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1 Introduction

Screening experiments are employed the at initial stages of investigation to discriminate, among
many factors, those with potential effect over the response under study. It is common in screening
studies to use most of the observations estimating different contrasts, leaving only a few or even no
degrees of freedom at all to estimate the experiment standard error. Under these conditions it is
not possible to assess the statistical significance of the estimated contrast effects. Some procedures,
for example, the analysis of the normal plot of the effects, have been developed to overcome this
situation.

BsMD package includes a set of functions useful for factor screening in unreplicated factorial
experiments. Some of the functions were written originally for S, then adapted for S-PLUS and now
for R. Functions for Bayesian screening and model discrimination follow-up designs are based on
Daniel Meyer’s mdopt fortran bundle (Meyer, 1996). The programs were modified and converted
to subroutines to be called from R functions.

This document is organized in three sections: Screening Designs, Bayesian Screening, and Model
Discrimination, with the references to the articles as subsections to indicate the sources of the
examples presented. All the examples in Box and Meyer (1986, 1993) and Meyer, Steinberg, and
Box (1996) are worked out and the code displayed in its totality to show the use of the functions
in the BsMD package. The detailed discussion of the examples and the theory behind them is left
to the original papers. Details of the BsMD functions are contained to their help pages.

2 Screening Designs

In screening experiments, factor sparsity is usually assumed. That is, from all factors considered
in the experiment only a few of these will actually affect the response. (See for example, Box
and Meyer (1986), sec. 1.) Based on this sparsity hypothesis various procedures have have been
developed to identify such active factors. Some of these procedures are included in the BsMD
package: DanielPlot (Normal Plot of Effects), LenthPlot (based on a robust estimation of the
standard error of the contrasts), and BsProb for Bayesian screening. See the references for details
on the theory of the procedures. The data set used in the examples of this section is from Box
and Meyer (1986). They represent four different experiments: log drill advance, tensile strength,
shrinkage and yield of isatin with responses denoted by y1,. . . ,y4 and different design factors. The
estimable contrasts are denoted by X1,. . . ,X15. The design matrix and responses are presented next.

> options(width = 80)

> library(BsMD)

> data(BM86.data, package = "BsMD")

> print(BM86.data)

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 y1 y2 y3 y4
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 0.23 43.7 14.0 0.08
2 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 0.30 40.2 16.8 0.04
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3 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 0.52 42.4 15.0 0.53
4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 0.54 44.7 15.4 0.43
5 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 0.70 42.4 27.6 0.31
6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 0.76 45.9 24.0 0.09
7 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1.00 42.2 27.4 0.12
8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 0.96 40.6 22.6 0.36
9 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 0.32 42.4 22.3 0.79
10 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 0.39 45.5 17.1 0.68
11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 0.61 43.6 21.5 0.73
12 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 0.66 40.6 17.5 0.08
13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 0.89 44.0 15.9 0.77
14 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 0.97 40.2 21.9 0.38
15 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1.07 42.5 16.7 0.49
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.21 46.5 20.3 0.23

Saturated linear models for each of the responses are fitted and the estimated coefficients are
presented in the table below. The lm calls, not displayed here, produce the advance.lm, . . . ,
yield.lm objects used in the next subsections.

advance shrinkage strength yield
(Intercept) 0.70 42.96 19.75 0.38
X1 0.03 0.06 -0.30 -0.10
X2 0.13 -0.07 -0.20 -0.01
X3 -0.01 0.15 -0.30 0.00
X4 0.25 0.08 2.30 -0.04
X5 0.00 0.20 0.45 0.02
X6 -0.01 -0.01 -0.10 -0.03
X7 0.00 0.19 -0.15 0.07
X8 0.07 0.20 -0.60 0.14
X9 0.01 -0.03 0.35 -0.08
X10 0.00 0.21 0.05 -0.13
X11 0.01 0.06 0.15 -0.05
X12 0.02 0.06 -2.75 -0.01
X13 0.01 -0.19 1.90 0.00
X14 -0.01 1.07 0.05 0.06
X15 0.01 1.55 -0.30 0.01

For each of the experiments the 16 runs are used on the estimation of the 15 contrasts and the
constant term. Thus the need of graphical aims to determine which are likely active contrasts.

2.1 Daniel Plots

Daniel plots, known as normal plot of effects, arrange the estimated factor effects in a normal
probability plot; those factors “out of the straight line” are identified as potentially active factors.
See for example, Daniel (1976) for different applications and interpretations.

DanielPlot produces normal plot of effects. The main argument of the function is an lm object,
say, lm.obj. The function removes the constant term (Intercept) if it is in the model. Factor
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effects, assumed as 2*coef(lm.obj) are displayed using the qqnorm function. See the help pages
for details.

2.1.1 Box et al. 1986: Example 1

By default DanielPlot labels all the effects, as show in figure a). This example shows how to label
only some particular factors for clarity, as exhibited in figure b). The corresponding linear model
advance.lm was already fitted at the beginning of the section.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,

+ cex.lab = 0.8, cex.main = 0.9)

> DanielPlot(advance.lm, cex.pch = 0.8, main = "a) Default Daniel Plot")

> DanielPlot(advance.lm, cex.pch = 0.8, main = "b) Labelled Plot",

+ pch = 20, faclab = list(idx = c(2, 4, 8), lab = c(" 2", " 4",

+ " 8")))
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2.1.2 Box et al. 1986: Example 3

Some people prefer the use of half-normal plots. These plots are similar to the normal plots but
instead of the signed effects absolute values of the effects are displayed. There are some advantages
and disadvantages using one or the other. See for example, Daniel (1976, chap. 7.6).

