
(Generalized) Sets in R

David Meyer and Kurt Hornik

2007-10-09

Abstract

This document explains algorithms and basic operations of sets and some generalizations
of sets (fuzzy sets, multisets, and fuzzy multisets) available in R through the sets package.

There is only rudimentary support in base R for sets. Typically, these are represented using
atomic or recursive vectors (lists), and one can use operations such as union(), intersect(),
setdiff(), setequal(), and is.element() to emulate set operations. However, there are several
drawbacks: first of all, quite a few other operations such as the Cartesian product, the power set,
the subset predicate, etc., are missing. Then, the current facilities do not make use of a class
system, making extensions hard (if not impossible). Another consequence is that no distinction
can be made between sequences (ordered collections of objects) and sets (unordered collections of
objects), which is key for the definition of relations, where both concepts are combined. Also, there
is no support for extensions such as fuzzy sets or multisets. Therefore, we decided to provide more
formalized and extended support for sets, and, because they are needed for Cartesian products,
also for tuples.

1 Tuples

The tuple functions in package sets represent basic infrastructure for handling tuples of general (R)
objects. They are used, e.g., to correctly represent Cartesian products of sets, resulting in a set
of tuples (see below). Although tuple objects should behave like “ordinary” vectors for the most
common operations (see examples), some functions may yield unexpected results (e.g., table())
or simply not work (e.g., plot()) since tuple objects are in fact list objects internally. There
are several constructors: tuple() for arbitrarily many objects, and singleton(), pair(), and
triple() for tuples of lengths 1, 2 and 3, respectively. Note that tuple elements can be named.

> ## constructor

> tuple(1,2,3, TRUE)

(1, 2, 3, TRUE)

> triple(1,2,3)

(1, 2, 3)

> pair(Name = "David", Height = 185)

(Name = David, Height = 185)

> tuple_is_triple(triple(1,2,3))

[1] TRUE

> tuple_is_ntuple(tuple(1,2,3,4), 4)

1



[1] TRUE

> ## converter

> as.tuple(1:3)

(1, 2, 3)

> ## operations

> c(tuple("a","b"), 1)

(a, b, 1)

> tuple(1,2,3) * tuple(2,3,4)

(2, 6, 12)

> rep(tuple(1,2,3), 2)

(1, 2, 3, 1, 2, 3)

The Summary() methods will also work if defined for the elements:

> sum(tuple(1, 2, 3))

[1] 6

> range(tuple(1, 2, 3))

[1] 1 3

In addition, there is a tuple_outer() function to apply functions to all combinations of tuple
elements. Note that tuple_outer() will also work for regular vectors and thus can really be seen
as an extension of outer():

> tuple_outer(pair(1, 2), triple(1, 2, 3))

1 2 3
1 1 2 3
2 2 4 6

> tuple_outer(1:5, 1:4, "^")

1 2 3 4
1 1 1 1 1
2 2 4 8 16
3 3 9 27 81
4 4 16 64 256
5 5 25 125 625

2 Sets

The basic constructor for creating sets is the set() function accepting an arbitrary number of
R objects as arguments (which can be named). In addition, there is a generic as.set() for
converting suitable objects to sets.

> ## constructor

> s <- set(1, 2, 3)

> s

2



{1, 2, 3}

> ## named elements

> snamed <- set(one = 1, 2, three = 3)

> snamed

{one = 1, 2, three = 3}

> ## named elements can directly be accessed

> snamed[["one"]]

[1] 1

> ## a more complex set

> set(c, "test", list(1, 2, 3))

{<<function>>, test, <<list(3)>>}

> ## set of sets

> set(set(), set(1))

{{}, {1}}

> ## conversion functions

> s2 <- as.set(2:5)

> s2

{2, 3, 4, 5}

There are some basic predicate functions (and corresponding operators) defined for the (in)equality,
(proper) sub-(super-)set, and element-of. Note that all the set_is_foo () functions are vectorized:

> set_is_empty(set())

[1] TRUE

> set_is_equal(set(1), set(1))

[1] TRUE

> set(1) == set(1)

[1] TRUE

> set(1) != set(2)

[1] TRUE

> set_is_subset(set(1), set(1, 2))

[1] TRUE

> set(1) <= set(1, 2)

[1] TRUE

> set(1, 2) >= set(1)

[1] TRUE

3



> set_is_proper_subset(set(1), set(1))

[1] FALSE

> set(1) < set(1)

[1] FALSE

> set(1, 2) > set(1)

[1] TRUE

> set_contains_element(set(1, 2, 3), 1)

[1] TRUE

> 1 %e% set(1, 2, 3)

[1] TRUE

> set_contains_element(set(1, 2, 3), 1:4)

[1] TRUE TRUE TRUE FALSE

> 1:4 %e% set(1, 2, 3)

[1] TRUE TRUE TRUE FALSE

Other than these predicate functions and operators, one can use: c() and | for the union, -
for the difference (or complement), & for the intersection, %D% for the symmetric difference, *
and ^n for the (n-fold) Cartesian product (yielding a set of n-tuples), and 2^ for the power set.
set_union(), set_intersection(), and set_symdiff() accept more than two arguments.1 The
length method for sets gives the cardinality. set_combn() returns the set of all subsets of specified
length. Note that (currently) the rep() method for sets will just return its argument since set
elements are unique.

