
MiscPsycho
An R Package for Miscellaneous Psychometric Analyses

Harold C. Doran
American Institutes for Research (AIR)

hdoran@air.org

January 23, 2008

Contents

1 Introduction and Purpose 3

2 The Rasch Model 3

3 Local Independence 3

4 The Joint Maximum Likelihood Procedure 4

5 Estimation and Derivatives 4
5.1 First and Second Derivatives of Item Parameters 4
5.2 First and Second Derivatives of Ability Parameters 5

6 Centering and Correction for JML Bias 6

7 Item Fit Statistics 6

8 Estimating Examinee Ability 6

9 Plausible Values 8

10 Classification Accuracy: Integration over the Posterior 9

11 Examples 10
11.1 Estimating Reliability . 11
11.2 Classical Item Analysis . 12
11.3 Estimating Rasch Parameters via JML . 12
11.4 Generating Score Conversion Tables . 13
11.5 Estimating Examinee Ability . 13
11.6 Sampling from the Posterior . 16
11.7 Posterior Density Function . 17
11.8 Classification Accuracy . 17

2

1 Introduction and Purpose

The purpose of the MiscPsycho package is to provide psychometricians with functions
to analyze their data, including classical item analyses, item response models (IRT), and
various functions commonly used in psychometrics. The functions provided in this package
are intended to provide the user with psychometric procedures commonly used in testing
programs. This document outlines the mathematical procedures used in the MiscPsycho
package in R. Additionally, I provide examples of how to use these functions.

2 The Rasch Model

The Rasch, or 1-parameter logistic model, is an IRT model that assumes items can be
adequately characterized via a single location (difficulty) parameter. Slopes across items
(discrimination) and/or guessing are assumed to be constant across all items such that aj = a
and cj = 0 where aj is the item discrimination parameter for item j and cj is the guessing
parameter (i.e., lower asymptote) for item j.

The basic Rasch model characterizes the probability of a correct response as:

Prob(Xij = 1|θi, βj) =
1

1 + e−(θi−βj)
i = (1, . . . , K); j = (1, . . . , N) (1)

where θi is the ability estimate of person i and βj is the location parameter for item j.

3 Local Independence

The term local independence is commonly used in IRT. This simply means that a persons
response to item j is independent of their response to any other item conditional on their
ability. This assumption provides a convenient mathematical way to express the likelihood
function since the joint density is then the product of the individual densities. Because the
item responses are dichotomous, the data are assumed to following a Bernoulli distribution,
thus giving rise to the following likelihood function:

L =
∏

Prob(Xij = 1|θi, βj)
xij [1− Prob(Xij = 1|θi, βj)]

(1−xij) (2)

where xij is the response of person i to item j such that:

xij =

{
1 if correct response
0 otherwise

The derivatives below are obtained from the log-likelihood:

ln L =
∑

xij ln [Prob(Xij = 1|θi, βj)] + (1− xij) ln [1− Prob(Xij = 1|θi, βj)] (3)

The log of the likelihood is a monotonic function of the likelihood and so the original
ordering of the estimates between 2 and 3 is preserved. That is, the maximum likelihood
estimates (MLE) of the log-likelihood are the same as the likelihood.

3

4 The Joint Maximum Likelihood Procedure

As denoted in Equation (1), there are two latent parameters: θi and βj. All that is known is
the response of person i to item j. If θi and the item responses were known, then we could
simply maximize Equation (3) with respect to βj. Conversely, if βj were known and the item
responses, but not θi, then we could simply maximize Equation (3) with respect to θi.

This suggests an iterative maximization process and is exactly how joint maximum like-
lihood (JML) works. The JML process proceeds in an iterative fashion by first estimating
the ability parameters and then the item parameters. Operationally, the first step is to set
all item parameters to 0 and then maximize Equation (3) with respect to θ. With these
new ability estimates, we can now switch and maximize Equation (3) with respect to βj.
This process iterates between these steps until the difference in the estimates of the item
parameters does not differ by more than .001 (default convergence criterion).

The process steps can be succintly described as:

1. Set βj = 0 ∀ j

2. Set ln ∂L
∂θ

= 0 and solve

3. Set ln ∂L
∂β

= 0 and solve

4. Iterate between 2 and 3 until abs|βt
j − βt−1

j | < .001 ∀ j

where the superscript denotes iteration t.

