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Abstract

The party package (Hothorn, Hornik, and Zeileis 2006) provides the function mob() im-
plementing a recently suggested algorithm for model-based recursive partitioning (Zeileis,
Hothorn, and Hornik 2005). The basic steps are: (1) fit a parametric model to a data set,
(2) test for parameter instability over a set of partitioning variables, (3) if there is some overall
parameter instability, split the model with respect to the variable associated with the highest
instability, (4) repeat the procedure in each of the child nodes. It is discussed how these steps
of the conceptual algorithm are translated into computational tools in an object-oriented man-
ner, allowing the user to plug in various types of parametric models. The outcome is a tree
where each node is associated with a fitted parametric model that can be effectively visualized
and summarized.

Keywords: parametric models, object-orientation, recursive partitioning.

1. Motivation

Consider a parametric model M(Y, θ) with (possibly vector-valued) observations Y and a k-
dimensional vector of parameters θ. This model could be a (possibly multivariate) normal distri-
bution for Y , or some kind of regression model when Y = (y, x) can be split up into a dependent
variable y and regressors x. An example for the latter could be a linear regression model y = x>θ
or a generalized linear model (GLM) or a survival regression.
Given n observations Yi (i = 1, . . . , n) the model can be fitted by minimizing some objective
function Ψ(Y, θ), e.g., a residual sum of squares or a negative log-likelihood leading to ordinary
least squares (OLS) or maximum likelihood (ML) estimation.
If a global model for all n observations does not fit well and further covariates Z1, . . . , Z` are
available, it might be possible to partition the n observations with respect to these variables and
find a fitting model in each cell of the partition. The algorithm described here tries to find such a
partition adaptively using a greedy forward search. This procedure is implemented in the function
mob() and described in more detail in the following section. However, we we will state some goals
and design principles in advance.
To translate the model-based partitioning problem into R, we start with a formula description
of the variables involved. This formula should be of type y ~ x1 + ... + xk | z1 + ... + zl
where the variables on the left of the | specify the data Y and the variables on the right specify
the partitioning variables Zj . Classical regression trees usually have a univariate response Y
and various partitioning variables, i.e., could be specified as y ~ 1 | z1 + ... + zl. Structural
change models, on the other hand, are usually regression models that are segmented with respect
to a single partitioning variable, typically time: y ~ x1 + ... + xk | z.
The type of models M to be used with mob() should not be confined (by the implementation),
hence we have written an object-oriented implementation. The idea is that M is translated into
software by a model of class“StatModel”as provided by the modeltools package. The algorithm the
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relies on various methods being available for these models. The “StatModel” objects linearModel
and glinearModel, implementing (generalized) linear regression models, are readily available in
modeltools, others can easily be user-defined.

2. The model-based recursive partitioning algorithm

The basic idea is to grow a tee in which every node is associated with a model of type M. To
assess whether splitting of the node is necessary a fluctuation test for parameter instability is
performed. If there is significant instability with respect to any of the partitioning variables Zj ,
the node is splitted into B locally optimal segments (currently only B = 2 is implemented) and
then the procedure is repeated in each of the B children. If no more significant instabilities can
be found, the recursion stops. More precisely, the steps of the algorithm are

1. Fit the model once to all observations in the current node.

2. Assess whether the parameter estimates are stable with respect to every partitioning variable
Z1, . . . , Z`. If there is some overall instability, select the variable Zj associated with the
highest parameter instability, otherwise stop.

3. Compute the split point(s) that locally optimize the objective function Ψ.

4. Split the node into child nodes and repeat the procedure.

The details for steps 1–3 are specified in the following.

2.1. Parameter estimation

This step of the algorithm is common practice, the only additional requirement is (as previously
noted) that model has to be of the class “StatModel” as provided by modeltools. Looking at the
source code for the linearModel provided by this package illustrates how a simple wrapper to
existing R functionality can be written. In particular, a method to the generic function reweight()
has to be available. The reason is that it is inefficient to fit a brand-new model modelobj (including
formula-parsing) in every node—much computation time is saved if simply reweight(modelobj,
weights) is called in each of the child nodes. The weights argument controls which observations
go into which of the child nodes.