Figure a) depicts the half-normal plot of the effects for the strength response (y3). DanielPlot
has the option to generate half-normal plots (half=TRUE). The corresponding normal plot of signed
effects is presented in figure b) below.
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> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,

+ cex.lab = 0.8, cex.main = 0.9)

> DanielPlot(strength.lm, half = TRUE, cex.pch = 0.8, main = "a) Half-Normal Plot",

+ faclab = list(idx = c(4, 12, 13), lab = c(" x4", " x12",

+ " x13")))

> DanielPlot(strength.lm, main = "b) Normal Plot", faclab = list(idx = c(4,

+ 12, 13), lab = c(" 4", " 12", " 13")))
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2.2 Lenth Plots

Lenth’s method for factor effects assessment is based on factor sparsity too. For and unreplicated
factorial design Let c1, . . . , cm the estimated contrasts and approximate the standard error by
s0 = 1.5×median |ci|. Then the author defines the pseudo standard error by

PSE = 1.5× median
|cj |<2.5s0

|cj |

and the 95% margin of error by
ME = t0.975,d × PSE

where t0.975,d is the .975th quantile of the t distribution with d = m/3 degrees of freedom. The
95% simultaneous margin of error (SME) is defined for simultaneous inference on all the contrast
and is given by

SME = tγ,d × PSE
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where γ = (1 + 0.951/m)/2. See Lenth (1989), for details.
The LenthPlot function displays the factor effects and the SE and SME limits. Spikes instead of

the barplot used originally by Lenth are employed to represent the factor effects. As in DanielPlot,
the main argument for the function is a lm object, and 2*coef(lm.obj) is displayed.

2.2.1 Box et al. 1986: Example 2

Figure a) below shows the default plot produced by LenthPlot. The SE and MSE limits at a
95% confidence level (α = 0.05) are displayed by default. Figure b) shows Lenth’s plot for the
same experiment using α = 0.01, locating the labels of SME and ME close to the vertical axis and
labelling the contrast effects X14 and X15 as P and −M , for period and material respectively and
accordingly to Lenth’s paper. Note that the effects are considered as 2 times the coefficients b.

> par(mfrow = c(1, 2), mar = c(4, 4, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), xpd = TRUE, pty = "s", cex.axis = 0.7,

+ cex.lab = 0.8, cex.main = 0.9)

> LenthPlot(shrinkage.lm)

alpha PSE ME SME
0.0500000 0.2250000 0.5783809 1.1741965

> title("a) Default Lenth Plot")

NULL

> b <- coef(shrinkage.lm)[-1]

> LenthPlot(shrinkage.lm, alpha = 0.01, adj = 0.2)

alpha PSE ME SME
0.0100000 0.2250000 0.9072322 1.6855749

> title(substitute("b) Lenth Plot (" * a * ")", list(a = quote(alpha ==

+ 0.01))))

NULL

> text(14, 2 * b[14], "P ", adj = 1, cex = 0.7)

NULL

> text(15, 2 * b[15], " -M", adj = 0, cex = 0.7)
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2.2.2 Box et al. 1986: Example 4

This example exhibits the Daniel and Lenth plots for the isatin data, originally presented by Davis
and co-authors in 1954 and discussed in the Box and Meyer paper (p. 16–17). As can be seen in
the figures below, it is not clear which contrasts may be active. For example, in Lenth’s plot none
of the effects goes beyond the margin of error ME, thus the SME limits are not displayed. The
corresponding Bayes plot is presented in the next section.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> DanielPlot(yield.lm, cex.pch = 0.6, main = "a) Daniel Plot")

> LenthPlot(yield.lm, alpha = 0.05, xlab = "factors", adj = 0.9,

+ main = "b) Lenth Plot")

alpha PSE ME SME
0.0500000 0.1143750 0.2940103 0.5968832
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3 Bayesian Screening

Box and Meyer Bayesian screening is also based on the factor sparsity hypothesis. For the linear
model y = Xβ + ε, the procedure assigns to each of the βi independent prior normal distributions
N(0, γ2σ2), where σ2 is the variance of the error and γ2 is the magnitude of the effect relative to the
experimental noise. The factor sparsity assumption is brought into the procedure assigning a prior
probability π to any factor of being active, and 1 − π to the factor of being inert. Models Ml for
all-subsets of factors (main effects and interactions) are constructed and their posterior probabilities
calculated. Marginal factor posterior probabilities pi are computed and displayed. Those contrasts
or factor effects with higher probabilities are identified as potentially active. See Box and Meyer
(1986, 1993) for explanation and details of the procedure.

The BsProb function computes the posterior probabilities for Bayesian screening. The function
calls the bs fortran subroutine, a modification of the mbcqpi5.f program included in the mdopt
bundle. The complete output of the program is saved in the working directory as BsPrint.out.
The file is overwritten if it already exists. Thus, rename the BsPrint.out file after each call to
BsProb if you want to keep the complete output. Note however, that most of the output is included
in the BsProb’s output list. This is a list of class BsProb with methods functions for print, plot
and summary.