5 Estimation and Derivatives

Of course, the function is non-linear and this requires an iterative maximization process. The
jml function uses Newton-Raphson steps and thus requires the first and second derivatives of
the likelihood function. In the current implementation of jml, the analytic first and second
derivatives are used in the Newton steps for the item parameters. However, the optim

function is used to estimate ability parameters.

5.1 First and Second Derivatives of Item Parameters

For the item parameters, we find the first and second partial derivatives of the likelihood
function with respect to βj. The gradient vector is:

g =

−
∑

i(xi1 − Pi1)
−
∑

i(xi2 − Pi2)
...

−
∑

i(xiN − PiN)

 (4)

where Pij is the probability of a correct response by person i to item j as denoted in Equa-
tion (1).

The Hessian matrix for the items is a diagonal matrix of the following form:

4

H = diag

(
−
∑

i

Pi1[1− Pi1],−
∑

i

Pi2[1− Pi2], . . . ,−
∑

i

PiN [1− PiN]

)
(5)

Using these derivatives, the Newton steps proceed as:

bt+1 = bt −H−1
t gt (6)

where b is the vector of estimated item parameters, b = (β̂1, β̂2, . . . , β̂N), and the subscript
denotes iteration t.

The code for the jml function currently builds the full N × N Hessian matrix and pre-
multiplies the inverted Hessian by the gradient as represented algebraically in Equation (6).
Because the matrix is diagonal, it is sufficient to divide each element of the gradient by
its corresponding element in the Hessian. Hence, it is possible to use the vectorized cal-
culations in R rather than the matrix algebra. However, experimenting with both showed
that there was no computational efficiency in using the vectorized calculations rather than
building the full Hessian as the number of item parameters tends to be very small. Hence,
for transparency with the algebraic representation, I retain use of the matrix calculations.

The standard errors of the item parameters are simply derived from the diagonal elements
of the Hessian matrix at convergence. That is, -1 * H−.5

jj evaluated at b are the asymptotic
standard errors.

5.2 First and Second Derivatives of Ability Parameters

It is also necessary to find the first and second partial derivatives of the ability parameters
and use an iterative process in the maximization process. In contrast to the item parameters
which uses the analytic derivatives, the function theta.max uses the optim function rather
than analytic first and second derivatives. In an original implementation of the function
theta.max, the analytic first and second derivatives were used within a while loop. However,
the R code is sufficiently more compact using optim.

Nonetheless, for full transparency into how the JML process proceeds, the first and second
derivatives of the ability estimates are presented. There is one difference in how items and
ability parameters are estimated in jml. The process in the section above shows that the
item parameters are estimated simultaneously, even though the estimate of bj is independent
of bj′ . But, for the ability parameters, the process proceeds one person at a time and not
simultaneously as for the items.

Estimation proceeds in this manner for ability parameters as a convenience of the fact
that the Hessian is diagonal. In the case of items, the Hessian tends to be small as the
number of items is often small. But, the Hessian for persons would be K × K, and its
dimensions could be very large.

The first and second derivatives of the likelihood function with respect to θ are:

∂L

∂θ
=
∑

i

(xij − Pij) (7)

5

∂2L

∂2θ
=
∑

i

(1− Pij)(−Pij) (8)

6 Centering and Correction for JML Bias

Consistent with Winsteps, the jml function removes the indeterminacy in the item parame-
ters by centering the items on their mean. That is, the final item parameters are β̂j = β̂∗j − β̄

where β̄ = K−1
∑

j β̂j.
It is also well known that JML yields biased parameter estimates. The correction for bias

proposed by Wright and Stone (1979) is implemented in the jml function as β̂j ×K(K − 1).

7 Item Fit Statistics

When the jml converges, it generates as output estimates of the item parameters, their
standard errors, the sample size per item used in the estimation, and the Infit and Outfit
statistics. These statistics are commonly used to evaluate the fit of the item parameters
under the Rasch model.

In order to estimate both fit statistics it is first necessary to estimate a standardized
variable, z, which is computed as:

zij =
xij − Pij√

σ2
ij

(9)

where Pij is the expected probability of a correct response for person i to item j from
Equation (1) and σ2

ij is Pij(1− Pij). From this, the fit statistics are estimated as:

Infit =

∑
i z

2
ijσ

2
ij∑

i σ
2
ij

(10)

Outfit = N−1
∑

i

z2
ij (11)

8 Estimating Examinee Ability

There are multiple methods for assessing examinee ability. MiscPsycho offers the user three
common methods for estimating examinee ability via the irt.ability function: maximum
likelihood estimation (MLE), maximum a posteriori (MAP), and the expected a posteriori
(EAP).