2.2. Testing for parameter instability

The task in this step of the algorithm is to find out whether the parameters of the fitted model are
stable over each particular ordering implied by the partitioning variables Zj or whether splitting the
sample with respect to one of the Zj might capture instabilities in the parameters and thus improve
the fit. The tests used in this step belong to the class of generalized M-fluctuation tests (Zeileis and
Hornik 2003; Zeileis 2005). For numerical partitioning variables Zj the supLM statistic is used
which is the maximum over all single split LM statistics. For categorical partitioning variables, a
χ2 statistic is employed which captures the fluctuation within each of the categories of Zj .
For computing the test statistics and corresponding p values pj for each of the partitioning variables
Zj in R, the only requirement is that there are methods for the extractor functions estfun() and
weights(). The estfun() method extracts the empirical estimating functions (model scores)
from the fitted modelobj, these are the main ingredient for M-fluctuation tests. The weights()
method is used to determine which observations are in the current node (i.e., have a weight greater
than zero) and which are not (i.e., have zero weight).
To determine whether there is some overall instability, it is checked whether the minial p value
pj∗ = minj=1,...,` pj falls below a pre-specified significance level α (by default α = 0.05) or not. To
adjust for multiple testing, the p values can be Bonferroni adjusted (which is the default). If there
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is significant instability, the variable Zj∗ associated with the minimal p value is used for splitting
the node.

2.3. Splitting

In this step, the observation in the current node are split with respect to the chosen partitioning
variable Zj∗ into B child nodes. Currently, the infrastructure in party only supports binary splits,
i.e., B = 2. For deterimining the split point, an exhaustive search procedure is adopted: For each
conceivable split point, the B child node models are fit and the split associated with the minimal
value of the objective function Ψ is chosen.
Computationally, this means that the fitted model modelobj is reweight()ed for each of the child
nodes. The observations entering a child node keep their current weight while those observations
that go into different child nodes receive zero weight. To compare the objective function Ψ, an
extractor function is required to compute it from the fitted modelobj. This extractor function can
be user-specified and set in mob_control(), it defaults to deviance().
This concludes one iteration of the recursive partitioning algorithm and steps 1–3 are carried out
again in each of the B daughter nodes until no significant instability is detected in step 2.

3. Illustrations

3.1. Boston housing data

Since the analysis by Breiman and Friedman (1985), the Boston housing data are a popular and
well-investigated empirical basis for illustrating non-linear regression methods both in machine
learning and statistics (see Gama 2004; Samarov, Spokoiny, and Vial 2005, for two recent examples)
and we follow these examples by segmenting a bivariate linear regression model for the house values.
Thus, the model M used is linearModel from the modeltools package which is automatically
loaded together with party.

> library("party")

The data set is available in package mlbench via

> data("BostonHousing", package = "mlbench")

and provides n = 506 observations of the median value of owner-occupied homes in Boston (in
USD 1000) along with 14 covariates including in particular the number of rooms per dwelling (rm)
and the percentage of lower status of the population (lstat). A segment-wise linear relationship
between the value and these two variables is very intuitive, whereas the shape of the influence of
the remaining covariates is rather unclear and hence should be learned from the data. Therefore, a
linear regression model for median value explained by rm^2 and log(lstat) with k = 3 regression
coefficients is employed and partitioned with respect to all ` = 11 remaining variables. To facilitate
subsequent commands, the transformations are explicitely stored in BostonHousing:

> BostonHousing$lstat <- log(BostonHousing$lstat)

> BostonHousing$rm <- BostonHousing$rm^2

Choosing appropriate transformations of the dependent variable and the regressors that enter the
linear regression model is important to obtain a well-fitting model in each segment and we follow
in our choice the recommendations of Breiman and Friedman (1985). Monotonous transformations
of the partitioning variables do not affect the recursive partitioning algorithm and hence do not
have to be performed. However, it is important to distinguish between numerical and categorical
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variables for choosing an appropriate parameter stability test. The variable chas is a dummy
indicator variable (for tract bounds with Charles river) and should thus be turned into a factor.
Furthermore, the variable rad is an index of accessibility to radial highways and takes only 9
distinct values. Thus it is most appropriately treated as an ordered factor.

