
Categorical inputs, sensitivity analysis,

multiresolution models,

optimization and importance tempering

with tgp version 2, an R package for

treed Gaussian process models

Matt A. Taddy

Applied Math & Statistics Department

University of California, Santa Cruz, USA

taddy@ams.ucsc.edu

Robert B. Gramacy

Statistical Laboratory

University of Cambridge, United Kingdom

bobby@statslab.cam.ac.uk

April 7, 2008

Abstract

This document describes the new features in version 2.0 of the tgp

package for R, implementing treed Gaussian process (GP) models. The
topics covered include methods for dealing with categorical inputs and
excluding inputs from the tree or GP part of the model; fully Bayesian
sensitivity analysis for inputs/covariates; multiresolution (treed) Gaussian
process modeling; sequential optimization of black-box functions; and a
new Monte carlo method for inference in multi-modal posterior distribu-
tions that combines simulated tempering and importance sampling. These
additions extend the functionality of tgp across all models in the hierar-
chy: from Bayesian linear models to CART to treed Gaussian process with
jumps to the limiting linear model, except in the case of multiresolution
models which apply only to the (treed) GP. It is assumed that the reader
is familiar with the features in earlier versions of the package, outlined in
the first vignette tgp.pdf [9].

Intended audience

This document is intended as a follow-on to the vignette for version 1.x of the
tgp package [9]. It describes five new features that have been added to the

1

package in version 2.x, and is divided into five essentially disjoint sections: on
categorical inputs (Section 1), sensitivity analysis (Section 2), multiresolution
tgp (Section 3), sequential optimization (Section 4), and importance tempering
(Section 5). Each section will begin with a short mathematical introduction to
the new feature or methodology and commence with extensive examples in R

on synthetic and real data. This document has been authored in Sweave (try
help(Sweave)). This means that the code quoted throughout is certified by R,
and the Stangle command can be used to extract it. As with the first vignette,
the R code in each of the sections to follow is also available as a demo in the
package. Note that this tutorial was not meant to serve as an instruction manual.
For more detailed documentation of the functions contained in the package, see
the package help–manuals. At an R prompt, type help(package=tgp). PDF
documentation is also available on the world-wide-web.

http://www.cran.r-project.org/doc/packages/tgp.pdf

Throughout this document it is assumed that the reader is familiar with the
tgp methods and models available in version 1.x of the package, outlined in the
vignette tgp.pdf [9].

1 Non–real–valued, categorical and other inputs

Early versions of tgp worked best with real–valued inputs X. While it was
possible to specify ordinal, integer–valued, or even binary inputs, tgp would
treat them the same as any other real–valued input. Two new arguments to
tgp.default.params, and thus the ellipses (...) argument to the b* functions
provide a more natural way to model with non–real valued inputs.

Classical treed methods, such as CART [1], can cope quite naturally with
categorical, binary, and ordinal, inputs. Categorical inputs can be encoded in
binary, and splits can be proposed with rules such as xi < 1. Once a split is made
on a binary input, no further process in need, marginally, in that dimension.
Ordinal inputs can also be coded in binary, and thus treated as categorical, or
treated as real–valued and handled in a default way. GP regression, however,
handles such non–real–valued inputs less naturally, unless (perhaps) a custom
and non–standard form of the covariance function is used. When inputs are
scaled to lie in [0, 1], binary–valued inputs xi are always a constant distance
apart—at the largest possible distance in the range. A separable correlation
function width parameter di will tend to infinity if the output does not vary with
xi, and will tend to zero if it is. Clearly, this functionality is more parsimoniously
served achieved by partitioning, e.g., using a tree. However, trees with fancy
regression models at the leaves pose other problems, as discussed below.

Consider as motivation, the following modification of the Friedman data [5]
(see also Section 3.5 of [9]). Augment 10 real–valued covariates in the data
(x = {x1, x2, . . . , x10}) with one categorical indicator I ∈ {1, 2, 3, 4} that can
be encoded in binary as

1 ≡ (0, 0, 0) 2 ≡ (0, 0, 1) 3 ≡ (0, 1, 0) 4 ≡ (1, 0, 0).

2

Not let the function that describes the responses (Z), observed with standard
Normal noise, have a mean

E(Z|x, I) =

10 sin(πx1x2) if I = 1
20(x3 − 0.5)2 if I = 2
10x4 + 5x5 if I = 3

10x1 + 5x2 + 20(x3 − 0.5)2 + 10 sin(πx4x5) if I = 4

(1)

that depends on the indicator I. Notice that when I = 4 the original Fried-
man data is recovered, but with the first five input columns in reverse order.
Irrespective of I, the response depends only on {x1, . . . , x5}, thus combining
nonlinear, linear, and irrelevant effects. When I = 3 the response is linear x.

A new function has been included in the tgp package which facilitates gen-
erating random realizations from (1). Below we obtain 500 such random real-
izations for training purposes, and a further 1000 for testing.

> fb.train <- fried.bool(500)

> X <- fb.train[, 1:13]

> Z <- fb.train$Y

> fb.test <- fried.bool(1000)

> XX <- fb.test[, 1:13]

> ZZ <- fb.test$Ytrue

A separation into training and testing sets will be useful for later comparisons
by RMSE. The names of the data frame show that the first ten columns encode
x and columns 11–13 encode the boolean representation of I.

> names(X)

[1] "X.1" "X.2" "X.3" "X.4" "X.5" "X.6" "X.7" "X.8"

[9] "X.9" "X.10" "I.1" "I.2" "I.3"

One, näıve approach to fitting this data would be to fit a treed GP LLM model
ignoring the categorical inputs. But this model can only account for the noise,
giving high RMSE, and so is not illustrated here. Clearly, the indicators must
be included. One simple way to do so would be to posit a Bayesian CART
model.

> fit1 <- bcart(X = X, Z = Z, XX = XX, m0r1 = TRUE,

+ verb = 0)

> rmse1 <- sqrt(mean((fit1$ZZ.mean - ZZ)^2))

> rmse1

[1] 2.983012

In this case the indicators are treated appropriately (as indicators), but in some
sense so are the real–valued inputs as only constant models are fit at the leaves
of the tree. Figure 1 shows that the tree does indeed partition on the indicators,
and the other inputs, as expected.

One might expect a much better fit from a treed linear model to this data,
since the response in linear in some of its inputs.

3

> tgp.trees(fit1, "map")

X.4 <> 0.519264

I.2 <> 0

I.3 <> 0

I.1 <> 0

X.1 <> 0.499703

0.0121
34 obs

1

0.0063
29 obs

2

0.0152
62 obs

3

0.0024
75 obs

4

X.4 <> 0.210015

0.002
30 obs

5

0.0026
36 obs

6

I.1 <> 0

I.2 <> 0

I.3 <> 0

X.2 <> 0.515824

0.0057
31 obs

7

0.0057
26 obs

8

0.0032
74 obs

9

0.0059
43 obs

10

X.2 <> 0.502056

0.0092
38 obs

11

0.0064
22 obs

12

 height=6, log(p)=435.729

Figure 1: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using Bayesian CART.