3.1 Fractional Factorial Designs

Bayesian screening was presented by Box and Meyer in their 1986 and 1993 papers. The former
refers to 2-level orthogonal designs while the latter refer to general designs. The distinction is
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important since in the case of 2-level orthogonal designs some factorization is possible that allows
the calculation of the marginal probabilities without summing over all-subsets models’ probabilities.
This situation is explained in the 1986 paper, where α and k are used instead of the π and γ described
at the beginning of the section. Their correspondence is α = π, and k2 = nγ2 + 1, where n is the
number of runs in the design. The function is written for the general case and arguments p and
g (for π and γ) should be provided. In the mentioned paper the authors estimated α and k for a
number of published examples. They found .13 ≤ α̂ ≤ .27, and 2.7 ≤ k̂ ≤ 27. Average values of
α = 0.20 (= π) and k = 10 (γ = 2.49) are used in the examples.

3.1.1 Box et al. 1986: Example 1

This example exhibits most of the output of the BsProb function. The design matrix and response
vector, the 15 contrasts and 5 models posterior probabilities are printed. As mentioned before,
g=2.49 corresponds to k = 10 used in the paper. Note that all possible 215 factor combinations
were used to construct the totMod=32768 estimated models. Only the top nMod=5 are displayed.
See the BsProb help pages for details. Figures below show the Bayes plot (a) and Daniel plot (b)
for the estimated effects. In this case both procedures clearly identify x2, x4, and x8 as active
contrasts.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> X <- as.matrix(BM86.data[, 1:15])

> y <- BM86.data[, 16]

> advance.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,

+ p = 0.2, g = 2.49, ng = 1, nMod = 10)

> print(advance.BsProb, X = FALSE, resp = FALSE, nMod = 5)

Calculations:
nRun nFac nBlk mFac mInt p g totMod
16.00 15.00 0.00 15.00 1.00 0.20 2.49 32768.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.000
2 X1 x1 0.240
3 X2 x2 1.000
4 X3 x3 0.028
5 X4 x4 1.000
6 X5 x5 0.025
7 X6 x6 0.034
8 X7 x7 0.025
9 X8 x8 0.983
10 X9 x9 0.046
11 X10 x10 0.025
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12 X11 x11 0.037
13 X12 x12 0.091
14 X13 x13 0.034
15 X14 x14 0.028
16 X15 x15 0.030

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.504 0.003 3 2,4,8
M2 0.148 0.002 4 1,2,4,8
M3 0.043 0.003 4 2,4,8,12
M4 0.022 0.003 4 2,4,8,9
M5 0.022 0.002 5 1,2,4,8,12

> plot(advance.BsProb, main = "a) Bayes Plot")

> DanielPlot(advance.lm, cex.pch = 0.6, main = "b) Daniel Plot",

+ faclab = list(idx = c(2, 4, 8), lab = c(" x2", " x4", " x8")))
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3.1.2 Box et al. 1986: Example 4

As mentioned in section 2.2.2, in the isatin data example active contrasts, if present, are not easily
identified by Daniel or Lenth’s plot. This situation is reflected in the sensitivity of the Bayes
procedure to the value of γ. Different values for k (γ) can be provided to the BsProb function and
the respective factor posterior probabilities computed. The range of such probabilities is plotted as
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stacked spikes. This feature is useful in data analysis. See next subsection for further explanation.
In the call of the function BsProb, g=c(1.22,3.74) and ng=10 indicate that the calculation of the
marginal posterior probabilities is done for 10 equally spaced values of γ in the range (1.22, 3.74)
corresponding to the range of k between 5 and 15 used in the paper. The sensitivity of the posterior
probabilities to various values of γ is exhibited in figure a) below. The large ranges displayed by
some of the contrasts is an indication that no reliable inference is possible to draw from the data.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> X <- as.matrix(BM86.data[, 1:15])

> y <- BM86.data[, 19]

> yield.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,

+ p = 0.2, g = c(1.22, 3.74), ng = 10, nMod = 10)

> summary(yield.BsProb)

Calculations:
nRun nFac nBlk mFac mInt p g[1] g[10]
16.00 15.00 0.00 15.00 1.00 0.20 1.22 3.74
totMod

32768.00

Posterior probabilities for each gamma value:
1 2 3 4 5 6 7 8 9 10

gamma 1.220 1.500 1.780 2.060 2.340 2.620 2.900 3.180 3.460 3.740
none 0.120 0.167 0.218 0.268 0.316 0.360 0.400 0.436 0.469 0.498
x1 0.314 0.271 0.228 0.190 0.159 0.134 0.115 0.099 0.086 0.076
x2 0.049 0.041 0.035 0.030 0.027 0.024 0.022 0.020 0.018 0.017
x3 0.048 0.039 0.034 0.029 0.026 0.023 0.021 0.019 0.018 0.016
x4 0.074 0.066 0.059 0.053 0.048 0.042 0.037 0.032 0.028 0.025
x5 0.051 0.043 0.037 0.032 0.028 0.026 0.023 0.021 0.019 0.018
x6 0.066 0.057 0.051 0.047 0.042 0.038 0.034 0.030 0.027 0.024
x7 0.196 0.170 0.143 0.119 0.099 0.083 0.070 0.060 0.052 0.045
x8 0.588 0.531 0.473 0.420 0.374 0.335 0.302 0.274 0.250 0.230
x9 0.228 0.197 0.164 0.136 0.113 0.095 0.080 0.069 0.060 0.052
x10 0.513 0.456 0.399 0.348 0.304 0.267 0.237 0.212 0.191 0.173
x11 0.104 0.093 0.082 0.071 0.061 0.052 0.045 0.039 0.034 0.030
x12 0.050 0.041 0.035 0.031 0.027 0.024 0.022 0.020 0.019 0.017
x13 0.048 0.040 0.034 0.029 0.026 0.023 0.021 0.019 0.018 0.016
x14 0.142 0.125 0.107 0.091 0.076 0.064 0.055 0.047 0.041 0.035
x15 0.049 0.040 0.034 0.030 0.026 0.024 0.021 0.020 0.018 0.017