Currently, many testing programs utilize a mixture of item formats including multiple
choice items as well as constructed response items. Ability estimates are therefore based on
the observed performance of examiness on these items. Hence, the likelihood function for a
mixture of items can be expressed as:

6

L(θ) = L(θ)MCL(θ)CR (12)

where L(θ)MC is the likelihood for dichotomously scored items:

L(θ)MC =
∏[

ci +
1− ci

1 + exp[−Dai(θ − bi)]

]xi
[
1− ci +

1− ci

1 + exp[−Dai(θ − bi)]

]1−xi

(13)

where ci is the lower asymptote of the trace function for the ith item (sometimes referred
to as a guessing parameter), ai is the slope of the trace function (i.e., the discrimination
parameter), bi is the location parameter, xi is the binary response to the ith item (where
1 = correct), and D is a scaling factor commonly fixed at 1.7 to bring the logistic function
into coincidence with the probit function.

L(θ)CR is the likelihood for polytomously scored items based on the generalized partial
credit model:

L(θ)CR =
∏ exp

∑x
j=0 Dai(θ − δij)∑M

r=0

[
exp

∑r
j=0 Dai(θ − δij)

]
 (14)

where the notation is the same as above other than δij which is the jth step for the ith item.
The function irt.ability() operationalizes these methods and provides the user with

ability estimates assuming parameter estimates are known. The function is useful when there
is a mixture of item formats (i.e., multiple choice and constructed response) or if there are
only multiple choice or only constructed response. For instance, in cases where there is only
multiple choice the likelihood function is simply:

L(θ) = L(θ)MC (15)

where L(θ)MC is defined in Equation (13). This general expression of the likelihood offers the
user flexibility as other common IRT models can be expressed as a special cases. For instance,
the Rasch model is a special case of the 3PL when ai = 1 ∀ i, ci = 0 ∀ i, and D = 1. As such,
this function can be used for many different IRT models when the appropriate constraints
on the item parameters are imposed.

In maximum likelihood estimation, the goal is to maximize L(θ). This is available via
the irt.ability function when method = ’MLE’. In some cases, there may exist prior in-
formation regarding the target population that can be used to update the current observed
data. Hence, in the language of bayesian statistics, we may include a prior distribution, g(θ),
which operationalizes this information:

MAP (θ) = L(θ)MCL(θ)CRg(θ) (16)

When this prior is included and the function is maximized, the result is known as the
MAP. This is available via the irt.ability function when method = ’MAP’. Within the
irt.ability function it is always assumed that g(θ) ∼ N(µ, σ2).

Rather than obtaining the MAP, one may prefer the mean of the posterior distribution,
or the EAP. This is obtained as:

7

EAP (θ) =

∫∞
−∞ θL(θ)g(θ)dθ∫∞
−∞ L(θ)g(θ)dθ

(17)

In Equation (17) there is no benefit of conjugacy, therefore the integral must be approx-
imated. In the irt.ability function, this is approximated via Gauss-Hermite quadrature
as:

EAP (θ) ≈
∑Q

i=1 θiL(θi)wi∑Q
i=1 L(θi)wi

(18)

where θi is node i (quadrature point) and wi is the weight at node i. This is available
in irt.ability when method=’EAP’. The weights and nodes used in the computation are
provided via the gauss.quad.prob function in the statmod package. The irt.ability

function allows the user to change the number of quadrature points used in the approxima-
tion.

The user should keep in mind that EAP estimates are conceptually different than the
MLE or the MAP. Both the MLE and the MAP are the result of an iterative maximization
procedure whereas the EAP is the result of a non-iterative integral.

The user should be aware that, with the 3PL, maximization of the objective function may
yield a local and not a global maximum. Hence, both the MAP and MLE are subject to this
condition (only under the 3PL and GPCM as the 1- and 2PL are always unimodal). The
user may implement different starting values via the start_val control option to determine
whether a global maximum has been reached.

However, the EAP estimate is not subject to this condition and will always provide
the posterior mean. Good approximations of the mean are dependent on the number of
quadrature points used. The default is 149 as this has been found to provide excellent
approximations in test cases, however the user should experiment to determine whether this
proves true in different scenarios.