> fit2 <- btlm(X = X, Z = Z, XX = XX, m0r1 = TRUE,

+ verb = 0)

> rmse2 <- sqrt(mean((fit2$ZZ.mean - ZZ)^2))

> rmse2

[1] 2.410959

Unfortunately, this is not the case—-the RMSEs are similar to those for the
CART model. Figure 2 shows that the tree does indeed partition, but not on
the indicator variables. When a linear model is used at the leaves of the tree the
boolean indicators cannot be partitioned upon because doing so would cause the
design matrix to become rank–deficient at the leaves of the tree (there would be
a column of all zeros or all ones). A treed GP would have the same problem.

A new feature in tgp makes dealing with indicators such as these more
natural, by including them as candidates for treed partitioning, but ignoring
them when it comes to fitting the models at the leaves of the tree. The argument
basemax to tgp.default.params, and thus the ellipses (...) argument to the
b* functions, allows for the specification of the last column of X to be considered
under the base (LM or GP) model. In the context of our example, specifying
basemax = 10 ensures that only the first 10 inputs, i.e., X only (excluding
I), are used to predict the response under the GPs at the leaves. Both the
columns of X and the columns of the boolean representation of the (categorical)
indicators I are (still) candidates for partitioning. This way, whenever the
boolean indicators are partitioned upon, the design matrix (for the GP or LM)
will not contain the corresponding column of zeros or ones, and therefore will
be of full rank.

Let us revisit the treed LM model with basemax = 10.

> fit3 <- btlm(X = X, Z = Z, XX = XX, basemax = 10,

4

> tgp.trees(fit2, "map")

X.4 <> 0.488629

0.0061
254 obs

1

0.0066
246 obs

2

 height=2, log(p)=431.242

Figure 2: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using a Bayesian treed linear model.

+ m0r1 = TRUE, verb = 0)

> rmse3 <- sqrt(mean((fit3$ZZ.mean - ZZ)^2))

> rmse3

[1] 1.649079

Figure 3 shows that the MAP tree does indeed partition on the indicators in an
appropriate way—as well as on some other real–valued inputs—and the result
is the lower RMSE we would expect.

A more high–powered approach would clearly be to treat all inputs as as real–
valued by fitting a GP at the leaves of the tree. Binary partitions are allowed
on all inputs, X and I, but treating the boolean indicators as real–valued in
the GP is clearly inappropriate since it is known that the process does not vary
smoothly over the 0 and 1 settings of the three boolean indicators representing
the categorical input I.

> fit4 <- btgpllm(X = X, Z = Z, XX = XX, m0r1 = TRUE,

+ verb = 0)

> rmse4 <- sqrt(mean((fit4$ZZ.mean - ZZ)^2))

> rmse4

[1] 1.247021

Since the design matrices would become rank–deficient if the boolean indicators
are partitioned upon, there was no partitioning in this example. Since there are
large covariance matrices to invert, the MCMC inference is very slow.

5

> tgp.trees(fit3, "map")

I.2 <> 0

I.1 <> 0

I.3 <> 0

0.0038
120 obs

1 X.3 <> 0.498606

0.0014
75 obs

2

0.0012
74 obs

3

0.0055
122 obs

4

0.0011
109 obs

5

 height=5, log(p)=708.281

Figure 3: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using a Bayesian treed linear model with
the setting basemax = 10.

> fit4$gpcs

grow prune change swap

1 0 NA NA NA

Still, the resulting fit (obtained with much patience) is a much better that the
Bayesian CART and treed LM (with basemax = 10) ones, as indicated by the
RMSE.

We would expect to get the best of both worlds if the setting basemax = 10

were used when fitting the treed GP model, thus allowing partitioning on the
indicators by guarding against rank deficient design matrices.

> fit5 <- btgpllm(X = X, Z = Z, XX = XX, m0r1 = TRUE,

+ basemax = 10, verb = 0)

> rmse5 <- sqrt(mean((fit5$ZZ.mean - ZZ)^2))

> rmse5

[1] 0.4805412

And indeed this is the case.
The benefits go beyond producing full rank design matrices at the leaves

of the tree. Loosely speaking, removing the boolean indicators from the GP
part of the treed GP gives a more parsimonious model, without sacrificing any
flexibility. The tree is able to capture all of the dependence in the response

6

as a function of the indicator input, and the GP is the appropriate non–linear
model for accounting for the remaining relationship between the real–valued
inputs and outputs. We can look at the maximum a’ posteriori (MAP) tree,

> h <- fit1$post$height[which.max(fit1$posts$lpost)]

> tgp.trees(fit5, "map")

I.1 <> 0

I.3 <> 0

I.2 <> 0

0.2339
120 obs

1

0.001
109 obs

2

0.0037
149 obs

3

0.0658
122 obs

4

 height=4, log(p)=825.67

Figure 4: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using basemax=10.

to see that only (and all of) the indicators were partitioned upon in Figure 4.
Further advantages to this approach include speed (a partitioned model gives
smaller covariance matrices to invert) and improved mixing in the Markov chain
when a separable covariance function is used. Note that using a non–separable
covariance function in the presence of indicators would result in a poor fit. Good
range (d) settings for the indicators would not necessarily coincide with a a good
range setting for the real–valued inputs.

A complimentary setting, splitmin, allows the user to specify the first col-
umn of the inputs X on which treed partitioning is allowed. From Section 3.5 of
the first tgp vignette [9], it was concluded that the original formulation of Fried-
man data was stationary, and thus treed partitioning is not required to obtain
a good fit. The same would be true of the response in (1) after conditioning on
the indicators. Therefore, the most parsimonious model would use splitmin =

11, in addition to basemax = 10, so that only X are under the GP, and only
I under the tree. Fewer viable candidate inputs for treed partitioning should
yield improved mixing in the Markov chain.

> fit6 <- btgpllm(X = X, Z = Z, XX = XX, m0r1 = TRUE,

+ basemax = 10, splitmin = 11, verb = 0)

7

> rmse6 <- sqrt(mean((fit6$ZZ.mean - ZZ)^2))

> rmse6

[1] 0.3844569

Needless to say, it is important that the input X have columns which are or-
dered appropriately before the basemax and splitmin arguments can be prop-
erly applied. Future versions of tgp will have a formula–based interface to handle
categorical (factors) and other inputs more like other R regression routines,
e.g., lm and glm.

