
Introduction to the tm Package

Text Mining in R

Ingo Feinerer

February 7, 2008

Abstract

This vignette gives a short overview over available features in the tm
package for text mining purposes in R.

Loading the Package

Before actually working we need to load the package:

> library("tm")

Data Import

The main structure for managing documents is a so-called text document col-
lection, denoted as corpus in linguistics (Corpus). Its constructor takes following
arguments:

• object: a Source object which abstracts the input location.

• readerControl: a list with the named components reader, language,
and load. A reader constructs a text document from a single element
delivered by a source. A reader must have the argument signature
(elem, load, language, id). The first argument is the element pro-
vided from the source, the second gives the text’s language, the third
indicates whether the user wants to load the documents immediately into
memory, and the fourth is a unique identification string. If the passed over
reader object is of class FunctionGenerator, it is assumed to be a function
generating a reader. This way custom readers taking various parameters
(specified in ...) can be built, which in fact must produce a valid reader
signature but can access additional parameters via lexical scoping (i.e., by
the including environment).

• dbControl: a list with the named components useDb indicating that
database support should be activated, dbName giving the filename holding
the sourced out objects (i.e., the database), and dbType holding a valid
database type as supported by filehash. Under activated database sup-
port the tm packages tries to keep as few as possible resources in memory
under usage of the database.

1

• ...: Further arguments to the reader.

Available sources are DirSource, CSVSource, GmaneSource and ReutersSource
which handle a directory, a mixed CSV, a Gmane mailing list archive Rss feed
or a mixed Reuters file (mixed means several documents are in a single file).
Except DirSource, which is designated solely for directories on a file system, all
other implemented sources can take connections as input (a character string is
interpreted as file path).

This package ships with several readers (readPlain() (default),
readRCV1(), readReut21578XML(), readGmane(), readNewsgroup(),
readPDF(), readDOC() and readHTML()). Each source has a default reader
which can be overridden. E.g., for DirSource the default just reads in the
whole input files and interprets their content as text.

Plain text files in a directory:

> txt <- system.file("texts", "txt", package = "tm")

> (ovid <- Corpus(DirSource(txt),

+ readerControl = list(reader = readPlain,

+ language = "la",

+ load = TRUE)))

A text document collection with 5 text documents

A single comma separated values file:

> cars <- system.file("texts", "cars.csv", package = "tm")

> Corpus(CSVSource(cars))

A text document collection with 4 text documents

Reuters21578 files either in directory (one document per file) or a single file
(several documents per file). Note that connections can be used as input:

> # Reuters21578 XML

> reut21578 <- system.file("texts", "reut21578", package = "tm")

> reut21578XML <- system.file("texts", "reut21578.xml", package = "tm")

> reut21578XMLgz <- system.file("texts", "reut21578.xml.gz", package = "tm")

> (reut21578TDC <- Corpus(DirSource(reut21578),

+ readerControl = list(reader = readReut21578XML,

+ language = "en_US",

+ load = FALSE)))

A text document collection with 10 text documents

> Corpus(ReutersSource(reut21578XML),

+ readerControl = list(reader = readReut21578XML,

+ language = "en_US", load = FALSE))

A text document collection with 10 text documents

> Corpus(ReutersSource(gzfile(reut21578XMLgz)),

+ readerControl = list(reader = readReut21578XML,

+ language = "en_US", load = FALSE))

2

A text document collection with 10 text documents

Depending on your exact input format you might find
preprocessReut21578XML() useful. For the original downloadable archive this
function can correct invalid Utf8 encodings and can copy each text document
into a separate file to enable load on demand.