> plot(yield.BsProb, main = "a) Bayes Plot")

> title(substitute("( " * g1 * "" * g2 * " )", list(g1 = quote(1.2 <=

+ gamma), g2 = quote("" <= 3.7))), line = -1)

NULL
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> DanielPlot(yield.lm, cex.pch = 0.6, main = "b) Daniel Plot",

+ faclab = list(idx = c(1, 7, 8, 9, 10, 14), lab = paste(" ",

+ c(1, 7, 8, 9, 10, 14), sep = "")))
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3.2 Plackett-Burman Designs

Simulation studies have shown Bayes screening to be robust to reasonable values of π (α). The
method however is more sensitive to variation of γ values. Box and Meyer suggest the use of the γ
value that minimize the posterior probability of the null model (no active factors). The rationale
of this recommendation is because this value of γ also maximizes the likelihood function of γ since

p(γ|y) ∝ 1
p(M0|y, γ)

where M0 denotes the null model with no factors. See Box and Meyer (1993) and references therein.

3.2.1 Box et al. 1993: Example 1

This example considers a factorial design where 5 factors are allocated in a 12-run Plackett-Burman.
The runs were extracted from the 25 factorial design in of the reactor experiment introduced by Box
et al. (1978) and presented in section 4.1.2. Posterior probabilities are obtained and 3 factors are
identified as potentially active, as shown in figure a) below. Then, the complete saturated design
(11 orthogonal columns) is considered and marginal probabilities are calculated and displayed in
figure b). None of the other contrasts x6–x11 seem to be active.
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> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e1.data, package = "BsMD")

> X <- as.matrix(BM93.e1.data[, 2:6])

> y <- BM93.e1.data[, 7]

> prob <- 0.25

> gamma <- 1.6

> reactor5.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 5, mInt = 3,

+ p = prob, g = gamma, ng = 1, nMod = 10)

> summary(reactor5.BsProb)

Calculations:
nRun nFac nBlk mFac mInt p g totMod
12.00 5.00 0.00 5.00 3.00 0.25 1.60 32.00

Factor probabilities:
Factor Code Prob

1 none none 0.025
2 A x1 0.011
3 B x2 0.964
4 C x3 0.009
5 D x4 0.899
6 E x5 0.577

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.563 8.67 3 2,4,5
M2 0.324 39.51 2 2,4
M3 0.062 122.11 1 2
M4 0.025 240.45 0 none
M5 0.004 89.75 2 2,5
M6 0.003 211.33 1 5
M7 0.003 22.91 3 1,2,4
M8 0.002 226.88 1 4
M9 0.002 5.96 4 2,3,4,5
M10 0.002 5.99 4 1,2,4,5

> plot(reactor5.BsProb, main = "a) Main Effects")

> data(PB12Des, package = "BsMD")

> X <- as.matrix(PB12Des)

> reactor11.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 11,

+ mInt = 3, p = prob, g = gamma, ng = 1, nMod = 10)

> print(reactor11.BsProb, models = FALSE)

Design Matrix:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11
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1 1 -1 1 -1 -1 -1 1 1 1 -1 1
2 1 1 -1 1 -1 -1 -1 1 1 1 -1
3 -1 1 1 -1 1 -1 -1 -1 1 1 1
4 1 -1 1 1 -1 1 -1 -1 -1 1 1
5 1 1 -1 1 1 -1 1 -1 -1 -1 1
6 1 1 1 -1 1 1 -1 1 -1 -1 -1
7 -1 1 1 1 -1 1 1 -1 1 -1 -1
8 -1 -1 1 1 1 -1 1 1 -1 1 -1
9 -1 -1 -1 1 1 1 -1 1 1 -1 1
10 1 -1 -1 -1 1 1 1 -1 1 1 -1
11 -1 1 -1 -1 -1 1 1 1 -1 1 1
12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Response vector:
56 93 67 60 77 65 95 49 44 63 63 61

Calculations:
nRun nFac nBlk mFac mInt p g totMod
12.00 11.00 0.00 11.00 3.00 0.25 1.60 2048.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.019
2 x1 x1 0.056
3 x2 x2 0.881
4 x3 x3 0.053
5 x4 x4 0.823
6 x5 x5 0.531
7 x6 x6 0.065
8 x7 x7 0.052
9 x8 x8 0.067
10 x9 x9 0.110
11 x10 x10 0.052
12 x11 x11 0.090

> plot(reactor11.BsProb, main = "b) All Contrasts")
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3.2.2 Box et al. 1993: Example 2

In this example again a 12-run Plackett-Burman design is analyzed. The effect of 8 factors
(A, . . . , G), on the fatigue life of weld repaired castings is studied. As mentioned before, Box
and Meyer suggest the use of values of γ that maximizes its likelihood (minimizes the probability
of the null model). Figure a) below displays P{γ|y} (≡ 1/P{M0|y}) as function of γ. It can be
seen that the likelihood P{γ|y} is maximum around γ = 1.5. In this example the maximization is
carried out by calculating the marginal posterior probabilities for 1 ≤ γ ≤ 2 and plotting the recip-
rocal of the probabilities of the null model. These probabilities are allocated in the first row of the
probabilities matrix (fatigueG.BsProb$prob), where fatigueG.BsProb is the output of BsProb.
A Bayes plot based on this γ = 1.5 is exhibited in figure b). Factors F (X6) and G(X7) clearly stick
out from the rest. Alternatively, the unscaled γ likelihood (P{γ|y}) could be used since it has been
already calculated by BsProb and assigned to fatigueG.BsProb$pgam element.