2 Analysis of sensitivity to inputs

3 Multiresolution tgp

4 Optimization of black box functions

5 Importance tempering

Importance tempering (IT) is a combination of the classic method of impor-
tance sampling (IS) [14] and simulated tempering (ST) [8]. The ST algorithm
is methodology for efficiently sampling from a multimodal density π(θ) where
standard methods, such as Metropolis–Hastings (MH) [15, 11] and Gibbs Sam-
pling (GS) [6], fail. It is well–known that MCMC inference in Bayesian treed
methods suffer from poor mixing. For example, Chipman et al. [2, 3] recom-
mend periodically restarting the MCMC to avoid chains becoming stuck in local
modes of the posterior distribution (particularly in tree space). The R argument
to the b* functions exists precisely to facilitate such restarts within the tgp

package.
ST is an application of the MH algorithm on the product space of parameters

and inverse temperatures k ∈ [0, 1]. That is, ST uses MH to sample from the
joint chain π(θ, k) ∝ π(θ)kp(k). The inverse temperature is allowed to take on
a discrete set of values k ∈ {k1, . . . , km : k1 = 1, ki > ki+1 ≥ 0}, called the
temperature ladder. Typically, ST calls for sampling (θ, k)(t+1) by first updating
θ(t+1) conditional on k(t) and (possibly) on θ(t), using MH or GS. Then, for
a proposed k′ ∼ q(k(t) → k′), usually giving equal probability to the nearest
inverse temperatures greater and less than k(t), an acceptance ratio is calculated:

A(t+1) =
π(θ(t+1))k′

p(k′)q(k′ → k(t))

π(θ(t+1))k(t)p(k(t))q(k(t) → k′)
.

Finally, k(t+1) is determined according to the MH accept/reject rule: set k(t+1) =
k′ with probability α(t+1) = min{1, A(t+1)}, or k(t+1) = k(t) otherwise. Stan-
dard theory for MH and GS gives that samples from the marginals πki

can be

8

obtained by collecting samples θ(t) where k(t) = ki. Samples from π(θ) are
obtained when k(t) = 1.

The success of ST depends crucially on the ability of the Markov chain fre-
quently to: (a) visit high temperatures (low k) where the probability of escaping
local modes is increased; (b) visit k = 1 to obtain samples from π. The algo-
rithm can be tuned by: (i.) adjusting the number and location of the rungs of
the temperature ladder; or (ii.) setting the pseudo-prior p(k) for inverse tem-
perature.

Geyer & Thompson [8] give ways of adjusting the spacing of the rungs of
the ladder so that the ST algorithm achieves between–temperature acceptance
rates of 20–40%. More recently, authors have preferred to rely on defaults, e.g.,

ki =

{

(1 + ∆k)1−i geometric spacing
{1 + ∆k(i − 1)}−1 harmonic spacing

i = 1, . . . ,m. (2)

Motivation for such default spacings is outlined by Liu [14]. Geometric spacing,
or uniform spacing of log(ki), is also advocated by Neal [16, 17] to encourage
the Markov chain to rapidly traverse the breadth of the temperature ladder.
Harmonic spacing is more often used by a related method called Metropolis
coupled Markov chain Monte Carlo (MC3) [7]. Both defaults are implemented
in the tgp package, through the provided default.itemps function. A new
“sigmoidal” option is also implemented, as discussed below. The rate parameter
∆k > 0 can be problem specific. Rather than work with ∆k the default.itemps
function allows the ladder to be specified via m and the hottest temperature km,
thus fixing ∆k implicitly. I.e., for the geometric ladder ∆k = (km)1/(1−m) − 1,

and for the harmonic ladder ∆k = (km)−1−1
m−1 .

A sigmoidal ladder can provide a higher concentration of temperatures near
k = 1 without sacrificing the other nice properties of the geometric and harmonic
ladders. It is specified by first situating m indices ji ∈ R so that k1 = k(j1) = 1
and km = k(jm) = km under

k(ji) = 1.01 −
1

1 + eji

.

The remaining ji, i = 2, . . . , (m− 1) are spaced evenly between j1 and jm to fill
out the ladder ki = k(ji), i = 1, . . . , (m − 1).

By way of comparison, consider generating the three different types of ladder
with identical minimum inverse temperature km = 0.1, the default setting in tgp.

> geo <- default.itemps(type = "geometric")

> har <- default.itemps(type = "harmonic")

> sig <- default.itemps(type = "sigmoidal")

The plots in Figure 5 show the resulting inverse temperature ladders, and their
logarithms. Observe how, relative to the geometric ladder, the harmonic lad-
der has a higher concentration of inverse temperatures near zero, whereas the
sigmoidal ladder has a higher concentration near one.

9

> par(mfrow = c(2, 1))

> all <- cbind(geok, hark, sig$k)

> matplot(all, pch = 21:23, main = "inv-temp ladders",

+ xlab = "indx", ylab = "itemp")

> legend("topright", pch = 21:23, c("geometric", "harmonic",

+ "sigmoidal"), col = 1:3)

> matplot(log(all), pch = 21:23, main = "log(inv-temp) ladders",

+ xlab = "indx", ylab = "itemp")

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

inv−temp ladders

indx

ite
m

p

geometric
harmonic
sigmoidal

0 10 20 30 40

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

log(inv−temp) ladders

indx

ite
m

p

Figure 5: Three different inverse temperature ladders, each with m = 40 temperatures starting
at k1 = 1 and ending at km = 0.1

10

Once a suitable ladder has been chosen, the tgp package implementation of
ST follows the suggestions of Geyer & Thompson [8] in setting the pseudo–prior,
starting from a uniform p0. First, p0 is adjusted by stochastic approximation:
add c0/[m(t + n0)] to log p0(k) for each ki 6= k(t) and subtract c0/(t + n0) from
log p0(k

(t)) over t = 1, . . . , B burn–in MCMC rounds sampling from the joint
posterior of (θ, k). Then, p0 is normalized to obtain p1. Before subsequent runs,

specified via an R >= 2 argument, occupation numbers o(ki) =
∑B

t=1 1{k(t)=ki},
are used update p(ki) ∝ p1(ki)/o(ki). Note that, in this setting, the R argu-
ment is used to update the pseudo–prior only, not to restart the Markov chain.
Examples are deferred to Section 5.2.

5.1 A new optimal way to combine IS estimators

ST provides us with {(θ(t), k(t)) : t = 1, . . . , T}, where θ(t) is an observation from
πk(t) . It is convenient to write Ti = {t : k(t) = ki} for the index set of observa-
tions at the ith temperature, and let Ti = |Ti|. Let the vector of observations at
the ith temperature collect in θi = (θi1, . . . , θiTi

), so that {θij}
Ti

j=1 ∼ πki
. Each

vector θi can be used to construct an IS estimator of Eπ{h(θ)} by setting

ĥi =

∑Ti

j=1 wi(θij)h(θij)
∑Ti

j=1 wi(θij)
≡

∑Ti

j=1 wijh(θij)

Wi
,

say. The efficiency of this estimator can be measured through it’s variance,
but unfortunately this can be difficult to calculate in general. As a result,
the notion of effective sample size [14] plays an important role in the study of
IS estimators. Denote the the vector of IS weights at the ith temperature is
wi = wi(θi) = (wi(θi1), . . . , wi(θiTi

)), where wi(θ) = π(θ)/πki
(θ). The ESS of

ĥi is defined by

ESS(wi) =
T

1 + cv2(wi)
, (3)

where cv(wi) is the coefficient of variation of the weights (in the ith tempera-
ture), given by

cv2(wi) =

∑T
t=1(w(θ(t)) − w̄)2

(T − 1)w̄2
, where w̄ = T−1

T
∑

t=1

w(θ(t)).