9 Plausible Values

Suppose we desire random samples from the following posterior density:

p(θ|x, η̂) =
L(θ)g(θ)∫
L(θ)g(θ)dθ

(19)

where η̂ are estimates of the item response parameters and xi is the vector of observed re-
sponses to all items for the ith individual, L(θ) is the likelihood as expressed in Equation (12)
and g(θ) ∼ N(µ, σ2). Given the lack of conjugacy between the data likelihood and the prior
distribution, sampling from the posterior is difficult as its parametric form is unknown.

However, there are multiple methods that can be used to choose these samples. Meth-
ods used by the National Assessment of Educational Progress (NAEP) have assumed that
p(θ|x, η̂) ∼ N(µ, σ2) where µ and σ2 are the EAP mean and variance. In this case, sam-
pling is easy since the variates can be drawn from a normal distribution. However, this is

8

overly simplistic as it samples from a normal as an approximation given the complexity of
the posterior.

Another option is to use an MCMC algorithm, such as Rejection Sampling, to sample
from Equation (19). This is the method implemented in the plaus.val function. The
algorithm as implemented proceeds as follows:

1. Draw a random variate, θ∗i , from g(θ) ∼ N(0,1).

2. Draw a random variate, Ui, from Ui ∼ U[0,1].

3. Compute ri = p(θ∗i |x, η̂)/ [M * g(θ∗i)]

4. If Ui ≤ ri accept θ∗i as a draw from p(θ|x, η̂), else return to step 1

In this rejection sampling algorithm M is a constant that can be arbitrarily chosen so long
as M > 1 and the normalizing constant in Equation (19) is computed using Gauss-Hermite
quadrature as illustrated in Equation (18). Gelman et al (2004) suggest the constant M must
have a known bound such that p(θ|x, η̂)/g(θ) ≤ M ∀ θ. The user can tune the acceptance
rate by choosing different values for M via the choose.M function.

By default, the function returns five random draws from the posterior density, although
more draws can be chosen. In fact, should the user choose many random draws, these variates
can be used to form an empirical distribution of the posterior such that the mean of these
variates is the EAP and the variance is var(EAP).

10 Classification Accuracy: Integration over the Pos-

terior

In educational testing situations, it is common to identify a point on the theta scale (ability
scale) at which point a student must score in order to be considered “Proficient”, which is
denoted as γ. Hence, for scores below the cutpoint γ, we compute the probability that an
individual with observed score θi < γ is truly proficient as:

pi(θ
∗ > γ|θ < γ) =

∫∞
γ

L(θ)g(θ|µ, σ)dθ∫∞
−∞ L(θ)g(θ|µ, σ)dθ

(20)

where θ∗ is the unobserved true score, θ is the observed score on the proficiency scale, γ is
the cut score required for passing, L(θ) is the data likelihood given the item parameters as
expressed in Equation (12), and g(θ) is a normal population distribution. For individuals
with observed scores at or above the proficient cut point we compute the probability that
an individual at score θi ≥ γ is truly not proficient as:

pi(θ
∗ < γ|θ ≥ γ) =

∫ γ

−∞ L(θ)g(θ|µ, σ)dθ∫∞
−∞ L(θ)g(θ|µ, σ)dθ

(21)

The integrals in Equation (20) and Equation (21) are evaluated using Gaussian quadra-
ture. The nodes and weights used to evaluate these integrals are derived from the gauss.quad

9

and gauss.quad.prob functions in the statmod package. Currently, the functions used rely
on 49 quadrature points. This was found to provide excellent approximations to the integrals
when compared to the Nintegrate procedures in Mathematica.

For the numerator the following Gauss-Legendre quadrature is used if the student scored
below the proficient cut point:

f(yi) = L(yi + γ)g(yi + γ|µ, σ2) (22)∫ ∞

γ

L(θ)g(θ|µ, σ)dθ ≈
Q∑

i=1

f(yi)e
yiwi (23)

where γ is the proficient cut point, yi is node i = (1, . . . , Q), and wi is the weight at node i.
Similarly, the following is used if the student scored above the proficient cut point:

f(yi) = L(γ − yi)g(γ − yi|µ, σ2) (24)∫ γ

−∞
L(θ)g(θ|µ, σ)dθ ≈

Q∑
i=1

f(yi)e
yiwi (25)

The normalizing constant is subsequently evaluated using Gauss-Hermite quadrature as:∫ ∞

−∞
L(θ)g(θ|µ, σ)dθ ≈

Q∑
i=1

L(yi)wi (26)

where wi are weights derived from a Gaussian probability distribution with parameters µ, σ.