> par(mfrow = c(1, 2), mar = c(3, 3, 1, 1), mgp = c(1.5, 0.5, 0),

+ oma = c(0, 0, 1, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e2.data, package = "BsMD")

> X <- as.matrix(BM93.e2.data[, 1:7])

> y <- BM93.e2.data[, 8]

> prob <- 0.25

> gamma <- c(1, 2)

> ng <- 20

> fatigueG.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 7, mInt = 2,
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+ p = prob, g = gamma, ng = ng, nMod = 10)

> plot(fatigueG.BsProb$GAMMA, 1/fatigueG.BsProb$prob[1, ], type = "o",

+ xlab = expression(gamma), ylab = substitute("P{" * g * "|y}",

+ list(g = quote(gamma))))

> title(substitute("a) P{" * g * "|y}" %prop% "1/P{Null|y, " *

+ g * "}", list(g = quote(gamma))), line = +0.5, cex.main = 0.8)

NULL

> gamma <- 1.5

> fatigue.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 7, mInt = 2,

+ p = prob, g = gamma, ng = 1, nMod = 10)

> plot(fatigue.BsProb, main = "b) Bayes Plot", code = FALSE)

> title(substitute("( " * g * " )", list(g = quote(gamma == 1.5))),

+ line = -1)

NULL
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( γ = 1.5 )

3.3 Extra Runs

3.3.1 Box et al. 1993: Example 3

This the injection molding example from Box et al. (1978), where the analysis of the design is
discussed in detail. In Box and Meyer (1993) the design is reanalyzed from the Bayesian approach.
Firstly, a 16-run fractional factorial design is analyzed and the marginal posterior probabilities
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are calculated and displayed in figure a) below. Factors A, C, E and H are identified as potential
active factors. The 28−4 factorial design collapses to a replicated 24−1 design in these factors. Thus,
estimates of the main effects and interactions are not all possible. Then, it is assumed that 4 extra
runs are available and the full 20-run design is analyzed considering the blocking factor as another
design factor. Their posterior probabilities are computed and exhibited in figure b). It is noted
in the paper that the conclusions arrived there differ from those in Box et al. (1978), because the
order of the interactions considered in the analysis, 3 and 2 respectively. In the BsProb function,
the maximum interaction order to consider is declared with the argument mInt. For a detailed of
the analysis see the source paper and reference therein.

> par(mfrow = c(1, 2), mar = c(4, 4, 1, 1), mgp = c(2, 0.5, 0),

+ oma = c(0, 0, 1, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e3.data, package = "BsMD")

> print(BM93.e3.data)

blk A B C D E F G H y
1 -1 -1 -1 -1 1 1 1 -1 1 14.0
2 -1 1 -1 -1 -1 -1 1 1 1 16.8
3 -1 -1 1 -1 -1 1 -1 1 1 15.0
4 -1 1 1 -1 1 -1 -1 -1 1 15.4
5 -1 -1 -1 1 1 -1 -1 1 1 27.6
6 -1 1 -1 1 -1 1 -1 -1 1 24.0
7 -1 -1 1 1 -1 -1 1 -1 1 27.4
8 -1 1 1 1 1 1 1 1 1 22.6
9 -1 1 1 1 -1 -1 -1 1 -1 22.3
10 -1 -1 1 1 1 1 -1 -1 -1 17.1
11 -1 1 -1 1 1 -1 1 -1 -1 21.5
12 -1 -1 -1 1 -1 1 1 1 -1 17.5
13 -1 1 1 -1 -1 1 1 -1 -1 15.9
14 -1 -1 1 -1 1 -1 1 1 -1 21.9
15 -1 1 -1 -1 1 1 -1 1 -1 16.7
16 -1 -1 -1 -1 -1 -1 -1 -1 -1 20.3
17 1 -1 1 1 1 -1 -1 -1 1 29.4
18 1 -1 1 -1 -1 -1 1 1 1 19.7
19 1 1 1 -1 -1 1 -1 -1 1 13.6
20 1 1 1 1 1 1 1 1 1 24.7

> X <- as.matrix(BM93.e3.data[1:16, 2:9])

> y <- BM93.e3.data[1:16, 10]

> prob <- 0.25

> gamma <- 2

> plot(BsProb(X = X, y = y, blk = 0, mFac = 8, mInt = 3, p = prob,

+ g = gamma, ng = 1, nMod = 10), code = FALSE, main = "a) Fractional Factorial (FF)")

> X <- as.matrix(BM93.e3.data[, c(2:9, 1)])

> y <- BM93.e3.data[, 10]

> plot(BsProb(X = X, y = y, blk = 0, mFac = 9, mInt = 3, p = prob,
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+ g = gamma, ng = 1, nMod = 5), code = FALSE, main = "b) FF with Extra Runs",

+ prt = TRUE, )

Calculations:
nRun nFac nBlk mFac mInt p g totMod
20.00 9.00 0.00 9.00 3.00 0.25 2.00 512.00

Factor probabilities:
Factor Code Prob

1 none none 0.000
2 A x1 0.781
3 B x2 0.000
4 C x3 1.000
5 D x4 0.000
6 E x5 0.987
7 F x6 0.000
8 G x7 0.000
9 H x8 0.318
10 blk x9 0.045