In R:

> ESS <- function(w) {

+ mw <- mean(w)

+ cv2 <- sum((w - mw)^2)/((length(w) - 1) * mw^2)

+ ess <- length(w)/(1 + cv2)

+ return(ess)

+ }

11

This should not be confused with the concept of effective sample size due to

autocorrelation [13] (due to serially correlated samples coming from a Markov
chain as in MCMC).

Jennison [12] was the first to suggest using a single tempered distribution
as a proposal in IS, though the question of how to choose the best temperature
was neither posed or resolved. It is clear that larger k leads to larger ESS,
but at the expense of poorer mixing in the Markov chain. It can be shown
that the optimal inverse temperature k∗ for IS, in the sense of constructing a
minimum variance estimator, may be significantly lower than one [10]. This
means that the discarded samples obtained when k(t) < 1 may actually lead
to more efficient estimators than the ones saved from the cold distribution.
However, the variance of such an estimator will indeed become unbounded as
k → 0, just as ESS → 0. Generally speaking, calculating the variance of IS
estimators is difficult, anyways, so it will be hard to pin down the optimal
temperature for arbitrary π.

Rather than focus on choosing a single temperature, the method of impor-

tance tempering (IT) combines the “trans-temporal” method of ST with IS. An
optimal heuristic based on ESS, which is easy to calculate, is used to combine
the estimators realized at each temperature. The idea is that small ESS will
indicate high variance IS estimators which should be relegated to having only a
small influence on the overall estimator. Low ki may be helpful in the context
of ST, i.e., for improving mixing in the the Markov chain and communication
between modes of the posterior, but they can be harmful if given too much
influence when used to calculate expectations.

It is natural to consider an overall estimator of Eπ{h(θ)} defined by a convex
combination:

ĥλ =
m

∑

i=1

λiĥi, where 0 ≤ λi ≤
m

∑

i=1

λi = 1. (4)

Unfortunately, if λ1, . . . , λm are not chosen carefully, Var(ĥλ), can be nearly as

large as the largest Var(ĥi) [18]. Notice that ST is recovered as a special case
when λ1 = 1 and λ2, . . . , λm = 0. It may be tempting to choose λi = Wi/W ,
where W =

∑m
i=1 Wi. The resulting estimator is equivalent to

ĥ = W−1
T

∑

t=1

w(θ(t), k(t))h(θ(t)), where W =

T
∑

t=1

w(θ(t), k(t)), (5)

and w(θ, k) = π(θ)/π(θ)k = π(θ)1−k. It can lead to a very poor estimator, even
compared to ST, as will be demonstrated empirically in the examples to follow
shortly.

Observe that we can equivalently write

ĥλ =
m

∑

i=1

Ti
∑

j=1

wλ
ijh(θij), where wλ

ij = λiwij/Wi. (6)

12

Let wλ = (wλ
11, . . . , w

λ
1T1

, wλ
21, . . . , w

λ
2T2

, . . . , wλ
m1, . . . , w

λ
mTm

). Attempting to

choose λ1, . . . , λm to minimize Var(ĥλ) directly can be difficult. Moreover, for
the applications that we have in mind, it is important that our estimator can be
constructed without knowledge of the normalizing constants of πk1

, . . . , πkm
, and

without evaluating the MH transition kernels Kπki
(·, ·). It is for this reason that

methods like the balance heuristic [19], MCV [18], or population Monte Carlo
(PMC) [4] cannot be applied. Instead, we seek maximize the effective sample

size of ĥλ in (4), and look for an O(T) operation to determine the optimal λ∗.
Among estimators of the form (4), it can be shown [10] that ESS(wλ) is

maximized by λ = λ∗, where, for i = 1, . . . ,m,

λ∗
i =

ℓi
∑m

i=1 ℓi
, and ℓi =

W 2
i

∑Ti

j=1 w2
ij

.

The efficiency of each IS estimator ĥi can be measured through ESS(wi). Intu-

itively, we hope that with a good choice of λ, the ESS (3) of ĥλ, would be close

to the sum over i of the effective sample sizes each of ĥi. This is indeed the case
for ĥλ∗ , because it can be shown [10] that

ESS(wλ∗

) ≥

m
∑

i=1

ESS(wi) −
1

4
−

1

T
.

In practice we have found that this bound is conservative and that in fact
ESS(wλ∗

) ≥
∑m

i=1 ESS(wi), as will be shown empirically in the examples that
follow. Thus our optimally–combined IS estimator has a highly desirable and
intuitive property in terms of its effective sample size: that the whole is greater
than the sum of its parts.

ESS(wλ∗

) depends on ESS(wi) which in turn depend on the ki. Smaller ki

will lead to better mixing in the Markov chain, but lower ESS(wi). Therefore,
we can expect that the geometric and sigmoidal ladders will fare better than
the harmonic ones, so long as the desired improvements in mixing are achieved.
In the examples to follow, we shall see that the sigmoidal ladder does indeed
leader to higher ESS(wλ∗

).

5.2 Examples

Here the IT method shown in action for tgp models. IT is controlled in b*

function via the itemps argument: a data.frame coinciding with the output of
the default.itemps function. The lambda argument to default.itemps can
be used to base posterior predictive inference the other IT heuristics: ST and
the näıve approach (5). Whenever the argument m = 1 is used with k.min! = 1
the resulting estimator is constructed via tempered importance sampling at
inverse temperature k.min. The parameters c0 and n0 for stochastic approx-
imation of the pseudo–prior can be specified as a 2–vector c0n0 argument to
default.itemps. In the examples which follow we simply use the default con-
figuration of the IT method, adjusting only the minimum inverse temperature
via the k.min argument.

13

Before delving into more involved examples, we illustrate the stages involved
in a small run of importance tempering (IT) on the exponential data from
Section 3.3 of Gramacy (2007). The data can be obtained as:

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

Now, consider applying IT to the Bayesian treed LM with a small geometric
ladder. A warning will be given if the default setting of bprior="bflat" is used,
as this (numerically) improper prior can lead to improper posterior inference at
high temperatures.

