
VEGAN: AN INTRODUCTION TO ORDINATION

JARI OKSANEN

Contents

1. Ordination 1
1.1. Detrended correspondence analysis 1
1.2. Non-metric multidimensional scaling 2
2. Ordination graphics 3
2.1. Cluttered plots 3
2.2. Adding items to ordination plots 4
3. Fitting environmental variables 5
4. Constrained ordination 6
4.1. Significance tests 8
4.2. Conditioned or partial ordination 9

Vegan is a package for community ecologists. This documents explains how the
commonly used ordination methods can be done in vegan. The document only is
a very basic introduction. Another document (vegan tutorial) (http://cc.oulu.
fi/~jarioksa/opetus/method/vegantutor.pdf) gives a longer and more detailed
introduction to ordination. The current document only describes a small part of
all vegan functions. For most functions, the canonical references are the vegan
help pages, and some of the most important additional functions are listed at this
document.

1. Ordination

The vegan package contains all common ordination methods: Principal com-
ponent analysis (function rda, or prcomp in the base R), correspondence analysis
(cca), detrended correspondence analysis (decorana) and a wrapper for non-metric
multidimensional scaling (metaMDS). Functions rda and cca mainly are designed for
constrained ordination, and will be discussed later. In this chapter I describe func-
tions decorana and metaMDS.

1.1. Detrended correspondence analysis. Detrended correspondence analysis
(dca) is done like this:
> library(vegan)

> data(dune)

> ord <- decorana(dune)

This saves ordination results in ord:
> ord

Date: Id: intro-vegan.Rnw 175 2008-01-29 09:07:55Z jarioksa processed with vegan 1.13-1 in
R version 2.7.0 (2008-04-22) on June 11, 2008.

1

2 JARI OKSANEN

Call:
decorana(veg = dune)

Detrended correspondence analysis with 26 segments.
Rescaling of axes with 4 iterations.

DCA1 DCA2 DCA3 DCA4
Eigenvalues 0.5117 0.3036 0.12125 0.14266
Decorana values 0.5360 0.2869 0.08136 0.04814
Axis lengths 3.7004 3.1166 1.30057 1.47883

The display of results is very brief: only eigenvalues and used options are listed.
Actual ordination results are not shown, but you can see them with command
summary(ord), or extract the scores with command scores. The plot function
also automatically knows how to access the scores.

1.2. Non-metric multidimensional scaling. Function metaMDS is a bit special
case. The actual ordination is performed by function isoMDS of the MASS package.
Function metaMDS is a wrapper to perform non-metric multidimensional scaling
(nmds) like recommended in community ordination: it uses adequate dissimilarity
measures (function vegdist), then it runs nmds several times with random start-
ing configurations, compares results (function procrustes), and stops after finding
twice a similar minimum stress solution. Finally it scales and rotates the solu-
tion, and adds species scores to the configuration as weighted averages (function
wascores):
> ord <- metaMDS(dune)

Run 0 stress 12.05894
Run 1 stress 12.04546
... New best solution
... procrustes: rmse 0.003132758 max resid 0.01074515
Run 2 stress 11.97273
... New best solution
... procrustes: rmse 0.01994775 max resid 0.06282037
Run 3 stress 12.04546
Run 4 stress 18.57547
Run 5 stress 12.04546
Run 6 stress 12.04547
Run 7 stress 11.97273
... New best solution
... procrustes: rmse 1.493038e-05 max resid 4.643724e-05
*** Solution reached

> ord

Call:
metaMDS(comm = dune)

Nonmetric Multidimensional Scaling using isoMDS (MASS package)

Data: dune
Distance: bray

Dimensions: 2
Stress: 11.97273
Two convergent solutions found after 7 tries

VEGAN: AN INTRODUCTION TO ORDINATION 3

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

NMDS1

N
M

D
S

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

Figure 1. Default ordination
plot.

Scaling: centring, PC rotation, halfchange scaling
Species: expanded scores based on ‘dune’

2. Ordination graphics

Ordination is nothing but a way of drawing graphs, and it is best to inspect
ordinations only graphically (which also implies that they should not be taken too
seriously).