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.672 1.012 3 1,3,5
M2 0.194 1.154 3 3,5,8
M3 0.086 0.593 4 1,3,5,8
M4 0.024 0.473 4 3,5,8,9
M5 0.010 0.519 4 1,3,5,9

> mtext(side = 1, "(Blocking factor blk)", cex = 0.7, line = 2.5)

NULL
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(Blocking factor blk)

4 Model Discrimination

Follow-up experiments for model discrimination (MD) are discussed by Meyer, Steinberg, and Box
(1996). They introduce the design of follow-up experiments based on the MD criterion:

MD =
∑
i 6=j

P (Mi|Y )P (Mj |Y )I(pi, pj)

where pi denotes the predictive density of a new observation(s) conditional on the observed data
Y and on model Mi being the correct model, and I(pi, pj)=

∫
pi ln(pi/pj) is the Kullback-Leibler

information, measuring the mean information for discriminating in favor of Mi against Mj when
Mi is true. Under this criterion designs with larger MD are preferred.

The criterion combines the ideas for discrimination among models presented by Box and Hill
(1967) and the Bayesian factor screening by Box and Meyer. The authors present examples for
4-run follow-up experiments but the criterion can be applied to any number of runs. In the next
subsections we present the 4-run examples in the Meyer et al. (1996) paper and revisit the last of
the examples from the one-run-at-a-time experimentation strategy.

The MD function is available for MD optimal follow-up designs. The function calls the md for-
tran subroutine, a modification of the MD.f program included in the mdopt bundle. The output
of the MD program is saved at the working directory in MDPrint.out file. The output of the MD
function is a list of class MD with print and summary method functions.

For a given number of factors and a number of follow-up sets of runs, models are built and
their MD calculated. The method employs the exchange search algorithm. See Meyer et al. (1996)
and references therein. The MD function uses factor probabilities provided by BsProb. See the help
pages for details.
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4.1 4-run Follow-Up Experiments

4.1.1 Meyer et al. 1996: Example 1

The example presents the 5 best MD 4-run follow-up experiments for injection molding example,
presented in section 3.3.1. In the code below note the call to the BsProb function before calling
MD. The procedure selects the follow-up runs from a set of candidate runs Xcand (the original 28−4

design), including the blocking factor blk. The best 4-run follow-up experiment, runs (9, 9, 12, 15),
has a MD of 85.72, followed by (9,12,14,15) with MD = 84.89. Note that these runs are different
from the 4 extra runs in section 3.3.1.

> par(mfrow = c(1, 2), mar = c(3, 4, 1, 1), mgp = c(2, 0.5, 0),

+ oma = c(0, 0, 1, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> data(BM93.e3.data, package = "BsMD")

> X <- as.matrix(BM93.e3.data[1:16, c(1, 2, 4, 6, 9)])

> y <- BM93.e3.data[1:16, 10]

> injection16.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 4,

+ mInt = 3, p = 0.25, g = 2, ng = 1, nMod = 5)

> X <- as.matrix(BM93.e3.data[1:16, c(1, 2, 4, 6, 9)])

> p <- injection16.BsProb$ptop

> s2 <- injection16.BsProb$sigtop

> nf <- injection16.BsProb$nftop

> facs <- injection16.BsProb$jtop

> nFDes <- 4

> Xcand <- matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

+ 1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1,

+ -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1,

+ 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,

+ 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1), nrow = 16,

+ dimnames = list(1:16, c("blk", "A", "C", "E", "H")))

> print(MD(X = X, y = y, nFac = 4, nBlk = 1, mInt = 3, g = 2, nMod = 5,

+ p = p, s2 = s2, nf = nf, facs = facs, nFDes = 4, Xcand = Xcand,

+ mIter = 20, nStart = 25, top = 5))

Base:
nRuns nFac nBlk maxInt gMain gInter nMod

16 4 1 3 2 2 5

Follow up:
nCand nRuns maxIter nStart

16 4 20 25

Competing Models:
Prob Sigma2 NumFac Factors

M1 0.236 0.582 3 1,2,3
M2 0.236 0.582 3 2,3,4
M3 0.236 0.582 3 1,3,4
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M4 0.236 0.582 3 1,2,4
M5 0.057 0.441 4 1,2,3,4

Candidate runs:
blk A C E H

1 1 -1 -1 -1 -1
2 1 -1 -1 1 1
3 1 -1 1 -1 1
4 1 -1 1 1 -1
5 1 1 -1 -1 1
6 1 1 -1 1 -1
7 1 1 1 -1 -1
8 1 1 1 1 1
9 1 -1 -1 -1 1
10 1 -1 -1 1 -1
11 1 -1 1 -1 -1
12 1 -1 1 1 1
13 1 1 -1 -1 -1
14 1 1 -1 1 1
15 1 1 1 -1 1
16 1 1 1 1 -1

Search trace output file: MDPrint.out

Top 5 runs:
D r1 r2 r3 r4

1 85.726 9 9 12 15
2 84.893 9 12 14 15
3 83.684 9 11 12 15
4 77.136 9 11 12 14
5 77.111 9 9 11 12

4.1.2 Meyer et al. 1996: Example 2

This example is based on the 25 factorial reactor experiment presented initially in Box et al. (1978,
chap. 12) and revisited from the MD criterion perspective in Box et al. (2005, chap. 7). The full
design matrix and response is:

> data(Reactor.data, package = "BsMD")

> print(Reactor.data)

