the empty argument (see manual). In the end of this subsection, let’s
have look into the internal structure of a mefa object:

12

●

●

●

●

●

● ●

1 2 3 4 5 6 7

0
1

2
3

4
5

6

Species richness

replicate

S
pe

ci
es

 r
ic

hn
es

s

●

●

● ●

●

● ●

1 2 3 4 5 6 7

0
2

4
6

8
10

Number of individuals

replicate

N
um

be
r

of
 in

di
vi

du
al

s

Figure 4: Plotting method for mefa objects showing scatterplots or boxplots for
variables in the attribute tables.

> str(ex2)

List of 12
$ data : int [1:4, 1:3] 10 1 2 17 13 16 4 85 12 14 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr [1:4] "dead.wood" "litter" "live.wood" "rock"
.. ..$: chr [1:3] "Clausiliidae" "Helicidae" "Zonitidae"
$ call : language as.xcount(table = matr.ex, segment = xc$segment)
$ segment : chr "all"
$ digits : NULL
$ nsamples : int 4
$ nspecies : int 3
$ totalcount: int 198
$ presences : int 12
$ ninds : Named int [1:4] 35 31 15 117
..- attr(*, "names")= chr [1:4] "dead.wood" "litter" "live.wood" "rock"
$ srichn : Named int [1:4] 3 3 3 3

13

..- attr(*, "names")= chr [1:4] "dead.wood" "litter" "live.wood" "rock"
$ specabund : Named int [1:3] 30 118 50
..- attr(*, "names")= chr [1:3] "Clausiliidae" "Helicidae" "Zonitidae"
$ specoccur : Named int [1:3] 4 4 4
..- attr(*, "names")= chr [1:3] "Clausiliidae" "Helicidae" "Zonitidae"
- attr(*, "class")= chr "xcount"

3.3 Reporting with mefa

Parts of the mefa object can be reported by the report.mefa function into a
plain text or preformatted LATEX file (tex operator (argument) containing itali-
cised species names, optionally authors and description dates (author specifier),
sectioning (according to species or samples, ordering argument) and with or
without count data (binary argument):

> library(mefa)

> report.mefa(mf, "dolina-report.tex", ordering = "species", biotic.data = c(1:5),

+ species.name = "spec.name", species.order = 1, author = 0,

+ tex = TRUE, binary = FALSE, sep = c(", ", " (", ")", "; "))

The result will look like this:

