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Abstract

ggen is a collection of functions to analyse quantitative genetic data. It is especially
helpful to perform parametric resampling of quantitative genetic data sets. Resampling
allows first to determine a priori the expected variance of an estimator, second for a
given empirical data set to calculate bootstrap confidence intervals, and third to evaluate
different estimators and confidence intervals. The structure of the functions was kept
“simple” which easily allows you to extend it with functions that calculate the statistics of
your interest. The organisation of the functions together with some examples is described
in this document, for descriptions of the individual functions refer to the manual.

1 The basic organisation

Most functions in gqgen are written to handle objects of class paraDATA (Figure 1).
The name indicates that these objects can contain parameters sets as well as data sets.
Nevertheless, in all standard applications they contain either a parameter set or a data set
but never both. The possibility of having both together allows to change this behaviour
easily, e.g., to calculate non—parametric bootstrap estimates, where a new data set is not
simulated from parameters but sampled from an existing data set (Section 3).

Starting an investigation needs that you first transform your biological parameters or
your empirical data set into an object of class paraDATA. There are two functions to do
exactly this job, the() and emp().

The functions est() and sim() do not only take paraDATA-objects as arguments but
also return paraDATA-objects. This allows to call these functions nested within each
other in a flexible way. For example

> my.paraDATA.object <- the()
> est(sim(est (sim(est (sim(my.paraDATA.object))))))



takes my.paraDATA.object containing parameters, simulates a corresponding data set,
estimates the parameters, simulates the data set, and so on.

The functions called stat. .. () (currently numbered), take the parameters from para-
DATA-object to calculate statistics, e.g., heritability.
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Figure 1: The organisation of the qgen—package: Function names are denoted by slanted font.
The triangles represent objects of the class paraDATA. All investigations start either with a set of
biological parameters or with empirical data (round boxes). The functions emp () and the () help
to bring them into the form of a paraDATA-object. The two “core” functions sim(), est () take
paraDATA—object as argument and return a modified paraDATA—object. These functions simulate
a data set from parameters, estimate parameter from a data set. The functions stat. .. () take
the estimated parameters from a paraDATA-object to calculate statistics. To perform these steps
in long sequences there are three additional functions cal(), Rfuncsta, and dis(). The cal()—
function helps you to organise the resampling and creates a object called multi (containing
many paraDATA-objects). The sta()—function takes then the desired stat...()—function and
evaluates the multi—object. The dis()—function calculates bootstrap confidence intervals.



Resampling: the sampling tree

qgen does not only allow to estimate parameters from data sets and to simulate data sets
from parameters. It also allows to perform these steps in long sequences and at different
levels (Figure 2).
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Figure 2: An example of a “sampling tree”: The “tips” represent parameter sets (paraDATA—
objects). According to this parameter sets along every arrow a data set is simulated, which
is used to estimate the parameters for its one “tip”. The coloured bubbles show examples of
“branches” together with their filename.

The levels of resampling

Resampling can be done at three different levels,

T-level contains always the population parameters, It exists only in theoretical investi-
gations and is always represented by one “tip” only.

S-level contains either estimated parameters from simulated data sets according to the
population parameters or a single parameter set estimated from empirical data,

R-level is used for calculating bootstrap statistics,

Q-level allows the calculation of double-bootstrap statistics (it is not possible to sample
out of the Q-level).



File organisation during resampling

At every level of resampling the “sampling tree” splits up into different “branches”. The
information of all “tips” of a “branch” are stored within one file (summarised in a multi—
object). The name of each file tells which “branch” of the “sampling tree” it contains and
how many “tips” this “branch” has. The following list describes all files created during
an investigation with qgen.

the.rda A file created by the() containing one object of class paraDATA with an empty

DATA-slot.

emp.rda A file created by emp() containing an object of class paraDATA with an empty
para-slot.

est.rda A file created by est () containing an object of class paraDATA with an empty
DATA-slot.

multiTS###+#.rda A file created by cal() containg an object of class multi (the
four—digit number indicates the number of “tips”, paraDATA-objects).

MultiTSHHHHoHHHHRHfFH#F#F.rda A file created by cal() containing an object
of class multi
example: multiTS000700057R0123.rda indicates that this file contains a “branch”
at the “R-level” with 123 “tips”. This “branch” derived from the 7th out of 57 “tips”
a the “S-level”.