All ordination results of vegan can be displayed with a plot command (Fig. 1):

> plot(ord)

Default plot command uses either black circles for sites and red pluses for species,
or black and red text for sites and species, resp. The choices depend on the number
of items in the plot and ordination method. You can override the default choice
by setting type = "p" for points, or type = "t" for text. For a better control of
ordination graphics you can first draw an empty plot (type = "n") and then add
species and sites separately using points or text functions. In this way you can
combine points and text, and you can select colours and character sizes freely (Fig.
2):

> plot(ord, type = "n")

> points(ord, display = "sites", cex = 0.8, pch = 21, col = "red",

+ bg = "yellow")

> text(ord, display = "spec", cex = 0.7, col = "blue")

All vegan ordination methods have a specific plot function. In addition, vegan
has an alternative plotting function ordiplot that also knows many non-vegan
ordination methods, such as prcomp, cmdscale and isoMDS. All vegan plot func-
tions return invisibly an ordiplot object, so that you can use ordiplot support
functions with the results (points, text, identify).

Function ordirgl (requires rgl package) provides dynamic three-dimensional
graphics that can be spun around or zoomed into with your mouse. Function
ordiplot3d (requires package scatterplot3d) displays simple three-dimensional
scatterplots.

2.1. Cluttered plots. Ordination plots are often congested: there is a large num-
ber of sites and species, and it may be impossible to display all clearly. In particular,

4 JARI OKSANEN

Figure 2. A more colourful ordi-
nation plot where sites are points,
and species are text.

−1.0 −0.5 0.0 0.5 1.0 1.5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
NMDS1

N
M

D
S

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Belper

Empnig

Junbuf

Junart

Airpra

Elepal

Rumace

Viclat

Brarut

Ranfla

Cirarv

Hyprad

Leoaut

Potpal

Poapra

Calcus

Tripra
Trirep

Antodo

Salrep

Achmil

Poatri

Chealb

Elyrep

Sagpro

Plalan

Agrsto
Lolper

Alogen

Brohor

two or more species may have identical scores and are plotted over each other. Ve-
gan does not have (yet?) automatic tools for clean plotting in these cases, but here
some methods you can try:

• Zoom into graph setting axis limits xlim and ylim. You must typically set
both, because vegan will maintain equal aspect ratio of axes.

• Use points and label only some of these with identify command.
• Use select argument in ordination text and points functions to only

show the specified items.
• Use automatic orditorp function that uses text only if this can be done

without overwriting previous labels, but points in other cases.
• Use interactive orditkplot function that draws both points and labels for

ordination scores, and allows you to drag labels to better positions. You
can export the results of the edited graph to encapsulated postscript, pdf,
png or jpeg files, or copy directly to encapsulated postscript, or return the
edited positions to R for further processing.

2.2. Adding items to ordination plots. Vegan has a group of functions for
adding information about classification or grouping of points onto ordination dia-
grams. Function ordihull adds convex hulls, ordiellipse (which needs package
ellipse) adds ellipses of standard deviation, standard error or confidence areas,
and ordispider combines items to their centroid (Fig. 3):

> data(dune.env)

> attach(dune.env)

> plot(ord, disp = "sites", type = "n")

> ordihull(ord, Management, col = "blue")

> ordiellipse(ord, Management, col = 3, lwd = 2)

> ordispider(ord, Management, col = "red")

> points(ord, disp = "sites", pch = 21, col = "red", bg = "yellow",

+ cex = 1.3)

In addition, you can overlay a cluster dendrogram from hclust using ordicluster
or a minimum spanning tree from spantree with its lines function. Segmented
arrows can be added with ordiarrows, lines with ordisegments and regular grids
with ordigrid.

VEGAN: AN INTRODUCTION TO ORDINATION 5

−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

NMDS1

N
M

D
S

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3. Convex hull, standard
error ellipse and a spider web di-
agram for Management levels in
ordination.

3. Fitting environmental variables

Vegan provides two functions for fitting environmental variables onto ordination:

• envfit fits vectors of continuous variables and centroids of levels of class
variables (defined as factor in R). The direction of the vector shows the
direction of the gradient, and the length of the arrow is proportional to the
correlation between the variable and the ordination.

• ordisurf (which requires package mgcv) fits smooth surfaces for continu-
ous variables onto ordination using thinplate splines with cross-validatory
selection of smoothness.

Function envfit can be called with a formula interface, and it optionally can
assess the “significance” of the variables using permutation tests:

> ord.fit <- envfit(ord ~ A1 + Management, data = dune.env,

+ perm = 1000)

> ord.fit

***VECTORS

NMDS1 NMDS2 r2 Pr(>r)
A1 0.97951 0.20138 0.3689 0.026 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
P values based on 1000 permutations.