> BostonHousing$chas <- factor(BostonHousing$chas, levels = 0:1,

+ labels = c("no", "yes"))

> BostonHousing$rad <- factor(BostonHousing$rad, ordered = TRUE)

Both transformations only affect the parameter stability test chosen (step 2), not the splitting
procedure (step 3).
The model is estimated by OLS, the instability is assessed using a Bonferroni-corrected significance
level of α = 0.05 and the nodes are split with a required minimal segment size of 40 observations.
The control parameters are thus set to

> ctrl <- mob_control(alpha = 0.05, bonferroni = TRUE, minsplit = 40,

+ objfun = deviance, verbose = TRUE)

Actually, all of these settings are the defaults except minsplit = 40 and verbose = TRUE which
causes some information about the fitting process being written to the screen. The objective
function deviance() extracts in this case the residual sum of squares from a fitted linearModel
object.
Having collected all building blocks, we can now call the function mob() that takes the model
specification of the linear regression model medv ~ lstat + rm plus all partitioning variables,
along with the data set, the control settings and the model to be used.

> fmBH <- mob(medv ~ lstat + rm | zn + indus + chas + nox + age +

+ dis + rad + tax + crim + b + ptratio, data = BostonHousing,

+ control = ctrl, model = linearModel)

-------------------------------------------
Fluctuation tests of splitting variables:

zn indus chas nox age
statistic 3.363356e+01 6.532322e+01 2.275635e+01 8.136281e+01 3.675850e+01
p.value 1.023987e-04 1.363602e-11 4.993053e-04 3.489797e-15 2.263798e-05

dis rad tax crim b
statistic 6.848533e+01 1.153641e+02 9.068440e+01 8.655065e+01 3.627629e+01
p.value 2.693904e-12 7.087680e-13 2.735524e-17 2.356348e-16 2.860686e-05

ptratio
statistic 7.221524e+01
p.value 3.953623e-13

Best splitting variable: tax
Perform split? yes
-------------------------------------------

Node properties:
tax <= 432; criterion = 1, statistic = 115.364

-------------------------------------------
Fluctuation tests of splitting variables:

zn indus chas nox age
statistic 27.785009791 21.33293464 8.0272421 23.774323202 11.9204284
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p.value 0.001494064 0.02851930 0.4005192 0.009518732 0.7666366
dis rad tax crim b

statistic 24.268011081 50.481593270 3.523250e+01 3.276813e+01 9.0363245
p.value 0.007601532 0.003437763 4.275527e-05 1.404487e-04 0.9871502

ptratio
statistic 4.510680e+01
p.value 3.309747e-07

Best splitting variable: ptratio
Perform split? yes
-------------------------------------------

Node properties:
ptratio <= 15.2; criterion = 1, statistic = 50.482

-------------------------------------------
Fluctuation tests of splitting variables:

zn indus chas nox age
statistic 3.233350e+01 22.26864036 12.93407112 22.10510234 20.41295354
p.value 1.229678e-04 0.01504788 0.05259509 0.01622098 0.03499731

dis rad tax crim b
statistic 17.7204735 5.526565e+01 2.879128e+01 20.28503194 6.5549665
p.value 0.1091769 7.112214e-04 6.916307e-04 0.03706934 0.9999522

ptratio
statistic 4.789850e+01
p.value 4.738855e-08

Best splitting variable: ptratio
Perform split? yes
-------------------------------------------

Node properties:
ptratio <= 19.6; criterion = 1, statistic = 55.266

-------------------------------------------
Fluctuation tests of splitting variables:

zn indus chas nox age dis
statistic 14.971474 14.6477733 7.1172962 14.3455158 8.2176363 16.1112185
p.value 0.280361 0.3134649 0.5405005 0.3467974 0.9906672 0.1847818

rad tax crim b ptratio
statistic 43.17824350 3.447271e+01 9.340075 8.7773142 10.8469969
p.value 0.03281124 4.281939e-05 0.952996 0.9772696 0.8202694

Best splitting variable: tax
Perform split? yes
-------------------------------------------

Node properties:
tax <= 265; criterion = 1, statistic = 43.178

-------------------------------------------
Fluctuation tests of splitting variables:

zn indus chas nox age dis rad
statistic 11.998039 7.3971233 7.227770 9.293619 14.3023962 8.9239826 33.1746444
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p.value 0.574642 0.9931875 0.522447 0.911962 0.2886603 0.9389895 0.3926249
tax crim b ptratio

statistic 16.6666129 11.7143758 9.9050903 11.5927528
p.value 0.1206412 0.6153455 0.8539893 0.6328381