14

Carychium tridentatum 1R2, rock, 2, northern, bottom (1).
Cochlodina laminata 1H2, dead.wood, 2, western, middle (2); 1R3, rock, 3,
northern, bottom (1).
Cochlodina orthostoma 1L1, live.wood, 1, eastern, edge (1); 1R1, rock, 1,
eastern, middle (1); 1R2, rock, 2, northern, bottom (1).
Cochlodina cerata 1R1, rock, 1, eastern, middle (2).
Macrogastra latestriata 1H1, dead.wood, 1, southern, middle (5).
Balea biplicata 1A5, litter, 5, northern, middle (1); 1H2, dead.wood, 2, west-
ern, middle (1); 1H3, dead.wood, 3, flat, bottom (1); 1L2, live.wood, 2, western,
middle (1); 1R1, rock, 1, eastern, middle (3); 1R2, rock, 2, northern, bottom
(3); 1R3, rock, 3, northern, bottom (5).
Bulgarica cana 1H1, dead.wood, 1, southern, middle (1); 1R2, rock, 2,
northern, bottom (1).
Discus perspectivus 1A3, litter, 3, southern, middle (1); 1A5, litter, 5,
northern, middle (1); 1H1, dead.wood, 1, southern, middle (1); 1H2, dead.wood,
2, western, middle (1); 1L2, live.wood, 2, western, middle (2); 1R1, rock, 1, east-
ern, middle (1); 1R2, rock, 2, northern, bottom (2).
Vitrea diaphana 1A4, litter, 4, flat, bottom (2); 1H2, dead.wood, 2, western,
middle (2); 1H3, dead.wood, 3, flat, bottom (2); 1L3, live.wood, 3, flat, bottom
(1); 1R2, rock, 2, northern, bottom (2).
Daudebardia rufa 1H2, dead.wood, 2, western, middle (1).
Aegopinella pura 1H2, dead.wood, 2, western, middle (1); 1L2, live.wood, 2,
western, middle (1); 1R2, rock, 2, northern, bottom (2); 1R3, rock, 3, northern,
bottom (1).
Aegopinella minor 1A2, litter, 2, southern, edge (1); 1A3, litter, 3, south-
ern, middle (5); 1A4, litter, 4, flat, bottom (5); 1A7, litter, 7, northern, outside
(1); 1H1, dead.wood, 1, southern, middle (1); 1H2, dead.wood, 2, western, mid-
dle (2); 1H3, dead.wood, 3, flat, bottom (3); 1L1, live.wood, 1, eastern, edge
(1); 1L2, live.wood, 2, western, middle (2); 1L3, live.wood, 3, flat, bottom (4);
1R1, rock, 1, eastern, middle (4); 1R2, rock, 2, northern, bottom (1); 1R3, rock,
3, northern, bottom (5).
Helicodonta obvoluta 1H1, dead.wood, 1, southern, middle (1); 1H2,
dead.wood, 2, western, middle (1); 1H3, dead.wood, 3, flat, bottom (6); 1R1,
rock, 1, eastern, middle (8); 1R2, rock, 2, northern, bottom (1); 1R3, rock, 3,
northern, bottom (4).
Euomphalia strigella 1A4, litter, 4, flat, bottom (1); 1A5, litter, 5, north-
ern, middle (1); 1A6, litter, 6, northern, edge (1); 1A7, litter, 7, northern,
outside (1); 1H1, dead.wood, 1, southern, middle (1); 1H2, dead.wood, 2, west-
ern, middle (1); 1L1, live.wood, 1, eastern, edge (1); 1R2, rock, 2, northern,
bottom (4).
Trichia unidentata 1A3, litter, 3, southern, middle (2); 1A4, litter, 4, flat,
bottom (2); 1A5, litter, 5, northern, middle (1); 1H2, dead.wood, 2, western,
middle (1); 1L1, live.wood, 1, eastern, edge (1); 1R1, rock, 1, eastern, middle
(5); 1R2, rock, 2, northern, bottom (3); 1R3, rock, 3, northern, bottom (1).
Perforatella incarnata 1A3, litter, 3, southern, middle (1); 1A5, litter, 5,
northern, middle (1); 1R1, rock, 1, eastern, middle (3); 1R2, rock, 2, northern,
bottom (5); 1R3, rock, 3, northern, bottom (3).
Perforatella vicina 1A2, litter, 2, southern, edge (1); 1A3, litter, 3, south-
ern, middle (1); 1H1, dead.wood, 1, southern, middle (1); 1H3, dead.wood,
3, flat, bottom (1); 1R1, rock, 1, eastern, middle (4); 1R2, rock, 2, northern,
bottom (1); 1R3, rock, 3, northern, bottom (3).
Chilostoma faustinum 1A5, litter, 5, northern, middle (2); 1A6, litter, 6,
northern, edge (1); 1L1, live.wood, 1, eastern, edge (1); 1L3, live.wood, 3, flat,
bottom (1); 1R1, rock, 1, eastern, middle (7); 1R2, rock, 2, northern, bottom
(12); 1R3, rock, 3, northern, bottom (6).
Isognomostoma isognomostomos 1R1, rock, 1, eastern, middle (6); 1R2,
rock, 2, northern, bottom (8); 1R3, rock, 3, northern, bottom (1).

15

Reporting can be useful for making official reports of inventories or present-
ing data in supporting online material of manuscripts. The LATEX output file
can be easily copied or included into documents eg. in the way presented in the
text window by typing mefadocs("SampleReport").

3.4 Further data analysis

The cross-tabulated count data stored in xcount and mefa objects can be used
readily to visualise simple results on abundances, richness, etc., or can be used
in subsequent uni- and multivariate analyses. These possibilities of further data
analyses are illustrated in the demo script (demo(dolina)). (Will be included
here later . . .)

4 How to cite mefa?

Please refer to the actual answer returned by the command (citation("mefa")).

References

[1] F. Samu. A general data model for databases in experimental animal ecology.
Acta zool. Acad. Sci. Hung., 45:273–292, 1999.

16

	What is mefa?
	How to get mefa?
	How to use mefa?
	Data model
	Workflow in mefa
	Reporting with mefa
	Further data analysis

	How to cite mefa?