***FACTORS:

Centroids:
NMDS1 NMDS2

ManagementBF -0.4532 0.0011
ManagementHF -0.2712 -0.1209
ManagementNM 0.3267 0.5688
ManagementSF 0.1260 -0.4686

Goodness of fit:
r2 Pr(>r)

6 JARI OKSANEN

Figure 4. Fitted vector and
smooth surface for the thickness
of A1 horizon (A1, in cm), and
centroids of Management levels.

−0.5 0.0 0.5 1.0
−

0.
5

0.
0

0.
5

1.
0

NMDS1

N
M

D
S

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A1

ManagementBF

ManagementHF

ManagementNM

ManagementSF

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

Management 0.4206 0.005 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
P values based on 1000 permutations.

The result can be drawn directly or added to an ordination diagram (Fig. 4):
> plot(ord, dis = "site")

> plot(ord.fit)

Function ordisurf directly adds a fitted surface onto ordination, but it returns
the result of the fitted thinplate spline gam (Fig. 4):
> ordisurf(ord, A1, add = TRUE)

This is mgcv 1.4-0

Family: gaussian
Link function: identity

Formula:
y ~ s(x1, x2, k = knots)

Estimated degrees of freedom:
2 total = 3

GCV score: 3.941012

4. Constrained ordination

Vegan has three methods of constrained ordination: constrained or “canonical”
correspondence analysis (function cca), redundancy analysis (function rda) and
constrained analysis of proximities (function capscale). All these functions also
can have a conditioning term that is “partialled out”. I only demonstrate cca, but
all functions accept similar commands and can be used in the same way.

The preferred way is to use formula interface, where the left hand side gives the
community data frame and the right hand side lists the constraining variables:
> ord <- cca(dune ~ A1 + Management, data = dune.env)

> ord

VEGAN: AN INTRODUCTION TO ORDINATION 7

−2 −1 0 1 2 3

−
2

−
1

0
1

2

CCA1

C
C

A
2 Belper

Empnig

Junbuf

Junart

Airpra

Elepal

Rumace

Viclat

Brarut

Ranfla
Cirarv

Hyprad

Leoaut

Potpal

Poapra

Calcus

Tripra
Trirep

Antodo

Salrep
Achmil

Poatri

Chealb

Elyrep

Sagpro

Plalan

Agrsto

Lolper

Alogen

Brohor
2

13

4

16

61

8

5

17

15

10 11

9

18

3

20

14

19

12

7

A1

−
1

0
1

ManagementBF

ManagementHF
ManagementNM

ManagementSF

Figure 5. Default plot from con-
strained correspondence analysis.

Call:
cca(formula = dune ~ A1 + Management, data = dune.env)

Inertia Rank
Total 2.1153
Constrained 0.7798 4
Unconstrained 1.3355 15
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3 CCA4

0.31875 0.23718 0.13217 0.09168

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.362024 0.202884 0.152661 0.134549 0.110957 0.079982 0.076698 0.055267
CA9 CA10 CA11 CA12 CA13 CA14 CA15

0.044361 0.041528 0.031699 0.017786 0.011642 0.008736 0.004711

The results can be plotted with (Fig. 5):
> plot(ord)

There are three groups of items: sites, species and centroids (and biplot arrows) of
environmental variables. All these can be added individually to an empty plot, and
all previously explained tricks of controlling graphics still apply.

It is not recommended to perform constrained ordination with all environmental
variables you happen to have: adding the number of constraints means slacker
constraint, and you finally end up with solution similar to unconstrained ordination.
In that case it is better to use unconstrained ordination with environmental fitting.
However, if you really want to do so, it is possible with the following shortcut in
formula:
> cca(dune ~ ., data = dune.env)

Call:
cca(formula = dune ~ A1 + Moisture + Management + Use + Manure, data = dune.env)

Inertia Rank

8 JARI OKSANEN

Total 2.1153
Constrained 1.5032 12
Unconstrained 0.6121 7
Inertia is mean squared contingency coefficient
Some constraints were aliased because they were collinear (redundant)

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 CCA8 CCA9

0.46713 0.34102 0.17606 0.15317 0.09528 0.07027 0.05887 0.04993 0.03183
CCA10 CCA11 CCA12

0.02596 0.02282 0.01082

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7

0.27237 0.10876 0.08975 0.06305 0.03489 0.02529 0.01798

4.1. Significance tests. Vegan provides permutation tests for the significance of
constraints. The test mimics standard analysis of variance function (anova), and
the default test analyses all constraints simultaneously:
> anova(ord)

Permutation test for cca under direct model

Model: cca(formula = dune ~ A1 + Management, data = dune.env)
Df Chisq F N.Perm Pr(>F)

Model 4 0.7798 2.1896 199 0.005 **
Residual 15 1.3355

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The function actually used was anova.cca, but you do not need to give its name
in full, because R automatically chooses the correct anova variant for the result of
constrained ordination.