11 Examples

The following section illustrates sample use of the functions in the MiscPsycho package.
As a first step, I use the simRasch function to generate sample data for 200 individuals to 10
test items. The default values of mu and sigma are 0 and 1 for the distribution of abilities.

> set.seed(1)

> dat <- simRasch(200, 10)

The simRasch function returns three values in a list:

> str(dat)

List of 3

$ data :'data.frame': 200 obs. of 10 variables:

..$ V1 : num [1:200] 0 0 0 0 0 0 0 1 0 0 ...

..$ V2 : num [1:200] 0 1 1 1 1 1 1 1 1 1 ...

..$ V3 : num [1:200] 0 0 0 0 0 0 0 0 0 0 ...

..$ V4 : num [1:200] 0 0 0 0 0 0 0 0 1 0 ...

10

..$ V5 : num [1:200] 0 0 0 0 0 0 0 1 0 1 ...

..$ V6 : num [1:200] 1 0 1 1 0 0 0 0 0 0 ...

..$ V7 : num [1:200] 1 1 1 1 0 0 1 1 1 0 ...

..$ V8 : num [1:200] 0 0 0 1 0 0 0 0 1 0 ...

..$ V9 : num [1:200] 1 1 1 1 1 1 1 1 1 1 ...

..$ V10: num [1:200] 0 0 0 0 0 0 0 0 0 0 ...

$ generating.values: num [1:10] 0.953 -1.890 2.726 2.387 2.662 ...

$ theta : num [1:200] -0.626 0.184 -0.836 1.595 0.330 ...

These values are data, which are the item responses, generating.values which are the
true values of the item parameters drawn from a U(−3, 3) distribution and theta which are
the true ability estimates drawn from a N(µ, σ) distribution.

11.1 Estimating Reliability

It is often useful to examine these data prior to running the IRT model. We can use the
alpha and alpha.Summary functions to examine the reliability.

> alpha(dat$data)

[1] 0.4942997

The alpha function for the simulated data in this example returns a value of 0.49. Now,
it may be useful to further examine what the reliability would be if item j were removed
from the test using the alpha.Summary function.

> alpha.Summary(dat$data)

Below is what alpha *would be* if the item were removed

Item alpha

1 1 0.3988681

2 2 0.4895385

3 3 0.4856901

4 4 0.4467352

5 5 0.5122087

6 6 0.4429340

7 7 0.4554410

8 8 0.4463020

9 9 0.4954350

10 10 0.4805648

The output from alpha.Summary shows what the reliability of the test would be if an
item were removed. For example, with these sample data, the reliability would be 0.4 if item
1 were removed.

11

11.2 Classical Item Analysis

Another preliminary way to examine the data prior to running the IRT model is to examine
classical item statistics such as p-values and point-biserial correlations. The p-values are
simply the means of the items over students. The point-biserial is the correlation of item j
with the total score where the total score excludes item j. These statistics are accesible via
the classical function as follows:

> classical(dat$data)

p_values Point_Biserial

V1 0.300 0.37466067

V2 0.850 0.13301172

V3 0.105 0.13991013

V4 0.135 0.27627535

V5 0.085 0.02100712

V6 0.290 0.27187465

V7 0.680 0.24196345

V8 0.205 0.26622928

V9 0.935 0.08973595

V10 0.100 0.15985898

11.3 Estimating Rasch Parameters via JML

Now that we have examined our data, we can proceed with IRT estimation using the jml

function. This function has three arguments: dat, con, and bias. dat is simply a data
frame or matrix containing the item responses, con is the convergence criterion which is set
at .001 as a default, and bias is a correction for bias argument. Its default value is FALSE.