Best splitting variable: tax
Perform split? no
-------------------------------------------

-------------------------------------------
Fluctuation tests of splitting variables:

zn indus chas nox age dis
statistic 10.9187926 9.0917078 2.754081e+01 17.39203006 4.6282349 11.9581600
p.value 0.7091039 0.9172303 4.987667e-05 0.08922543 0.9999992 0.5607267

rad tax crim b ptratio
statistic 0.2557803 10.9076165 3.711175 3.158329 9.8865054
p.value 1.0000000 0.7106612 1.000000 1.000000 0.8410064

Best splitting variable: chas
Perform split? yes
-------------------------------------------

Splitting factor variable, objective function:
no
Inf

No admissable split found in âĂŸchasâĂŹ

The result is the fitted model fmBH of class “mob” that contains the tree with a fitted linear
regression associated with every node. Printing this object will show the splits, their p values and
call the print() method for the model in each terminal node (i.e., this simply relies on a print()
method being available for the fitted model and re-uses it).

> fmBH

1) tax <= 432; criterion = 1, statistic = 115.364
2) ptratio <= 15.2; criterion = 1, statistic = 50.482
3)* weights = 72

Terminal node model
Linear model with coefficients:
(Intercept) lstat rm

9.2349 -4.9391 0.6859

2) ptratio > 15.2
4) ptratio <= 19.6; criterion = 1, statistic = 55.266
5) tax <= 265; criterion = 1, statistic = 43.178
6)* weights = 63

Terminal node model
Linear model with coefficients:
(Intercept) lstat rm

3.9637 -2.7663 0.6881

5) tax > 265
7)* weights = 162
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Terminal node model
Linear model with coefficients:
(Intercept) lstat rm

-1.7984 -0.2677 0.6539

4) ptratio > 19.6
8)* weights = 56

Terminal node model
Linear model with coefficients:
(Intercept) lstat rm

17.5865 -4.6190 0.3387

1) tax > 432
9)* weights = 153

Terminal node model
Linear model with coefficients:
(Intercept) lstat rm

68.2971 -16.3540 -0.1478

Looking at the printed output is typically rather tedious, a visualization via the plot() method

> plot(fmBH)

is much easier to interpret. By default, this produces partial scatter plots of the variable y against
each of the regressors xi in the terminal nodes. Each scatter plot also shows the fitted values, i.e.,
a project of the fitted hyperplane.
From this visualization, it can be seen that in the nodes 4, 6, 7 and 8 the increase of value with
the number of rooms dominates the picture (upper panel) whereas in node 9 the decrease with
the lower status population percentage (lower panel) is more pronounced. Splits are performed in
the variables tax (poperty-tax rate) and ptratio (pupil-teacher ratio).
Various quantities of interest can be computed, provided that the model used provides the corre-
sponding methods, e.g., predict(), residuals(), logLik(), coef() and summary(). The latter
two by default try to extract information for the terminal nodes, but a node argument can be
set to the node IDs of interest. As an example, the regression coefficients for the terminal node
models can be easily extracted by

> coef(fmBH)

(Intercept) lstat rm
3 9.234880 -4.939096 0.6859136
6 3.963720 -2.766287 0.6881287
7 -1.798387 -0.267707 0.6538864
8 17.586490 -4.618975 0.3386744
9 68.297087 -16.354006 -0.1477939

reflecting the differences of the models that can also be seen in the the associated plot(). Even
more information is available in a summary(), e.g., for node 7:

> summary(fmBH, node = 7)

Call:
NULL
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Figure 1: Linear-regression-based tree for the Boston housing data. The plots in the leaves give
partial scatter plots for rm (upper panel) and lstat (lower panel).
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Residuals:
Min 1Q Median 3Q Max

-9.092 0.000 0.000 0.000 10.236

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.79839 2.84702 -0.632 0.529
lstat -0.26771 0.69581 -0.385 0.701
rm 0.65389 0.03757 17.404 <2e-16 ***
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 2.652 on 159 degrees of freedom
Multiple R-squared: 0.8173, Adjusted R-squared: 0.815
F-statistic: 355.6 on 2 and 159 DF, p-value: < 2.2e-16

The test statistics and p values computed in each node, can be extracted analogously by using the
method for the function sctest() (for performing structural change tests).