> length(s)

[1] 3

> length(set())

[1] 0

> ## complement, union, intersection, symmetric difference:

> s - 1

{2, 3}

> s + set("a")

{1, 2, 3, a}

> s | set("a")

{1, 2, 3, a}

1The n-ary symmetric difference of a collection of sets consists of all elements contained in an odd number of
the sets in the collection.

4



> s & s2

{2, 3}

> s %D% s2

{4, 5, 1}

> set(1,2,3) - set(1,2)

{3}

> set_intersection(set(1,2,3), set(2,3,4), set(3,4,5))

{3}

> set_union(set(1,2,3), set(2,3,4), set(3,4,5))

{1, 2, 3, 4, 5}

> set_symdiff(set(1,2,3), set(2,3,4), set(3,4,5))

{3, 5, 1}

> ## Cartesian product

> s * s2

{(1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3, 3), (1, 4), (2, 4), (3,
4), (1, 5), (2, 5), (3, 5)}

> s * s

{(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3,
3)}

> s ^ 2 # same as above

{(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (1, 3), (2, 3), (3,
3)}

> s ^ 3

{(1, 1, 1), (2, 1, 1), (3, 1, 1), (1, 2, 1), (2, 2, 1), (3, 2, 1), (1,
3, 1), (2, 3, 1), (3, 3, 1), (1, 1, 2), (2, 1, 2), (3, 1, 2), (1, 2,
2), (2, 2, 2), (3, 2, 2), (1, 3, 2), (2, 3, 2), (3, 3, 2), (1, 1, 3),
(2, 1, 3), (3, 1, 3), (1, 2, 3), (2, 2, 3), (3, 2, 3), (1, 3, 3), (2,
3, 3), (3, 3, 3)}

> ## power set

> 2 ^ s

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

> ## subsets:

> set_combn(as.set(1:3),2)

{{1, 2}, {1, 3}, {2, 3}}

The Summary() methods will also work if defined for the elements:

5



> sum(s)

[1] 6

> range(s)

[1] 1 3

Using set_outer(), it is possible to apply a function on all factorial combinations of the elements
of two sets. If only one set is specified, the function is applied to all pairs of this set.

> set_outer(set(1, 2), set(1, 2, 3), "/")

1 2 3
1 1 0.5 0.3333333
2 2 1.0 0.6666667

> X <- set_outer(set(1, 2), set(1, 2, 3), set)

> X[[2, 3]]

{2, 3}

> set_outer(2^set(1, 2, 3), set_is_subset)

{} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{} TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
{1} FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
{2} FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
{3} FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE
{1, 2} FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE
{1, 3} FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
{2, 3} FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
{1, 2, 3} FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

Because set elements are unordered, it is not sensible to use positional subscripting. However, it
is possible to iterate over all elements using for() and lapply()/sapply():

> sapply(s, sqrt)

[1] 1.000000 1.414214 1.732051

> for (i in s) print(i)

[1] 1
[1] 2
[1] 3

3 Generalized Sets

There are several extensions of “ordinary” sets such as fuzzy sets and multisets. Both can be be
seen as special cases of fuzzy multisets. For all extensions, the approach is to define a generalized
set X as a pair (D, f) where D is an ordinary set representing the domain, and f the characteristic
function of X, mapping D to some image I. The subset of the domain for which f is non-zero is
the support of X. If I = {0, 1}, X represents an “ordinary” set. If I = N, X becomes a multiset
whose elements ei can appear multiple times. f(ei) is then called the multiplicity of ei. If I is
the unit interval, X becomes a fuzzy set. In this context, f is typically called the membership
function, f(ei) the membership grade of ei, and D the universe for X. If I is a multiset whose

6



domain is the unit interval (0 excluded), X is a fuzzy multiset whose elements can each have
several (possibly non-unique) membership grades. If for one element, the asociated membership
grades are all 1, we get a multiset. If there is at most one membership grade, we get a “simple”
fuzzy set. If for the latter case the membership is 1, we fall back to an ordinary set.

Generalized sets are created using the gset() function. This can be done in four ways:

1. Specify the support only (this yields an ordinary set).

2. Specify support and memberships.

3. Specify support and membership function.

4. Specify a set of elements along with their individual membership grades.

Note that for efficiency reasons, gset() will not store elements with zero memberships grades, i.e.
really expects the support and not a domain (or universe in the fuzzy world sense).