Use of the function is simple and proceeds as follows with our simulated data:

> results <- jml(dat$data)

Convergence was reached in 10 iterations

params SE N Infit Outfit

1 0.3065984 0.1797695 200 0.8445197 0.7426041

2 -3.2548110 0.2283092 200 1.1214078 0.8945367

3 1.9855983 0.2518549 200 1.0682641 1.0800688

4 1.6337026 0.2295986 200 0.9388617 0.7540313

5 2.2656415 0.2732766 200 1.2206078 1.7613372

6 0.3722937 0.1812322 200 0.9833109 0.8102370

7 -1.9282549 0.1792047 200 0.9405683 0.8383174

8 0.9890192 0.1996367 200 0.9775109 0.8117660

9 -4.4212190 0.3165415 200 1.0314255 1.1741563

10 2.0514313 0.2565722 200 1.0393149 1.0662122

The output shows the number of iterations required to reach convergence and gives a
data frame containing the item parameters (params), the standard errors (SE), sample size
(N), and the Infit and Outfit statistics.

12

11.4 Generating Score Conversion Tables

Now that the item parameters are estimated, it is possible to develop a score conversion
table. A score conversion table gives the ability estimate for an individual with a total
raw score of X =

∑
j xij. Since total score is a sufficient statistics for the Rasch model all

individuals with the same raw score have the same ability estimate. An ability estimate is
not generated for individuals with all items correct or zero items correct. That is because
it is not possible to generate a maximum likelihood estimate (MLE) for these scores as the
likelihood function is unbounded. The score conversion table is developed using the item
parameters in the object results as:

> scoreCon(results$params)

Raw.Score Theta SE

1 1 -4.1364471 1.315

2 2 -2.6352075 1.171

3 3 -1.3586950 1.077

4 4 -0.3470961 0.935

5 5 0.4312601 0.839

6 6 1.0963829 0.799

7 7 1.7336004 0.805

8 8 2.4266261 0.873

9 9 3.3621340 1.106

11.5 Estimating Examinee Ability

The prior examples work for the basic Rasch model since the total raw score is a sufficient
statistic and there is a one-to-one relationship between the raw score total and the MLE.
However, MiscPsycho also includes a function irt.ability that can be used to estimate
the MLE, MAP, or EAP for any IRT model based on the 3-PL or Generalized Partial Credit
Model (GPCM). In other words, the the model can include only dichotomous items, only
polytomous items, or a mixture of item types.

In order to use this function, we must first organize the estimates of the item parameters
into a list of lists. This task is simple, but a little prescriptive. For the first example, assume
we have only two dichotomous test items based on the 2PL. Assume the item parameters
for the first item are a1 = 1, b1 = 0 and for the second item a2 = 2, b2 = 1. Because this is a
2PL, the lower asymptote for both items is fixed at 0. Given these estimates, we can build
the list as follows:

> alpha <- c(1, 2)

> beta <- c(0, 1)

> guess <- c(0, 0)

> params <- list("3pl" = list(a = alpha, b = beta, c = guess),

+ gpcm = NULL)

> params

13

$`3pl`

$`3pl`$a

[1] 1 2

$`3pl`$b

[1] 0 1

$`3pl`$c

[1] 0 0

$gpcm

NULL

In this example, we have no polytomous items, hence the list for the GPCM is NULL,
denoting the list is empty. Once the list is created, use of the irt.ability function is
simple. Assume we have an individual with a response pattern of correct, incorrect.

We can create a vector x with the observed responses to these items. In this example,
there are only two items and they are both dichotomous. So, we use ind.dichot = c(1,2)

which denotes that items 1 and 2 in the vector x are multiple choice.

> x <- c(1, 0)

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MLE")

[1] 0.4923267

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MAP")

[1] 0.3191912

> irt.ability(x, params, ind.dichot = c(1, 2), method = "EAP")

[1] 0.1919161

Note that simply changing the argument to method permits for us to estimate the MLE,
MAP, or the EAP. The default values for the population parameters (i.e., priors) is N(0, 1).
However, changing these is also simple using the list of controls as follows:

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MAP",

+ control = list(mu = 0.5, sigma = 1.2))

[1] 0.4942363

In the example above, the MAP is estimated using a N(.5, 1.2) prior. The use of the
argument ind.dichot is very simple. Assume we have a vector x such as x <- c(0,3,1)

where item 1 is multiple choice, item 2 is polytomous, and item 3 is multiple choice. In this
hypothetical case, the argument would be specified as ind.dichot = c(1,3) denoting that
items 1 and 3 in the vector x are dichotomous.