> sctest(fmBH, node = 7)

zn indus chas nox age dis rad
statistic 11.998039 7.3971233 7.227770 9.293619 14.3023962 8.9239826 33.1746444
p.value 0.574642 0.9931875 0.522447 0.911962 0.2886603 0.9389895 0.3926249

tax crim b ptratio
statistic 16.6666129 11.7143758 9.9050903 11.5927528
p.value 0.1206412 0.6153455 0.8539893 0.6328381

For summarizing the quality of the fit, we could compute the mean squared error, log-likelihood
or AIC:

> mean(residuals(fmBH)^2)

[1] 12.03518

> logLik(fmBH)

’log Lik.’ -1310.506 (df=24)

> AIC(fmBH)

[1] 2669.013

As the logLik() method simply re-uses the method for linearModel objects, this does not only
report 19 estimated parameters (3 parameters in each of the 5 terminal nodes plus 5 − 1 split
points) but 24 parameters because each terminal node is additionally associated with a variance
estimate. However, for the fitting process, the variance was treated as a nuisance parameter as we
employed OLS estimation (rather than fully-specified ML estimation).

3.2. Pima Indians diabetes data

Another popular benchmark data set for binary classifications is the Pima Indians diabetes database
which is also available from mlbench:
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> data("PimaIndiansDiabetes2", package = "mlbench")

> PimaIndiansDiabetes <- na.omit(PimaIndiansDiabetes2[, -c(4, 5)])

After omitting missing values (and the variables triceps and insulin which are missing for most
women), the data set provides diabetes test results for n = 724 women along with 7 covariates
including in particular the plasma glucose concentration glucose as an important predictor for
diabetes. Fitting a logistic regression model diabetes ~ glucose seems to be straightforward,
whereas the influence of the remaining variables should again be learned by recursive partitioning.
This will yield a model tree with k = 2 regression coefficients in each terminal node, partitioned
with respect to the remaining ` = 5 remaining variables.
The model is estimated by ML employing the glinearModel, the instability is assessed using a
Bonferroni-corrected significance level of α = 0.05 and the nodes are split with a required minimal
segment size of 20 observations. Hence, all control parameters correspond to the default values in
mob_control() and do not have to be set explicitely in the mob() call:

> fmPID <- mob(diabetes ~ glucose | pregnant + pressure + mass +

+ pedigree + age, data = PimaIndiansDiabetes, model = glinearModel,

+ family = binomial())

To visualize this, we simply call again:

> plot(fmPID)
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Figure 2: Logistic-regression-based tree for the Pima Indians diabetes data. The plots in the
leaves give spinograms for diabetes versus glucose.

which produces again a plot of the dependent variable y against the only regressors x in the
terminal nodes. As y is diabetes, a binary variable, and x is glucose, a numeric variable, a
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spinogram is chosen for visualization. The breaks in the spinogram are the five-point summary of
glucose on the full data set. The fitted lines are the mean predicted probabilities in each group.
The model tree distinguishes three different groups:

#2 Women with low body mass index that have on average a low risk of diabetes, however this
increases clearly with glucose level.

#4 Women with average and high body mass index, younger than 30 years, that have a higher
avarage risk that also increases with glucose level.

#5 Women with average and high body mass index, older than 30 years, that have a high avarage
risk that increases only slowly with glucose level.

The same interpretation can also be drawn from the coefficient estimates and the corresponding
odds ratios (with respect to glucose):

> coef(fmPID)

(Intercept) glucose
2 -10.999447 0.06456780
4 -6.573067 0.04504490
5 -3.318569 0.02748038

> exp(coef(fmPID)[, 2])

2 4 5
1.066698 1.046075 1.027861

i.e., the odds increase by 6.7%, 4.6% and 2.8% with respect to glucose in the three groups.

4. Conclusion

The function mob() in the party package provides a flexible and object-oriented implementation of
the general algorithm for model-based recursive partitioning. Models of class “StatModel”—that
employ a formula interface and are equipped with methods for the generic functions reweight(),
weights(), estfun() plus some function for extracting the value of the objective function—can
be easily partitioned. The resulting “mob” tree can be flexibly summarized, both numerically and
graphically, and used for predictions on new data.
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