The anova.cca function tries to be clever and lazy: it automatically stops if the
observed permutation significance probably differs from the targeted critical value
(0.05 as default), but it will continue long in uncertain cases. You must set step
and perm.max to same values to override this behaviour.

It is also possible to analyse terms separately:
> anova(ord, by = "term", permu = 200)

Permutation test for cca under direct model
Terms added sequentially (first to last)

Model: cca(formula = dune ~ A1 + Management, data = dune.env)
Df Chisq F N.Perm Pr(>F)

A1 1 0.2248 2.5245 199 0.010 **
Management 3 0.5550 2.0780 199 0.005 **
Residual 15 1.3355

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this case, the function is unable to automatically select the number of iterations.
This test is sequential: the terms are analysed in the order they happen to be in the
model. You can also analyse significances of marginal effects (“Type III effects”):
> anova(ord, by = "mar")

VEGAN: AN INTRODUCTION TO ORDINATION 9

Permutation test for cca under direct model
Marginal effects of terms

Model: cca(formula = dune ~ A1 + Management, data = dune.env)
Df Chisq F N.Perm Pr(>F)

A1 1 0.1759 1.9761 499 0.026 *
Management 3 0.5550 2.0780 199 0.010 **
Residual 15 1.3355

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Moreover, it is possible to analyse significance of each axis:

> anova(ord, by = "axis", perm = 500)

Permutation test for cca under direct model

Model: cca(formula = dune ~ A1 + Management, data = dune.env)
Df Chisq F N.Perm Pr(>F)

CCA1 1 0.3187 3.5801 199 0.010 **
CCA2 1 0.2372 2.6640 499 0.038 *
CCA3 1 0.1322 1.4845 99 0.220
CCA4 1 0.0917 1.0297 99 0.380
Residual 15 1.3355

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Now the automatic selection works, but typically some of your axes will be very
close to the critical value, and it may be useful to set a lower perm.max than the
default 10000 (typically you use higher limits than in these examples: we used
lower limits to save time when this document is automatically generated with this
package).

4.2. Conditioned or partial ordination. All constrained ordination methods
can have terms that are partialled out from the analysis before constraints:

> ord <- cca(dune ~ A1 + Management + Condition(Moisture),

+ data = dune.env)

> ord

Call:
cca(formula = dune ~ A1 + Management + Condition(Moisture), data = dune.env)

Inertia Rank
Total 2.1153
Conditional 0.6283 3
Constrained 0.5109 4
Unconstrained 0.9761 12
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3 CCA4

0.24932 0.12090 0.08160 0.05904

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

0.306366 0.131911 0.115157 0.109469 0.077242 0.075754 0.048714 0.037582

10 JARI OKSANEN

CA9 CA10 CA11 CA12
0.031058 0.021024 0.012542 0.009277

This partials out the effect of Moisture before analysing the effects of A1 and
Management. This also influences the signficances of the terms:
> anova(ord, by = "term", perm = 500)

Permutation test for cca under direct model
Terms added sequentially (first to last)

Model: cca(formula = dune ~ A1 + Management + Condition(Moisture), data = dune.env)
Df Chisq F N.Perm Pr(>F)

A1 1 0.1154 1.4190 99 0.11
Management 3 0.3954 1.6205 99 0.02 *
Residual 12 0.9761

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

If we had a designed experiment, we may wish to restrict the permutations so that
the observations only are permuted within levels of strata:
> anova(ord, by = "term", perm = 500, strata = Moisture)

Permutation test for cca under direct model
Terms added sequentially (first to last)
Permutations stratified within `Moisture'

Model: cca(formula = dune ~ A1 + Management + Condition(Moisture), data = dune.env)
Df Chisq F N.Perm Pr(>F)

A1 1 0.1154 1.4190 99 0.25
Management 3 0.3954 1.6205 99 0.01 **
Residual 12 0.9761

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