Now, it may be the case that there is a mixture of items including dichotomous and
polytomous. In this case, we organize the list of lists as follows:

14

> params <- list("3pl" = list(a = c(1, 1), b = c(0, 1),

+ c = c(0, 0)), gpcm = list(a = c(1, 1), d = list(item1 = c(0,

+ 1, 2, 3, 4), item2 = c(0, 0.5, 1, 1.5))))

The only difference between this example and the first is that the list for gpcm is no longer
NULL. It indeed contains two polytomous items. Note that d1i = 0 (the first step category
for item i is fixed at 0) for every item. Now, in this example, we create the vector x. Again,
the first two items are dichotomous, but the last two are polytomous. Hence, the scores are
incorrect, correct, scored in category 2,scored in category 2.

> x <- c(0, 1, 2, 2)

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MLE")

[1] 0.8270681

> irt.ability(x, params, ind.dichot = c(1, 2), method = "MAP")

[1] 0.6762342

> irt.ability(x, params, ind.dichot = c(1, 2), method = "EAP")

[1] 0.6408158

The calls to irt.ability resembles the calls in the first example when there were only
dichotomous items. That is because the dichotomous scores in the vector x are again in
positions 1 and 2. Hence we again use ind.dichot = c(1,2).

To complete our example, assume all items are polytomous. In this case, we organize the
list as:

> params <- list("3pl" = NULL, gpcm = list(a = c(1, 1),

+ d = list(item1 = c(0, 1, 2, 3, 4), item2 = c(0, 0.5,

+ 1, 1.5))))

> irt.ability(c(2, 3), params, method = "MLE")

[1] 1.401820

> irt.ability(c(2, 3), params, method = "MAP")

[1] 1.101404

> irt.ability(c(2, 3), params, method = "EAP")

[1] 1.091514

Note that the list of ’3pl’ is NULL and we do not use the argument ind.dichot. Given
the way the likelihood function is expressed, the function irt.ability is extremely flexible
and can be used to estimate ability using many different IRT models. For example, the 3PL
reduces to the Rasch model for dichotomous items when ai = 1 ∀ i, ci = 0 ∀ i, and D = 1.
As such, we can go back and use the b parameters estimated using jml in the prior example
and use irt.ability as follows:

15

> params <- list("3pl" = list(a = rep(1, 10), b = results$params,

+ c = rep(0, 10)), gpcm = NULL)

> x <- c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)

> irt.ability(x, params, ind.dichot = c(1:10), method = "MLE",

+ control = list(D = 1))

[1] 0.4314441

If you go back to the score conversion table created using scoreCon in the prior exam-
ple, you can see that the ability estimate associated with a raw score of 5 is .43. Hence,
both irt.ability, scoreCon, and theta.max give exactly the same results. However,
irt.ability is much more flexible than the other functions.

In fact, we can even constrain certain parameters for the GPCM such that it too reduces
to the Rasch model and use irt.ability as follows:

> tt <- as.list(results$param)

> ll <- lapply(tt, function(x) c(0, x))

> params <- list("3pl" = NULL, gpcm = list(a = rep(1, 10),

+ d = ll))

> x <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2)

> irt.ability(x, params, method = "MLE", control = list(D = 1))

[1] 0.4314441

The reason this works is because the GPCM reduces to Master’s Partial Credit Model
when the a = 1 ∀ i and D = 1 and Master’s Partial Credit Model reduces to the Rasch
model when there are two categories. Note, for this to work under this parameterization, a
“correct” score means the individual scored in category 2 and an incorrect response means
the individual scored in category 1.

This example is provided simply to illustrate the flexibility of this function for estimat-
ing θ when certain constraints are placed on the item parameters. Of course, it would be
unreasonable to estimate ability estmates for the Rasch model as this requires more work
that necessary. However, it clearly illustrates how IRT models are connected and gives the
user greater flexibility.

11.6 Sampling from the Posterior

R provides many built in functions for drawing random samples from a distribution. For
example, rnorm or runif draw random variates from a normal or a uniform distribution.
However, the Bayesian IRT model expressed in Equation (19) has no known form and sam-
pling from it is difficult. MiscPsycho provides the plaus.val function that uses rejection
sampling to draw random variates from the IRT posterior.