> its <- default.itemps(m = 10)

> exp.btlm <- btlm(X = X, Z = Z, bprior = "b0", R = 2,

+ itemps = its, pred.n = FALSE)

burn in: [with stoch approx (c0,n0)=(100,1000)]

GROW @depth 0: [1,0.45], n=(58,22)

GROW @depth 1: [1,0.25], n=(37,21)

PRUNE @depth 1: [1,0.25]

GROW @depth 1: [1,0.2], n=(31,27)

PRUNE @depth 1: [1,0.25]

GROW @depth 1: [2,0.5], n=(50,12)

PRUNE @depth 1: [2,0.45]

GROW @depth 1: [2,0.5], n=(50,13)

PRUNE @depth 1: [2,0.5]

GROW @depth 1: [2,0.45], n=(48,15)

PRUNE @depth 1: [2,0.45]

GROW @depth 1: [2,0.55], n=(51,11)

r=1000 d=[0] [0] [0]; n=(51,11,18) k=0.1

r=2000 d=[0] [0] [0]; n=(48,14,18) k=0.599484

GROW @depth 2: [2,0.3], n=(36,15)

PRUNE @depth 2: [2,0.35]

PRUNE @depth 1: [2,0.5]

GROW @depth 1: [2,0.5], n=(50,13)

PRUNE @depth 1: [2,0.5]

PRUNE @depth 0: [1,0.5]

r=3000 d=[0]; n=80 k=0.278256

GROW @depth 0: [1,0.4], n=(54,26)

GROW @depth 1: [1,0.6], n=(12,14)

GROW @depth 2: [2,0.5], n=(43,11)

CPRUNE @depth 0: var=1, val=0.6->0.55, n=(63,17)

GROW @depth 2: [2,0.3], n=(36,15)

PRUNE @depth 2: [2,0.3]

r=4000 d=[0] [0] [0]; n=(48,15,17) k=0.774264

PRUNE @depth 1: [2,0.45]

14

GROW @depth 1: [2,0.45], n=(48,14)

PRUNE @depth 1: [2,0.45]

GROW @depth 1: [2,0.5], n=(50,12)

PRUNE @depth 1: [2,0.5]

GROW @depth 1: [2,0.5], n=(50,12)

r=5000 d=[0] [0] [0]; n=(51,12,17) k=0.278256

PRUNE @depth 1: [2,0.5]

GROW @depth 1: [2,0.55], n=(51,11)

PRUNE @depth 1: [2,0.45]

GROW @depth 1: [2,0.45], n=(48,15)

PRUNE @depth 1: [2,0.45]

GROW @depth 1: [2,0.45], n=(48,14)

r=6000 d=[0] [0] [0]; n=(48,14,18) k=0.16681

PRUNE @depth 1: [2,0.45]

GROW @depth 1: [2,0.5], n=(50,13)

PRUNE @depth 1: [2,0.5]

GROW @depth 1: [2,0.5], n=(50,12)

PRUNE @depth 1: [1,0.55]

r=7000 d=[0] [0]; n=(62,18) k=0.129155

Sampling @ nn=0 pred locs:

GROW @depth 1: [1,0.45], n=(45,12)

GROW @depth 1: [1,0.3], n=(12,11)

PRUNE @depth 1: [1,0.3]

PRUNE @depth 1: [1,0.45]

GROW @depth 1: [2,0.3], n=(41,16)

r=1000 d=[0] [0] [0]; mh=3 n=(45,12,23) k=0.599484

PRUNE @depth 1: [2,0.35]

GROW @depth 1: [1,0.2], n=(23,34)

PRUNE @depth 1: [1,0.2]

GROW @depth 1: [2,0.35], n=(45,12)

PRUNE @depth 1: [2,0.35]

GROW @depth 1: [1,0.2], n=(23,34)

PRUNE @depth 1: [1,0.25]

GROW @depth 1: [1,0.45], n=(45,12)

r=2000 d=[0] [0] [0]; mh=3 n=(45,12,23) k=0.774264

PRUNE @depth 1: [1,0.45]

GROW @depth 1: [1,0.3], n=(12,11)

PRUNE @depth 1: [1,0.3]

GROW @depth 1: [1,0.45], n=(45,12)

r=3000 d=[0] [0] [0]; mh=3 n=(45,12,23) k=0.464159

PRUNE @depth 1: [1,0.45]

GROW @depth 1: [1,0.5], n=(51,11)

r=4000 d=[0] [0] [0]; mh=3 n=(48,15,17) k=0.464159

GROW @depth 2: [2,0.3], n=(36,12)

PRUNE @depth 2: [2,0.3]

15

r=5000 d=[0] [0] [0]; mh=3 n=(48,14,18) k=0.599484

Grow: 5.498%, Prune: 4.874%, Change: 36.27%, Swap: 27.54%

finished repetition 1 of 2

burn in:

GROW @depth 2: [2,0.3], n=(36,12)

PRUNE @depth 2: [2,0.3]

CPRUNE @depth 0: var=2, val=0.55->0.5, n=(60,20)

GROW @depth 1: [2,0.75], n=(11,12)

PRUNE @depth 1: [2,0.45]

r=1000 d=[0] [0]; mh=3 n=(57,23) k=0.16681

GROW @depth 1: [1,0.45], n=(45,12)

PRUNE @depth 1: [1,0.45]

r=2000 d=[0] [0]; mh=3 n=(57,23) k=0.16681

Sampling @ nn=0 pred locs:

GROW @depth 1: [1,0.3], n=(12,11)

PRUNE @depth 1: [1,0.3]

GROW @depth 1: [2,0.3], n=(41,16)

PRUNE @depth 1: [2,0.3]

GROW @depth 1: [2,0.3], n=(41,16)

PRUNE @depth 1: [2,0.35]

GROW @depth 1: [1,0.35], n=(38,19)

r=1000 d=[0] [0] [0]; mh=3 n=(45,12,23) k=0.359381

PRUNE @depth 1: [1,0.45]

GROW @depth 1: [1,0.4], n=(41,16)

r=2000 d=[0] [0] [0]; mh=3 n=(45,12,23) k=1

GROW @depth 2: [2,0.3], n=(34,11)

PRUNE @depth 2: [2,0.3]

GROW @depth 2: [1,0.1], n=(13,32)

PRUNE @depth 2: [1,0.1]

r=3000 d=[0] [0] [0]; mh=3 n=(45,12,23) k=0.359381

PRUNE @depth 1: [1,0.45]

GROW @depth 1: [1,0.25], n=(28,29)

PRUNE @depth 1: [1,0.25]

GROW @depth 1: [2,0.3], n=(41,16)

GROW @depth 1: [2,0.1], n=(18,23)

PRUNE @depth 2: [2,0.4]

r=4000 d=[0] [0] [0]; mh=3 n=(12,45,23) k=0.359381

PRUNE @depth 1: [2,0.05]

GROW @depth 1: [1,0.3], n=(12,11)