Analogously we can construct collections for files in the Reuters Corpus
Volume 1 format:

> rcv1 <- system.file("texts", "rcv1", package = "tm")

> rcv1XML <- system.file("texts", "rcv1.xml", package = "tm")

> Corpus(DirSource(rcv1), readerControl = list(reader = readRCV1,

+ language = "en_US", load = TRUE))

A text document collection with 2 text documents

> Corpus(ReutersSource(rcv1XML), readerControl = list(reader = readRCV1,

+ language = "en_US", load = FALSE))

A text document collection with 2 text documents

Or mails from newsgroups (as found in the Uci Kdd newsgroup data set):

> newsgroup <- system.file("texts", "newsgroup", package = "tm")

> Corpus(DirSource(newsgroup), readerControl = list(reader = readNewsgroup,

+ language = "en_US", load = TRUE))

A text document collection with 6 text documents

Rss feed as delivered by Gmane for the R mailing list archive:

> rss <- system.file("texts", "gmane.comp.lang.r.gr.rdf", package = "tm")

> Corpus(GmaneSource(rss), readerControl = list(reader = readGmane,

+ language = "en_US", load = FALSE))

A text document collection with 21 text documents

For very simple Html documents:

> html <- system.file("texts", "html", package = "tm")

> Corpus(DirSource(html), readerControl = list(reader = readHTML,

+ load = TRUE))

A text document collection with 1 text document

And for Pdf documents:

> pdf <- system.file("texts", "pdf", package = "tm")

> Corpus(DirSource(pdf), readerControl = list(reader = readPDF,

+ language = "en_US", load = TRUE))

A text document collection with 1 text document

Note that readPDF() needs pdftotext and pdfinfo installed on your system
to be able to extract the text and meta information from your Pdfs.

Finally, for Ms Word documents there is the reader function readDOC().
You need antiword installed on your system to be able to extract the text from
your Word documents.

3

Data Export

For the case you have created a text collection via manipulating other objects
in R, thus do not have the texts already stored, and want to save the text
documents to disk, you can simply use standard R routines for writing out plain
text documents. E.g.,

> lapply(ovid, function(x) writeLines(x, paste(ID(x), ".txt",

+ sep = "")))

Alternatively there is the function writeCorpus() which encapsulates this func-
tionality.

Inspecting the Text Document Collection

Custom show and summary methods are available, which hide the raw amount of
information (consider a collection could consists of several thousand documents,
like a database). summary gives more details on metadata than show, whereas in
order to actually see the content of text documents use the command inspect
on a collection.

> show(ovid)

A text document collection with 5 text documents

> summary(ovid)

A text document collection with 5 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
create_date creator

Available variables in the data frame are:
MetaID

> inspect(ovid[1:2])

A text document collection with 2 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
create_date creator

Available variables in the data frame are:
MetaID

[[1]]
[1] " Si quis in hoc artem populo non novit amandi,"
[2] " hoc legat et lecto carmine doctus amet."
[3] " arte citae veloque rates remoque moventur,"
[4] " arte leves currus: arte regendus amor."
[5] ""

4

[6] " curribus Automedon lentisque erat aptus habenis,"
[7] " Tiphys in Haemonia puppe magister erat:"
[8] " me Venus artificem tenero praefecit Amori;"
[9] " Tiphys et Automedon dicar Amoris ego."
[10] " ille quidem ferus est et qui mihi saepe repugnet:"
[11] ""
[12] " sed puer est, aetas mollis et apta regi."
[13] " Phillyrides puerum cithara perfecit Achillem,"
[14] " atque animos placida contudit arte feros."
[15] " qui totiens socios, totiens exterruit hostes,"
[16] " creditur annosum pertimuisse senem."

[[2]]
[1] " quas Hector sensurus erat, poscente magistro"
[2] " verberibus iussas praebuit ille manus."
[3] " Aeacidae Chiron, ego sum praeceptor Amoris:"
[4] " saevus uterque puer, natus uterque dea."
[5] " sed tamen et tauri cervix oneratur aratro,"
[6] ""
[7] " frenaque magnanimi dente teruntur equi;"
[8] " et mihi cedet Amor, quamvis mea vulneret arcu"
[9] " pectora, iactatas excutiatque faces."
[10] " quo me fixit Amor, quo me violentius ussit,"
[11] " hoc melior facti vulneris ultor ero:"
[12] ""
[13] " non ego, Phoebe, datas a te mihi mentiar artes,"
[14] " nec nos aëriae voce monemur avis,"
[15] " nec mihi sunt visae Clio Cliusque sorores"
[16] " servanti pecudes vallibus, Ascra, tuis:"
[17] " usus opus movet hoc: vati parete perito;"