A B C D E y
1 -1 -1 -1 -1 -1 61
2 1 -1 -1 -1 -1 53
3 -1 1 -1 -1 -1 63
4 1 1 -1 -1 -1 61
5 -1 -1 1 -1 -1 53
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6 1 -1 1 -1 -1 56
7 -1 1 1 -1 -1 54
8 1 1 1 -1 -1 61
9 -1 -1 -1 1 -1 69
10 1 -1 -1 1 -1 61
11 -1 1 -1 1 -1 94
12 1 1 -1 1 -1 93
13 -1 -1 1 1 -1 66
14 1 -1 1 1 -1 60
15 -1 1 1 1 -1 95
16 1 1 1 1 -1 98
17 -1 -1 -1 -1 1 56
18 1 -1 -1 -1 1 63
19 -1 1 -1 -1 1 70
20 1 1 -1 -1 1 65
21 -1 -1 1 -1 1 59
22 1 -1 1 -1 1 55
23 -1 1 1 -1 1 67
24 1 1 1 -1 1 65
25 -1 -1 -1 1 1 44
26 1 -1 -1 1 1 45
27 -1 1 -1 1 1 78
28 1 1 -1 1 1 77
29 -1 -1 1 1 1 49
30 1 -1 1 1 1 42
31 -1 1 1 1 1 81
32 1 1 1 1 1 82

First, it is assumed that only 8 runs (25, 2, . . . , 32), from a 25−2 were run. The runs are displayed
in the output as Fraction. Bayesian screening is applied and posterior marginal probabilities are
calculated and shown in figure a) below. These probabilities are used to find the MD optimal 4-run
follow-up designs choosing the possible factor level combinations from the full 25 design. Since in
this example responses for all the 32 runs are available, they are used as if the follow-up experiment
was actually run and the posterior factor probabilities for the 12-run experiment determined and
displayed in figure b). It is apparent how the extra runs clean up the activity of factors B, D and
E. Note that the output of the BsProb function is used in the the call of MD. The complete output
of both functions is sent to the files BsPrint.out and MDPrint.out respectively. Also, remember
that method functions print and summary are available to control the amount of displayed output.

> par(mfrow = c(1, 2), mar = c(3, 4, 1, 1), mgp = c(2, 0.5, 0),

+ oma = c(0, 0, 0, 0), pty = "s", cex.axis = 0.7, cex.lab = 0.8,

+ cex.main = 0.9)

> fraction <- c(25, 2, 19, 12, 13, 22, 7, 32)

> cat("Fraction: ", fraction)

Fraction: 25 2 19 12 13 22 7 32
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> X <- as.matrix(cbind(blk = rep(-1, 8), Reactor.data[fraction,

+ 1:5]))

> y <- Reactor.data[fraction, 6]

> print(reactor8.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5,

+ mInt = 3, p = 0.25, g = 0.4, ng = 1, nMod = 32), X = FALSE,

+ resp = FALSE, factors = TRUE, models = FALSE)

Calculations:
nRun nFac nBlk mFac mInt p g totMod
8.00 5.00 1.00 5.00 3.00 0.25 0.40 32.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.230
2 A x1 0.271
3 B x2 0.375
4 C x3 0.172
5 D x4 0.291
6 E x5 0.170

> plot(reactor8.BsProb, code = FALSE, main = "a) Initial Design\n(8 runs)")

> p <- reactor8.BsProb$ptop

> s2 <- reactor8.BsProb$sigtop

> nf <- reactor8.BsProb$nftop

> facs <- reactor8.BsProb$jtop

> nFDes <- 4

> Xcand <- as.matrix(cbind(blk = rep(+1, 32), Reactor.data[, 1:5]))

> print(MD(X = X, y = y, nFac = 5, nBlk = 1, mInt = 3, g = 0.4,

+ nMod = 32, p = p, s2 = s2, nf = nf, facs = facs, nFDes = 4,

+ Xcand = Xcand, mIter = 20, nStart = 25, top = 5), Xcand = FALSE,

+ models = FALSE)

Base:
nRuns nFac nBlk maxInt gMain gInter nMod
8.0 5.0 1.0 3.0 0.4 0.4 32.0

Follow up:
nCand nRuns maxIter nStart

32 4 20 25

Search trace output file: MDPrint.out

Top 5 runs:
D r1 r2 r3 r4

1 0.615 4 10 11 26
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2 0.610 4 10 11 28
3 0.608 4 10 26 27
4 0.606 4 10 12 27
5 0.603 4 11 12 26

> new.runs <- c(4, 10, 11, 26)

> cat("Follow-up:", new.runs)

Follow-up: 4 10 11 26

> X <- rbind(X, Xcand[new.runs, ])

> y <- c(y, Reactor.data[new.runs, 6])

> print(reactor12.BsProb <- BsProb(X = X, y = y, blk = 1, mFac = 5,

+ mInt = 3, p = 0.25, g = 1.2, ng = 1, nMod = 5))

Design Matrix:
blk A B C D E

25 -1 -1 -1 -1 1 1
2 -1 1 -1 -1 -1 -1
19 -1 -1 1 -1 -1 1
12 -1 1 1 -1 1 -1
13 -1 -1 -1 1 1 -1
22 -1 1 -1 1 -1 1
7 -1 -1 1 1 -1 -1
32 -1 1 1 1 1 1
4 1 1 1 -1 -1 -1
10 1 1 -1 -1 1 -1
11 1 -1 1 -1 1 -1
26 1 1 -1 -1 1 1