PRUNE @depth 1: [1,0.3]

GROW @depth 1: [2,0.35], n=(45,12)

PRUNE @depth 1: [2,0.35]

GROW @depth 1: [1,0.4], n=(41,16)

GROW @depth 2: [2,0.3], n=(34,11)

16

PRUNE @depth 2: [2,0.3]

PRUNE @depth 1: [1,0.45]

GROW @depth 1: [1,0.3], n=(12,11)

PRUNE @depth 1: [1,0.3]

GROW @depth 1: [2,0.3], n=(41,16)

r=5000 d=[0] [0] [0]; mh=3 n=(41,16,23) k=0.774264

Grow: 5.49%, Prune: 5.098%, Change: 29.5%, Swap: 27.6%

finished repetition 2 of 2

effective sample sizes:

0: itemp=1, len=1084, ess=1084

1: itemp=0.774264, len=934, ess=72.1928

2: itemp=0.599484, len=712, ess=1.62342

3: itemp=0.464159, len=796, ess=4.5198

4: itemp=0.359381, len=402, ess=4.43881

5: itemp=0.278256, len=310, ess=1.59663

6: itemp=0.215443, len=282, ess=0.996501

7: itemp=0.16681, len=206, ess=2.04431

8: itemp=0.129155, len=134, ess=1.09449

9: itemp=0.1, len=140, ess=0.99675

total: len=5000, ess.sum=1173.5, ess(w)=1173.45

lambda-combined ess=1173.45

Notice how the MCMC inference procedure starts with B + T = 9000 rounds
of stochastic approximation (initial adjustment of the pseudo–prior) in place
of typical (default) the B = 2000 burn–in rounds. Then, the first round of
sampling from the posterior commences, over T = 2 rounds, during which the
observation counts in each temperature are tallied. The progress meter shows
the current temperature the chain is in, say k=0.629961, after each of 1000
sampling rounds. The first repeat starts with a pseudo–prior that has been ad-
justed by the observation counts, which continue to be accumulated throughout
the entire procedure (i.e., they are never reset). Any subsequent repeats begin
after a similar (re-)adjustment.

Before finishing, the routine summarizes the sample size and effective sample
sizes in each rung of the temperature ladder. The number of samples is given
by len, the ESS by ess. These quantities can also be recovered via traces, as
shown in the examples to follow. The ESS of the optimal combined IT sample
is the last quantity printed. This, along with the ESS and total numbers of
samples in each temperature, can also be obtained via the tgp-class output
object.

> exp.btlm$ess

$combined

[1] 1173.448

$each

17

k count ess

1 1.0000000 1084 1084.0000000

2 0.7742637 934 72.1927837

3 0.5994843 712 1.6234211

4 0.4641589 796 4.5197963

5 0.3593814 402 4.4388131

6 0.2782559 310 1.5966258

7 0.2154435 282 0.9965006

8 0.1668101 206 2.0443095

9 0.1291550 134 1.0944920

10 0.1000000 140 0.9967501

5.2.1 Motorcycle accident data

Recall the motorcycle accident data of Section 3.4 of the first tgp vignette [9].
Consider using IT to sample from the posterior distribution of the treed GP
LLM model using the geometric temperature ladder.

> library(MASS)

> moto.it <- btgpllm(X = mcycle[, 1], Z = mcycle[,

+ 2], BTE = c(2000, 52000, 10), m0r1 = TRUE, bprior = "b0",

+ R = 3, itemps = geo, trace = TRUE, pred.n = FALSE,

+ verb = 0)

Out of a total of 15600 from the joint chain, the resulting (optimally combined)
ESS was:

> moto.itesscombined

[1] 1243.051

Alternatively, wλ∗

can be extracted from the traces, and used to make the ESS
calculation directly.

> p <- moto.it$trace$post

> ESS(p$wlambda)

[1] 1243.052

The unadjusted weights w are also available from in the trace. We can see that
the näıve choice of λi = Wi/W , leading to the estimator in (5), has a clearly
inferior effective sample size.

> ESS(p$w)

[1] 8.720477

To see the benefit of IT over ST we can simply count the number of samples
obtained when k(t) = 1. This can be accomplished in several ways: either via
the traces or through the output object.

18

> as.vector(c(sum(p$itemp == 2), moto.it$ess$each[1,

+ 2:3]))

[[1]]

[1] 0

$count

[1] 466

$ess

[1] 466

That is, (optimal) IT gives effectively 2.67 times more samples. The näıve
combination, leading to the estimator in (5), yields an estimator with effective
sample size that is 2% of the number of samples obtained under ST.

Now, we should like to compare to the MCMC samples obtained under the
same model, without IT.

> moto.reg <- btgpllm(X = mcycle[, 1], Z = mcycle[,

+ 2], BTE = c(2000, 52000, 10), R = 3, m0r1 = TRUE,

+ bprior = "b0", trace = TRUE, pred.n = FALSE,

+ verb = 0)

The easiest comparison to make is to look at the heights explored under the
three chains: the regular one, the chain of heights visited at all temperatures
(combined), and those obtained after applying IT via re-weighting under the
optimal combination λ∗.

> L <- length(p$height)

> hw <- suppressWarnings(sample(p$height, L, prob = p$wlambda,

+ replace = TRUE))

> b <- hist2bar(cbind(moto.reg$trace$post$height, p$height,

+ hw))

Figure 6 shows barplots indicating the count of the number of times the Markov
chains were in trees of various heights after burn–in. Notice how the tempered
chain (denoted “All Temps” in the figure) frequently visits trees of height one,
whereas the non–tempered chain (denoted “reg MCMC”) never does. The re-
sult is that the non–tempered chain underestimates the probability of height two
trees and produces a corresponding overestimate of height four trees—which are
clearly not supported by the data—even visiting trees of height five. The IT
estimator appropriately down–weights height one trees and provides correspond-
ingly more realistic estimates of height two and four trees.

The improved mixing of the ST/IT chain is also evident in the increased
rate of accepted tree operations. These rates can be accessed from the tgp–
class objects as follows.

> moto.it$gpcs

19

> barplot(b, beside = TRUE, col = 1:3, xlab = "tree height",

+ ylab = "counts", main = "tree heights encountered")

> legend("topright", c("reg MCMC", "All Temps", "IT"),

+ fill = 1:3)

1 2 3 4 5 6

tree heights encountered

tree height

co
un

ts

0
20

00
40

00
60

00
80

00

reg MCMC
All Temps
IT

Figure 6: Barplots indicating the counts of the number of times the Markov chains (for regular
MCMC, combining all temperatures in the inverse temperature ladder, and those re-weighted
via IT) were in trees of various heights for the motorcycle data.

grow prune change swap

1 0.03702610 0.04660486 0.5242553 0.9740578

> moto.reg$gpcs

grow prune change swap

1 0.0345094 0.0330873 0.4072958 0.8864704

The increased rate of prune operations explains how the tempered distributions
helped the chain escape the local modes of deep trees.