Transformations

Once we have a text document collection one typically wants to modify the
documents in it, e.g., stemming, stopword removal, et cetera. In tm, all this
functionality is subsumed into the concept of transformations. Transformations
are done via the tmMap function which applies a function to all elements of the
collection. Basically, all transformations work on single text documents and
tmMap just applies them to all documents in a document collection.

Loading Documents into Memory

If the source objects supports load on demand, but the user has not enforced
the package to load the input content directly into memory, this can be done
manually via loadDoc. Normally it is not necessary to call this explicitly, as
other functions working on text corpora trigger this function for not-loaded
documents (the corpus is automatically loaded if accessed via [[).

> reut21578TDC <- tmMap(reut21578TDC, loadDoc)

5

Converting to Plaintext Documents

The text document collection reut21578TDC contains documents in XML for-
mat. We have no further use for the XML interna and just want to work with
the text content. This can be done by converting the documents to plaintext
documents. It is done by the generic asPlain.

> reut21578TDC <- tmMap(reut21578TDC, asPlain)

Eliminating Extra Whitespace

Extra whitespace is eliminated by:

> reut21578TDC <- tmMap(reut21578TDC, stripWhitespace)

Convert to Lower Case

Conversion to lower case by:

> reut21578TDC <- tmMap(reut21578TDC, tmTolower)

Remove Stopwords

Removal of stopwords by:

> reut21578TDC <- tmMap(reut21578TDC, removeWords, stopwords("english"))

Stemming

Stemming is done by:

> tmMap(reut21578TDC, stemDoc)

A text document collection with 10 text documents

Filters

Often it is of special interest to filter out documents satisfying given properties.
For this purpose the function tmFilter is designated. It is possible to write
custom filter functions, but for most cases the default filter does its job: it
integrates a minimal query language to filter metadata. Statements in this
query language are statements as used for subsetting data frames.

E.g., the following statement filters out those documents having
COMPUTER TERMINAL SYSTEMS <CPML> COMPLETES SALE as their heading and
an ID equal to 10 (both are metadata slot variables of the text document).

> query <- "identifier == '10' &

+ heading == 'COMPUTER TERMINAL SYSTEMS <CPML> COMPLETES SALE'"
> tmFilter(reut21578TDC, query)

A text document collection with 1 text document

There is also a full text search filter available which accepts regular expres-
sions:

6

> tmFilter(reut21578TDC, FUN = searchFullText, "partnership",

+ doclevel = TRUE)

A text document collection with 1 text document

Adding Data or Metadata

Text documents or metadata can be added to text document collections with
appendElem and appendMeta, respectively. The text document collection has
two types of metadata: one is the metadata on the document collection level
(cmeta), the other is the metadata related to the individual documents (e.g.,
clusterings) (dmeta) in form of a dataframe. For the method appendElem it is
possible to give a row of values in the dataframe for the added data element.

> data(crude)

> reut21578TDC <- appendElem(reut21578TDC, crude[[1]], 0)

> reut21578TDC <- appendMeta(reut21578TDC, cmeta = list(test = c(1,

+ 2, 3)), dmeta = list(cl1 = 1:11))

> summary(reut21578TDC)

A text document collection with 11 text documents

The metadata consists of 3 tag-value pairs and a data frame
Available tags are:
create_date creator test

Available variables in the data frame are:
MetaID cl1

> CMetaData(reut21578TDC)

An object of class "MetaDataNode"
Slot "NodeID":
[1] 0

Slot "MetaData":
$create_date
[1] "2008-02-07 12:06:24 CET"

$creator
LOGNAME
"hornik"

$test
[1] 1 2 3

Slot "children":
list()