Response vector:
44 53 70 93 66 55 54 82 61 61 94 45

Calculations:
nRun nFac nBlk mFac mInt p g totMod
12.00 5.00 1.00 5.00 3.00 0.25 1.20 32.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.041
2 A x1 0.012
3 B x2 0.938
4 C x3 0.199
5 D x4 0.873
6 E x5 0.647
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Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.462 17.11 3 2,4,5
M2 0.209 66.63 2 2,4
M3 0.172 7.51 4 2,3,4,5
M4 0.064 167.76 1 2
M5 0.041 288.79 0 none

> plot(reactor12.BsProb, code = FALSE, main = "b) Complete Design\n(12 runs)")
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4.2 One-run-at-a-time Experiments

4.2.1 Meyer et al. 1996: Example 2

Example 4.1.2 is considered again in this subsection. In this exercise we assume that the follow-up
experimentation is in one-run-at-a-time fashion instead of the 4-run experiment discussed before.
At each stage marginal posterior probabilities are computed and MD is determined, using γ =
0.4, 0.7, 1.0, 1.3. Once again, candidate runs are chosen from the 25 design. It can be seen there
that at run 11, factors B, D and possibly E too, are cleared from the other factors. Note also
that the final set of runs under the one-at-a-time approach (10, 4, 11, 15) ended being different from
(4, 10, 11, 26) suggested by the 4-run follow-up strategy based on γ = 0.4. Bayes plots for each step
are displayed in the figure below. See Box et al. (2005, chap. 7) for discussion of this approach.
The code used in this section is included as appendix.
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Design Matrix:
blk A B C D E

25 -1 -1 -1 -1 1 1
2 -1 1 -1 -1 -1 -1
19 -1 -1 1 -1 -1 1
12 -1 1 1 -1 1 -1
13 -1 -1 -1 1 1 -1
22 -1 1 -1 1 -1 1
7 -1 -1 1 1 -1 -1
32 -1 1 1 1 1 1
10 1 1 -1 -1 1 -1
4 1 1 1 -1 -1 -1
11 1 -1 1 -1 1 -1
15 1 -1 1 1 1 -1

Response vector:
44 53 70 93 66 55 54 82 61 61 94 95

Calculations:
nRun nFac nBlk mFac mInt p g totMod
12.00 5.00 1.00 5.00 3.00 0.25 1.30 32.00

Output file: BsPrint.out

Factor probabilities:
Factor Code Prob

1 none none 0.035
2 A x1 0.026
3 B x2 0.944
4 C x3 0.021
5 D x4 0.917
6 E x5 0.469

Model probabilities:
Prob Sigma2 NumFac Factors

M1 0.441 15.24 3 2,4,5
M2 0.428 52.45 2 2,4
M3 0.036 173.18 1 2
M4 0.036 277.34 0 none
M5 0.016 8.95 4 1,2,4,5

NULL

NULL

NULL

NULL
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b) 9 runs
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c) 10 runs
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d) 11 runs
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e) 12 runs

One−at−a−time Experiments

5 Summary

Various techniques are available for factor screening of unreplicated experiments. In this document
we presented the functions of the BsMD package for Bayesian Screening and Model Discrimination.
A number of examples were worked to show some of the features of such functions. We refer the
reader to the original papers for detailed discussion of the examples and the theory behind the
procedures.
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Appendix

Code used in section 4.2.1.

data(Reactor.data,package="BsMD")

#cat("Initial Design:\n")
X <- as.matrix(cbind(blk=rep(-1,8),Reactor.data[fraction,1:5]))
y <- Reactor.data[fraction,6]
lst <- reactor8.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=0.40,ng=1,nMod=32)

#cat("Follow-Up: run 1\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor8.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=0.40,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 10
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
lst <- reactor9.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=0.7,ng=1,nMod=32)
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#cat("Follow-Up: run 2\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor9.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=0.7,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 4
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
lst <- reactor10.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.0,ng=1,nMod=32)

#cat("Follow-Up: run 3\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor10.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=1.0,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 11
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
lst <- reactor11.BsProb <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.3,ng=1,nMod=32)

#cat("Follow-Up: run 4\n")
p <- lst$ptop; s2 <- lst$sigtop; nf <- lst$nftop; facs <- lst$jtop
reactor10.MD <- MD(X=X,y=y,nFac=5,nBlk=1,mInt=3,g=1.3,nMod=32,p=p,s2=s2,nf=nf,facs=facs,

nFDes=1,Xcand=Xcand,mIter=20,nStart=25,top=3)
new.run <- 15
X <- rbind(X,Xcand[new.run,]); rownames(X)[nrow(X)] <- new.run
y <- c(y,Reactor.data[new.run,6])
reactor12 <- BsProb(X=X,y=y,blk=1,mFac=5,mInt=3,p=0.25,g=1.30,ng=1,nMod=10)

print(reactor12,nMod=5,models=TRUE,plt=FALSE)

par(mfrow=c(2,2),mar=c(3,4,1,1),mgp=c(2,.5,0),oma=c(1,0,1,0),
pty="s",cex.axis=0.7,cex.lab=0.8,cex.main=0.9)

plot(reactor9.BsProb,code=FALSE)
mtext(side=1,"b) 9 runs",line=3,cex=0.7)
plot(reactor10.BsProb,code=FALSE)
mtext(side=1,"c) 10 runs",line=3,cex=0.7)
plot(reactor11.BsProb,code=FALSE)
mtext(side=1,"d) 11 runs",line=3,cex=0.7)
plot(reactor12.BsProb,code=FALSE)
mtext(side=1,"e) 12 runs",line=3,cex=0.7)
title("One-at-a-time Experiments",outer=TRUE)