Whenever introducing another parameter into the model, like the inverse
temperature k, it is important to check that the marginal posterior chain for
that parameter is mixing well. For ST it is crucial that the chain makes rapid
excursions between the cold temperature, the hottest temperatures, and to visit
each temperature setting roughly the same number of times.

Figure 7 shows a trace of the posterior samples for k in the motorcycle exper-
iment. Arguably, the mixing in k–space leaves something to be desired. Since it
can be very difficult to tune the pseudo–prior and MH proposal mechanism to
get good mixing in k–space, it is fortunate that the IT methodology does not rely
on the same mixing properties as ST does. Since samples can be obtained from
the posterior distribution of the parameters of interest by re-weighting samples
obtained when k < 1 it is only important that the chain frequently visit low

20

> plot(log(moto.it$trace$post$itemp), type = "l", ylab = "log(k)",

+ xlab = "samples", main = "trace of log(k)")

0 5000 10000 15000

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

trace of log(k)

samples

lo
g(

k)

Figure 7: A trace of the MCMC samples from the marginal posterior distribution of the inverse
temperature parameter, k, in the motorcycle experiment

temperatures to obtain good sampling, and high temperatures to obtain good
mixing. The actual time spent in specific temperatures, i.e., k = 1 is less im-
portant. Figure 8 shows the histogram of the inverse temperatures visited in
the Markov chain for the motorcycle experiment. Also plotted is a histogram of
the observation counts in each temperature. The two histograms should similar
shape but different totals. Observation counts are tallied during every MCMC
sample after burn–in, whereas the posterior samples of k are thinned (at a rate
specified in BTE[3]). When the default trace = FALSE argument is used only
the observation counts will be available in the tgp–class object, and these can
be used as a surrogate for a trace of k.

The compromise IT approach obtained using the sigmoidal ladder can yield
an increase in ESS.

> moto.it.sig <- btgpllm(X = mcycle[, 1], Z = mcycle[,

+ 2], BTE = c(2000, 52000, 10), R = 3, m0r1 = TRUE,

+ bprior = "b0", krige = FALSE, itemps = sig, verb = 0)

Compare the resulting ESS to the one given for the geometric ladder above.

> moto.it.sigesscombined

[1] 5333.829

Plots of the resulting predictive surface is shown in Figure 9 for comparison with
those in Section 3.4 of the first tgp vignette [9].

21

> b <- itemps.barplot(moto.it, plot.it = FALSE)

> barplot(t(cbind(moto.it$itemps$counts, b)), col = 1:2,

+ beside = TRUE, ylab = "counts", xlab = "itemps",

+ main = "inv-temp observation counts")

> legend("topright", c("observation counts", "posterior samples"),

+ fill = 1:2)

1 0.889 0.744 0.624 0.522 0.438 0.367 0.307 0.257 0.215 0.18 0.151 0.127 0.106

inv−temp observation counts

itemps

co
un

ts

0
20

0
40

0
60

0
80

0
10

00
12

00 observation counts
posterior samples

Figure 8: Comparing (thinned) samples from the posterior distribution for the inverse tem-
perature parameter, k, (posterior samples), to the observation counts used to update the
pseudo–prior, in the motorcycle experiment

> plot(moto.it.sig)

10 20 30 40 50

−
10

0
−

50
0

50

 z mean

x1

z

10 20 30 40 50

20
40

60
80

 quantile diff (error)

x1

qu
an

til
e

di
ff

(e
rr

or
)

Figure 9: Posterior predictive surface for the motorcycle data, with 90% quantile errorbars,
obtained under IT with the sigmoidal ladder.

5.2.2 Synthetic 2–d Exponential Data

Recall the synthetic 2–d exponential data of Section 3.4 of the tgp vignette [9],
where the true response is given by

z(x) = x1 exp(x2
1 − x2

2).

22

Here, we will take x ∈ [−6, 6] × [−6, 6] with a D–optimal design

> Xcand <- lhs(10000, rbind(c(-6, 6), c(-6, 6)))

> X <- dopt.gp(400, X = NULL, Xcand)$XX

> Z <- exp2d.Z(X)$Z

Consider a treed GP LLM model fit to this data using the standard RJ–
MCMC.

> exp.reg <- btgpllm(X = X, Z = Z, BTE = c(2000, 52000,

+ 10), bprior = "b0", trace = TRUE, krige = FALSE,

+ R = 10, verb = 0)

> plot(exp.reg)

x1

x2

z

 z mean

−4 −2 0 2 4

−
4

−
2

0
2

4

 z quantile diff (error)

x1

x2

Figure 10: Posterior predictive surface for the 2–d exponential data: mean surface (left) and
90% quantile difference (right)

Figure 10 shows the resulting posterior predictive surface. The maximum a’

posteriori (MAP) tree is drawn over the error surface in the right–hand plot.
The height of this tree can be obtained from the tgp-class object.

> h <- exp.reg$post$height[which.max(exp.reg$posts$lpost)]

> h

[1] 6

It is easy to see that many fewer partitions are actually necessary to separate the
interesting, central, region from the surrounding flat region. Figure 11 shows
a diagrammatic representation of the MAP tree. Given the apparent over–
partitioning in this height 6 tree it would be surprising to find much posterior
support for trees of greater height. One might indeed suspect that there are
trees with fewer partitions which would have higher posterior probability, and
thus guess that the Markov chain for the trees plotted in these figures possibly

23

> tgp.trees(exp.reg, "map")

x1 <> 0.197746

x1 <> −2.56011

0
117 obs

1 x2 <> 2.06716

x1 <> −1.486

x2 <> −1.93266

0
12 obs

2

6e−04
11 obs

3

x2 <> −2.10204

0
17 obs

4

0.0147
21 obs

5

0
29 obs

6

x2 <> −1.32813

x2 <> −3.23617

0
48 obs

7 x1 <> 2.62795

1e−04
11 obs

8

0
19 obs

9

x1 <> 3.80618

x2 <> 2.18367

x1 <> 2.00187

0.0124
14 obs

10

0
18 obs

11

0
38 obs

12

0
45 obs

13

 height=6, log(p)=2125.71

Figure 11: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the 2–d
exponential data under standard RJ–MCMC sampling

became stuck in a local mode of tree space while on an excursion into deeper
trees.

Now consider using IT. It will be important in this case to have a km small
enough to ensure that the tree occasionally prunes back to the root. We shall
therefore use a smaller km.Generally speaking, some pilot tuning may be neces-
sary to choose an appropriate km and number of rungs m, though the defaults
should give adequate performance in most cases.

> its <- default.itemps(k.min = 0.02)

> exp.it <- btgpllm(X = X, Z = Z, BTE = c(2000, 52000,

+ 10), bprior = "b0", trace = TRUE, krige = FALSE,

+ itemps = its, R = 10, verb = 0)

As expected, the tempered chain moves more rapidly throughout tree space by
accepting more tree proposals.