> X <- c("A", "B", "C")

> ## ordinary set (X is converted to a set internally).

> gset(support = X)

{A, B, C}

> ## multiset

> multi <- 1:3

> gset(support = X, memberships = multi)

{A [1], B [2], C [3]}

> ## fuzzy set

> ms <- c(0.1, 0.3, 1)

> gset(support = X, memberships = ms)

{A [0.1], B [0.3], C [1]}

> ## fuzzy set using a membership function

> f <- function(x) switch(x, A = 0.1, B = 0.2, C = 1, 0)

> gset(support = X, charfun = f)

{A [0.1], B [0.2], C [1]}

> ## fuzzy multiset

> ## Here, the membership argument expects a list of membership grades,

> ## either specified as vectors, or as multisets.

> ms2 <- list(c(0.1, 0.3, 0.4), c(1, 1),

+ gset(support = ms, memberships = multi))

> gset(support = X, memberships = ms2)

{A [{0.1, 0.3, 0.4}], B [{1 [2]}], C [{0.1 [1], 0.3 [2], 1 [3]}]}

As for ordinary sets, the usual operations such as union, intersection, and complement are available.
Additionally, the sum and the difference of sets are defined, which add and subtract multiplicities:

> X <- gset(c("A", "B", "C"), 4:6)

> print(X)

{A [4], B [5], C [6]}

7



> Y <- gset(c("B", "C", "D"), 1:3)

> print(Y)

{B [1], C [2], D [3]}

> ## union vs. sum

> gset_union(X, Y)

{A [4], B [5], C [6], D [3]}

> gset_sum(X, Y)

{A [4], B [6], C [8], D [3]}

> ## intersection vs. difference

> gset_intersection(X, Y)

{B [1], C [2]}

> gset_difference(X, Y)

{A [4], B [4], C [4]}

> ## sum and difference for fuzzy sets

> X <- gset("a", 0.3)

> Y <- gset(c("a", "b"), c(0.3, 0.4))

> gset_sum(X, Y)

{a [{0.3 [2]}], b [{0.4}]}

> gset_sum(X, Y, set("a"))

{a [{0.3 [2], 1 [1]}], b [{0.4}]}

> gset_difference(Y, X)

{b [{0.4}]}

Note that "+" and "-" can be used instead, and that for fuzzy (multi-)sets, in general, complement
and difference do not yield the same result (as for crisp sets):

> X - Y

{}

> gset_complement(X, Y)

{a [0.3], b [0.4]}

For fuzzy (multi-)sets, the user can choose the logic underlying the operations using the
fuzzy_logic() function. Fuzzy logics are represented as named lists with four components N,
T, S, and I containing the corresponding functions for negation, conjunction (“t-norm”), dis-
junction (“t-conorm”), and implication. The fuzzy logic is selected by calling fuzzy_logic()
with a character string specifying the fuzzy logic “family”, and optional parameters. Available
families include: "Zadeh" (default), "drastic", "product", "Lukasiewicz", "Fodor", "Frank",
"Hamacher", "Schweizer-Sklar", "Yager", "Dombi", "Aczel-Alsina", and "Sugeno-Weber". A
call to fuzzy_logic() without arguments returns the currently set fuzzy logic.

8



> X <- gset(c("A", "B", "C"), c(0.3, 0.5, 0.8))

> print(X)

{A [0.3], B [0.5], C [0.8]}

> Y <- gset(c("B", "C", "D"), c(0.1, 0.3, 0.9))

> print(Y)

{B [0.1], C [0.3], D [0.9]}

> ## Zadeh-logic (default)

> gset_intersection(X, Y)

{B [0.1], C [0.3]}

> gset_union(X, Y)

{A [0.3], B [0.5], C [0.8], D [0.9]}

> gset_complement(X, Y)

{B [0.1], C [0.2], D [0.9]}

> !X

{A [0.7], B [0.5], C [0.2]}

> ## switch logic

> fuzzy_logic("Fodor")

> ## Fodor-logic

> gset_intersection(X, Y)

{C [0.3]}

> gset_union(X, Y)

{A [0.3], B [0.5], C [1], D [0.9]}

> gset_complement(X, Y)

{D [0.9]}

> !X

{A [0.7], B [0.5], C [0.2]}

The cut() method for generalized sets “filters” all elements with membership not less then a
specified level—the result, thus, is a crisp (multi)set:

> cut(X, 0.5)

{B, C}

> cut(X)

{}

Additionally, there is a plot() method for fuzzy (multi-)sets that produces a barplot for the
membership vector (see Figure 1):

> plot(X)

9



A B C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Membership plot for a fuzzy set.

10


	Tuples
	Sets
	Generalized Sets