MultiTSH#H#HHoHHHHRH:HHFHoHH#H#FH#QFHH### . rda A file created by cal () con-
taining an object of class multi
example: multiTS000700057R000100123Q0099.rda indicates that this file contains
a “branch” at the “Q-level” with 99 tips. This “branch” derived from the first out
of 123 “tips” at the “R-level” which derived from the 7th out of 57 “tips” at the
“S-level”.

2 Some examples
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Before you start an experiment you probably would like to know how many replicates
you have to take to get a sufficient accurate result. By taking reasonable biological pa-
rameters (additive, dominance, maternal, and environmental variance) and a sampling
design (the number of replicates at every level, e.g, 100 sires, 6 dams each, and 3 individ-
uals per dam) you can easily generate a large number of data sets. The function the ()
helps you to bring your assumed biological parameters into an object of class paraDATA.
The sim() takes this object and samples a corresponding data set. The result is again



stored in an objec of class paraDATA. This object is then run by the est ()—function, and
afterwards by stat...()—function and you have the estimates. An example:

> statl(est(sim(the(siN = 100, daN = 6, idN = 3, additiveVar = 100,
+ dominanceVar = 100, maternalVar = 100, environmentalVar = 100))))

To repeat this step several times there are the functions, cal() and sta() to call the
individual steps in a sequence:

> parameters <- the(siN = 100, daN = 6, idN = 3, additiveVar = 100,

+ dominanceVar = 100, maternalVar = 100, envirommentalVar = 100,
+ file = TRUE)
> cal(filename = "the.rda", repetitions = 10)

A file is generated ("~/qgen/CALfile.r") that now has to be run line by line

> source(""/qgen/CALfile.r")

After some time, depending on the number of resamples, you find a file containing the
esimated parameters of all 10 resampled data sets
("~/qgen/multiTS0010.rda").

> sta(filename = "multiTS0010.rda", statistic.name = statl)

The function sta() takes the multiTS0010.rda file and for every repetition the statistic
(heritability for stat1()) is calculated. The results can be summarised in several ways,

e.g.,

> load("/Desktop/myproject.qgen/statS.rda")
> print(stat.matrix)

Analysing an empirical data set
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The function emp() helps you to transform your empirical data stored in a dataframe
into an object of class paraDATA. This paraDATA-object is then analysed by the function
est () which estimates the variance components and stores them again in a paraDATA-
object. The stat...() function of your choice then takes this paraDATA-object and
calculates the statistics, e.g., the stat1() calculates heritability with confidence inter-
vals.



> data(sinapis)

> a <- emp(data.use = sinapis[sinapis$fixedblock == "fbl" & sinapis$environment ==
+ "contr", ], fixedblock.use = "fixedblock", character.use = "leafarea",

+ environment.use = "environment'", sire.use = "sire", dam.use = "dam",

+ individual.use = "individual")

> b <- est(a)

> ¢ <- stat1(b)

> print(c)

and you receive the estimate for heritability and its confidence intervals.
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The function emp() helps you to transform your empirical data stored in a dataframe
into an object of class paraDATA. This paraDATA—object is then analysed by the function
est () which estimates the variance components and stores them again in a paraDATA-
object. The stat...() function of your choice then takes this paraDATA-object and
calculates the statistics, e.g., the stat1() calculates heritability with confidence inter-
vals.

> data(sinapis)

> a <- emp(data.use = sinapis[sinapis$fixedblock == "fbl" & sinapis$environment ==
+ "contr", ], fixedblock.use = "fixedblock", character.use = "leafarea",

+ environment.use = "environment", sire.use = "sire", dam.use = '"dam",

+ individual.use = "individual")

> b <- est(a, file = TRUE)

> cal(filename = "est.rda", repetitions = 5)

> source(""/qgen/CALfile.r")

> sta(filename = "multiTS0001.rda", statistic.name = statl)

> sta(filename = "multiTS000100001R0005.rda", statistic.name = statl)

If you select a reasonable number of repetitions (at lest 100!) you can now calculate the
bootstrap confidence intervals:

> dis()

and you receive the estimate for heritability and bootstrap confidence intervals (per-
centile, Basic, BCa).

3 Outlook

The functions of qgen constrain their range of application in several ways. The following
list describes, how some of this constraints can be relaxed.



> 9999 resamples The filenames reserve only four digits for numbering the different
samples. By changing the internal function leading() this behaviour can easily
be changed simultaneously for all functions. Care has to be taken to ensure that
the filenames do not become to long (depending on your OS)!

non—parametric resampling To save storage resources, only the estimated parameters
are stored and the data sets are discharged. To change this behaviour, the function
est.R() has to be changed.
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