This function is also simple to use and its arguments are almost exactly the same as
those used in irt.ability. for example, assume we have the following item parameters
organized as a list of lists. We can use the plaus.val function to draw random draws from
the posterior as follows:

16

> params <- list("3pl" = list(a = c(1, 1), b = c(0, 1),

+ c = c(0, 0)), gpcm = list(a = c(1, 1), d = list(item1 = c(0,

+ 1, 2, 3, 4), item2 = c(0, 0.5, 1, 1.5))))

> plaus.val(x = c(0, 1, 2, 2), params = params, ind.dichot = c(1,

+ 2))

[1] 0.9074444 0.3432524 0.7250432 1.3044971 0.4565303

Note, that by default the function returns five random draws as is done in NAEP. How-
ever, this can be modified via the PV argument as:

> aa <- plaus.val(x = c(0, 1, 2, 2), params = params, ind.dichot = c(1,

+ 2), PV = 1000)

> mean(aa)

[1] 0.6642396

Now, we can compare the mean of these variates to the EAP estimate:

> irt.ability(x = c(0, 1, 2, 2), params = params, ind.dichot = c(1,

+ 2), method = "EAP")

[1] 0.6408158

I do not proceed with an example here, but one could easily apply this function over
many examiness, generate plausible values for each examinee, and subsequently study the
population characteristics of the examinees using the means of the plausible values.

11.7 Posterior Density Function

Another useful function in MiscPsycho is posterior. Just as dnorm is the density for a
normal distribution posterior is the density for the IRT posterior. Suppose we desire the
density at θ = 1. We can simply use this function as:

> posterior(x = c(0, 1, 2, 2), theta = 1, params = params,

+ ind.dichot = c(1, 2))

[1] 0.6755286

11.8 Classification Accuracy

One last function that may be useful is the class.acc function. This function can be
used to perform integration over the posterior distribution to identify the proportion of the
distribution that falls above (or below) or specific cut point on the ability scale.

Simply to illustrate use of the function, assume γ = 0.

> head(dat$data)

17

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1 0 0 0 0 0 1 1 0 1 0

2 0 1 0 0 0 0 1 0 1 0

3 0 1 0 0 0 1 1 0 1 0

4 0 1 0 0 0 1 1 1 1 0

5 0 1 0 0 0 0 0 0 1 0

6 0 1 0 0 0 0 0 0 1 0

In looking at the raw data, we can see that individual 1 has a raw score of 3, which
corresponds to an ability estimate of -1.36 from the score conversion table. So, we can ask
what is the probability that this individual’s true score is above 0 (γ) using the class.acc

function as follows:

> x <- as.numeric(dat$data[1,])

> params <- list("3pl" = list(a = rep(1, 10), b = results$params,

+ c = rep(0, 10)), gpcm = NULL)

> rr <- class.acc(x, prof_cut = 0, params = params, ind.dichot = c(1:10),

+ aboveC = TRUE, control = list(D = 1))

> rr

[1] 0.1602521

So, we know that the probability is 16 percent that this individuals true score is above
0. Now, we can use the function in the other direction and also ask, what is the probability
that an individual’s true score is below 0. From the raw data we see that individual 4 has a
raw score of 5 which corresponds to an ability estimate of .43. So, we can use the function
as follows:

> x <- as.numeric(dat$data[4,])

> rr <- class.acc(x, prof_cut = 0, params = params, ind.dichot = c(1:10),

+ aboveC = FALSE, control = list(D = 1))

> rr

[1] 0.3623349

This shows that there is a 36 percent probability that this individuals true score is below
0.

This function is general and will also work with other IRT models. Here we revisit an
example using the 2PL.

> a <- c(1.45, 1.84, 2.55, 2.27, 3.68, 4.07, 2.26, 1.87,

+ 2.19, 1.33)

> b <- c(-0.6, -0.82, -1.6, -0.87, -1.41, -1.33, -1.16,

+ -0.11, -0.64, -1.23)

> params <- list("3pl" = list(a = a, b = b, c = rep(0,

+ 10)), gpcm = NULL)

> x <- c(rep(0, 9), 1)

> rr <- irt.ability(x, params, ind.dichot = c(1:10), method = "EAP")

> rr

18

[1] -1.851890

So, we see that the EAP for this individual is -1.85. We can use the class.acc function
to ask what proportion of the posterior density falls above -1.5 on the theta scale:

> rr <- class.acc(x, prof_cut = -1.5, params, ind.dichot = c(1:10),

+ aboveC = TRUE)

> rr

[1] 0.09574338

This suggests there is only about a 10 percent probability that the true score for this
individual is above θ = −1.5.

19