> exp.it$gpcs

grow prune change swap

1 0.07903683 0.07878659 0.8149473 0.6708709

> exp.reg$gpcs

grow prune change swap

1 0.01150490 0.008335254 0.6975074 0.3366485

We can quickly compare the effective sample sizes of the three possible estima-
tors: ST, näıve IT, and optimal IT.

> p <- exp.it$trace$post

> data.frame(ST = sum(p$itemp == 1), nIT = ESS(p$w),

+ oIT = exp.itesscombined)

24

ST nIT oIT

1 239 44.96045 384.8271

Due to the thinning in the Markov chain (BTE[3] = 10) and the traversal be-
tween m = 10 temperatures in the ladder, we can be reasonably certain that the
385 samples obtained via IT from the total of 50000 samples obtained from the
posterior are far less correlated than the ones obtained via standard RJ–MCMC.

As with the motorcycle data, we can compare the tree heights visited by the
two chains.

> L <- length(p$height)

> hw <- suppressWarnings(sample(p$height, L, prob = p$wlambda,

+ replace = TRUE))

> b <- hist2bar(cbind(exp.reg$trace$post$height, p$height,

+ hw))

> barplot(b, beside = TRUE, col = 1:3, xlab = "tree height",

+ ylab = "counts", main = "tree heights encountered")

> legend("topright", c("reg MCMC", "All Temps", "IT"),

+ fill = 1:3)

1 2 3 4 5 6 7 8

tree heights encountered

tree height

co
un

ts

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

reg MCMC
All Temps
IT

Figure 12: Barplots indicating the counts of the number of times the Markov chains (for
regular MCMC, combining all temperatures in the inverse temperature ladder, and those
re-weighted via IT) were in trees of various heights for the 2–d exponential data.

Figure 12 shows a barplot of b, which illustrates that the tempered chain fre-
quently visited trees shallow trees. IT with the optimal weights shows that the
standard RJ–MCMC chain missed many trees of height three and four with
consider posterior support.

To more directly compare the mixing in tree space between the ST and
tempered chains, consider the trace plots of the heights of the trees explored by

25

> ylim <- range(p$height, exp.reg$trace$post$height)

> plot(p$height, type = "l", main = "trace of tree heights",

+ xlab = "t", ylab = "height", ylim = ylim)

> lines(exp.reg$trace$post$height, col = 2)

> legend("topright", c("tempered", "reg MCMC"), lty = c(1,

+ 1), col = 1:2)

0 10000 20000 30000 40000 50000

1
2

3
4

5
6

7
8

trace of tree heights

t

he
ig

ht

tempered
reg MCMC

Figure 13: Traces of the tree heights obtained under the two Markov chains Markov chains
(for regular MCMC, combining all temperatures in the inverse temperature ladder) on the
2–d exponential data.

the chains shown in Figure 13. Despite being restarted 10 times, the regular
RJ–MCMC chain (almost) never visits trees of height less than five after burn–
in and instead makes rather lengthy excursions into deeper trees, exploring a
local mode in the posterior. In contrast, the tempered chain frequently prunes
back to the tree root, and consequently discovers posterior modes in tree heights
three and four.

To conclude, a plot of the posterior predictive surface is given in Figure 14,
where the MAP tree is shown both graphically and diagrammatically.

References

[1] L. Breiman, J. H. Friedman, R. Olshen, and C. Stone. Classification and

Regression Trees. Wadsworth, Belmont, CA, 1984.

[2] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian CART model
search (with discussion). Journal of the American Statistical Association,
93:935–960, 1998.

26

> plot(exp.it)

> tgp.trees(exp.it, "map")

x1

x2

z

 z mean

−4 −2 0 2 4

−
4

−
2

0
2

4

 z quantile diff (error)

x1

x2

x2 <> −2.31064

0
130 obs

1 x2 <> 1.94804

x1 <> 2.76005

x1 <> −2.49951

0
39 obs

2

0.0121
56 obs

3

0
37 obs

4

0
138 obs

5

 height=5, log(p)=2035.9

Figure 14: 2–d exponential data fit with IT. Top: Posterior predictive mean surface for the
2d–exponential, with the MAP tree overlayed. Bottom: diagrammatic representation of the
MAP tree.

[3] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian treed models.
Machine Learning, 48:303–324, 2002.

[4] R. Douc, A. Guillin, J.-M. Marin, and C.P. Robert. Minimum variance
importance sampling via population monte carlo. Technical report, CERE-

27

MADE, Université Paris Dauphine, and CREST, INSEE, Paris, 2007.

[5] J. H. Friedman. Multivariate adaptive regression splines. Annals of Statis-

tics, 19, No. 1:1–67, March 1991.

[6] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 6:721–741, 1984.

[7] C.J. Geyer. Markov chain Monte Carlo maximum likelihood. In Computing

Science and Statistics: Proceedings of the 23rd Symposium on the Interface,
pages 156–163, 1991.

[8] C.J. Geyer and E.A. Thompson. Annealing Markov chain Monte Carlo with
applications to ancenstral inference. Journal of the American Statistical

Association, 90:909–920, 1995.

[9] Robert B. Gramacy. tgp: An R package for Bayesian nonstationary, semi-
parametric nonlinear regression and design by treed gaussian process mod-
els. Journal of Statistical Software, 19(9), 6 2007.

[10] Robert B. Gramacy, Richard J. Samworth, and Ruth King. Importance
tempering. Technical Report 0707.4242, ArXiv, 2007.

[11] W.K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57:97–109, 1970.

[12] C. Jennison. Discussion on the meeting on the gibbs sampler and other
Markov chain Monte Carlo methods. Journal of the Royal Statistical Soci-

ety, Series B, 55:54–56, 1993.

[13] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal.
Markov chain monte carlo in practice: A roundtable discussion. The Amer-

ican Statistician, 52(2):93–100, May 1998.

[14] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New
York, 2001.

[15] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
R. Teller. Equations of state calculations by fast computing machine. Jour-

nal of Chemical Physics, 21:1087–1091, 1953.

[16] Radford M. Neal. Sampling from multimodal distributions using tempered
transition. Statistics and Computing, 6:353–366, 1996.

[17] Radford M. Neal. Annealed importance sampling. Statistics and Comput-

ing, 11:125–129, 2001.

[18] Art Owen and Yi Zhou. Safe and effective importance sampling. Journal

of the American Statstical Association, 95(449):135–143, March 2000.

28

[19] Eric Veach and Leonidas J. Guibas. Optimally combining sampling tech-
niques for monte carlo rendering. In SIGGRAPH ’95 Conference Proceed-

ings, pages 419–428, Reading, MA, 1995. Addison–Wesley.

29