> DMetaData(reut21578TDC)

7

MetaID cl1
1 0 1
2 0 2
3 0 3
4 0 4
5 0 5
6 0 6
7 0 7
8 0 8
9 0 9
10 0 10
11 0 11

Removing Metadata

The metadata of text document collections can be easily modified or removed:

> data(crude)

> reut21578TDC <- removeMeta(reut21578TDC, cname = "test",

+ dname = "cl1")

> CMetaData(reut21578TDC)

An object of class "MetaDataNode"
Slot "NodeID":
[1] 0

Slot "MetaData":
$create_date
[1] "2008-02-07 12:06:24 CET"

$creator
LOGNAME
"hornik"

Slot "children":
list()

> DMetaData(reut21578TDC)

MetaID
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

8

10 0
11 0

Operators

Many standard operators and functions ([, [<-, [[, [[<-, c, length, lapply,
sapply) are available for text document collections with semantics similar to
standard R routines. E.g., c concatenates two (or more) text document collec-
tions. Applied to several text documents it returns a text document collection.
The metadata is automatically updated, if text document collections are con-
catenated (i.e., merged).

Note also the custom element-of operator—it checks whether a text docu-
ment is already in a text document collection (metadata is not checked, only
the corpus):

> crude[[1]] %IN% reut21578TDC

[1] TRUE

> crude[[2]] %IN% reut21578TDC

[1] FALSE

Keeping Track of Text Document Collections

There is a mechanism available for managing text document collections. It is
called TextRepository. A typical use would be to save different states of a text
document collection. A repository has metadata in list format which can be
either set with appendElem as additional argument (e.g., a date when a new
element is added), or directly with appendMeta.

> data(acq)

> repo <- TextRepository(reut21578TDC)

> repo <- appendElem(repo, acq, list(modified = date()))

> repo <- appendMeta(repo, list(moremeta = 5:10))

> summary(repo)

A text repository with 2 text document collections

The repository metadata consists of 3 tag-value pairs
Available tags are:
created modified moremeta

> RepoMetaData(repo)

$created
[1] "2008-02-07 12:06:25 CET"

$modified
[1] "Thu Feb 7 12:06:25 2008"

$moremeta
[1] 5 6 7 8 9 10

9

> summary(repo[[1]])

A text document collection with 11 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
create_date creator

Available variables in the data frame are:
MetaID

> summary(repo[[2]])

A text document collection with 50 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
create_date creator

Available variables in the data frame are:
MetaID

Creating Term-Document Matrices

A common approach in text mining is to create a term-document matrix for
given texts. In this package the class TermDocMatrix handles sparse matrices
for text document collections.

> tdm <- TermDocMatrix(reut21578TDC)

> Data(tdm)[1:8, 150:155]

8 x 6 sparse Matrix of class "dgCMatrix"
weeks year york zone activities america

1 1 2 8 1 . .
2 1 2
3
4 1 1
5
6
7
8

Operations on Term-Document Matrices

Besides the fact that on the Data part of this matrix a huge amount of R
functions (like clustering, classifications, etc.) is possible, this package brings
some shortcuts. Consider we want to find those terms that occur at least 5
times:

> findFreqTerms(tdm, 5, Inf)

10

[1] "bags" "cocoa" "comissaria" "crop" "dec"
[6] "dlrs" "july" "mln" "sales" "sept"
[11] "smith" "times" "total" "york" "oil"
[16] "analysts" "bankamerica" "debt" "price" "stock"
[21] "the" "level" "apr" "feb" "mar"
[26] "nil" "prev" "computer" "terminal"

Or we want to find associations (i.e., terms which correlate) with at least 0.97
correlation for the term crop:

> findAssocs(tdm, "crop", 0.97)

crop 155 221 325 340
1.00 0.98 0.98 0.98 0.98
345 350 351 375 380
0.98 0.98 0.98 0.98 0.98
400 415 450 480 750
0.98 0.98 0.98 0.98 0.98
753 780 785 850 870
0.98 0.98 0.98 0.98 0.98
875 880 995 alleviating areas
0.98 0.98 0.98 0.98 0.98

argentina arrivals arroba aug bags
0.98 0.98 0.98 0.98 0.98
bahia bean booked butter buyers
0.98 0.98 0.98 0.98 0.98
cake carnival certificates cocoa comissaria
0.98 0.98 0.98 0.98 0.98

consignment continued covertible cruzados cumulative
0.98 0.98 0.98 0.98 0.98

currently dec delivered destinations dificulties
0.98 0.98 0.98 0.98 0.98
doubt doubts drought dry end
0.98 0.98 0.98 0.98 0.98

estimated estimates experiencing exporters farmers
0.98 0.98 0.98 0.98 0.98
final fit fob hands harvesting
0.98 0.98 0.98 0.98 0.98
held humidity hundred improving included
0.98 0.98 0.98 0.98 0.98
june kilos levels liquor may
0.98 0.98 0.98 0.98 0.98
means midday middlemen named nearby
0.98 0.98 0.98 0.98 0.98

normal obtaining period ports practically
0.98 0.98 0.98 0.98 0.98

processors prospects published quality registered
0.98 0.98 0.98 0.98 0.98

reluctant restored review rose routine
0.98 0.98 0.98 0.98 0.98
sales season selling sept shipment

11

0.98 0.98 0.98 0.98 0.98
shippers showers spot stage superior

0.98 0.98 0.98 0.98 0.98
temporao thousand throughout times tonne

0.98 0.98 0.98 0.98 0.98
trade uruguay view weekly york
0.98 0.98 0.98 0.98 0.98
zone
0.98

The function also accepts a matrix as first argument (which does not inherit
from a term-document matrix). This matrix is then interpreted as a correlation
matrix and directly used. With this approach different correlation measures can
be employed.

Term-document matrices tend to get very big already for normal sized
datasets. Therefore we provide a method to remove sparse terms, i.e., terms
occurring only in very few documents. Normally, this reduces the matrix dra-
matically without losing significant relations inherent to the matrix:

> removeSparseTerms(tdm, 0.4)

An object of class "TermDocMatrix"
Slot "Data":
11 x 2 sparse Matrix of class "dgTMatrix"

Terms
dlrs reuter

1 14 1
2 . 1
3 2 1
4 3 1
5 2 1
6 . 1
7 1 1
8 2 1
9 . 1
10 4 1
127 2 1

Slot "Weighting":
[1] "term frequency"

This function call removes those terms which have at least a 40 percentage of
sparse (i.e., terms occurring 0 times in a document) elements.

Dictionary

A dictionary is a (multi-)set of strings. It is often used to represent relevant
terms in text mining. We provide a class Dictionary implementing such a dic-
tionary concept. It can be created via the Dictionary constructor, e.g.,

> (d <- Dictionary(c("dlrs", "crude", "oil")))

12

An object of class "Dictionary"
[1] "dlrs" "crude" "oil"

and may be passed over to the TermDocMatrix constructor. Then the created
matrix is tabulated against the dictionary, i.e., only terms from the dictionary
appear in the matrix. This allows to restrict the dimension of the matrix a
priori and to focus on specific terms for distinct text mining contexts, e.g.,

> tdmD <- TermDocMatrix(reut21578TDC, list(dictionary = d))

> Data(tdmD)

11 x 3 sparse Matrix of class "dgCMatrix"
Terms
dlrs crude oil

1 14 . .
2 . . 3
3 2 . .
4 3 . .
5 2 . .
6 . . 2
7 1 . .
8 2 . 1
9 . . .
10 4 . .
127 2 2 5

You can also create a dictionary from a term-document matrix via
createDictionary holding all terms from the matrix e.g.,

> createDictionary(tdm)[100:110]

[1] "midday" "middlemen" "mln" "named" "nearby"
[6] "normal" "obtaining" "oct" "offer" "period"
[11] "ports"

13

