
Lower-Truncated Poisson and Negative Binomial

Distributions

Charles J. Geyer

June 21, 2007

1 Introduction

This document works through the details of the k-truncated Poisson
distribution and the k-truncated negative binomial distribution, which are
the distributions of Y conditioned on Y > k, where k is a nonnegative
integer and Y has a Poisson or negative binomial distribution. It is a design
document. There is no reason for ordinary users to read it (except perhaps
curiosity). It written for developers.

The negative binomial distribution with shape parameter α and mean
parameter µ has probability mass function (PMF)

fα,µ(y) =
Γ(y + α)
Γ(α)y!

pα(1− p)y, y = 0, 1, 2, . . . ,

where
p =

α

α+ µ
.

If one takes the limit as α→∞ holding µ fixed, one obtains

f∞,µ(y) =
µy

y!
e−µ y = 0, 1, 2, . . . ,

which defines the PMF of the Poisson distribution with mean parameter µ
(we do not prove this, because we do not use this limit in any way and only
mention it to explain why we use the ∞ subscript to denote the Poisson
PMF).

The PMF of the k-truncated distribution corresponding to the (untrun-
cated) distribution with parameters α and µ has PMF defined by

fk,α,µ(x) =
fα,µ(x)

Prα,µ{Y > k}
, x = k + 1, k + 2, . . . , (1)

1

where Prα,µ indicates probability calculated with respect to the untruncated
distribution.

2 Exponential Family Properties

2.1 Untruncated Families

2.1.1 Probability Mass Function

The negative binomial distribution and Poisson are both exponential
families. Their densities have the form

fα,µ =
1

cα(θ)
eyθmα(y), y = 0, 1, 2, (2)

The function cα is called the Laplace transform of the family. The function
mα is called the base measure of the family. The parameter θ is called the
canonical parameter of the family. We have a different exponential family for
each α. If we were to consider this a two-parameter family with parameters
α and θ, then it would not have exponential family form.

In order that probabilities sum to one, we must have

cα(θ) =
∞∑

y=0

eyθmα(y), (3)

so the choice of base measure determines the family. We consider (3) to
define a function on all of R (the real number system), taking the value
+∞ when the sum in (3) does not converge (which makes sense because all
terms in the sum are nonnegative). This allows us to define the canonical
parameter space of the family as the set

Θα = { θ ∈ R : cα(θ) <∞}.

Then (2) defines a PMF for all θ ∈ Θα.

Poisson To get the Poisson distribution, we define the base measure by

m∞(y) =
1
y!

Then we must have
eyθ = µy

2

from which we see that the transformations between the original parameter
µ and the canonical parameter θ are µ = exp(θ) and θ = log(µ).

The Laplace transform is then seen to be

c∞(θ) = eµ = ee
θ

= exp(exp(θ))

and the canonical parameter space Θ∞ is the whole real line.

Negative Binomial To get the negative binomial distribution, we define
the base measure by

mα(y) =
Γ(y + α)
Γ(α)y!

Then we must have

eyθ = (1− p)y =
(

µ

µ+ α

)y

from which we see that the transformations between the success probability
parameter p and the canonical parameter θ are θ = log(1 − p) and p =
1− eθ and that the transformations between the mean parameter µ and the
canonical parameter θ are θ = log(µ)− log(µ+ α) and

µ = α · eθ

1− eθ
= α · 1− p

p
(4)

The Laplace transform is then seen to be

cα(θ) = p−α =
(
1 +

µ

α

)α
=

(
1 +

1
e−θ − 1

)α

(5)

Since all the y in (3) are positive, cα is nondecreasing. To have 0 < p < 1,
we must also have θ < 0. We see that (5) makes sense for such θ and that
cα(θ) → +∞ as θ ↑ 0. Hence

Θα = { θ ∈ R : θ < 0 }.

2.1.2 Cumulant Function and its Derivatives

The log Laplace transform is called the cumulant function because its
derivatives are cumulants of the distributions in the family. We write

ψα(θ) = log cα(θ)

3

to define the cumulant function.
Then from standard exponential family theory

ψ′α(θ) = Eα,θ(Y)
ψ′′α(θ) = varα,θ(Y)

One can directly verify this in any particular case by evaluating the deriva-
tives.

Poisson

ψ∞(θ) = eθ (6a)

ψ′∞(θ) = eθ (6b)

ψ′′∞(θ) = eθ (6c)

Negative Binomial

ψα(θ) = α log
(

1 +
1

e−θ − 1

)
(7a)

ψ′α(θ) = α · eθ

1− eθ
(7b)

ψ′′α(θ) = α · eθ

(1− eθ)2
(7c)

Written in terms of the more familiar success probability parameter we have

ψ′α(θ) = α · 1− p

p

ψ′′α(θ) = α · 1− p

p2

giving the usual formulas for the mean and variance of a negative binomial
random variable.

2.2 Truncated Families

The relationship between the PMF of truncated and untruncated families
has already been given in (1). Since Prα,µ{Y > k} does not involve the data
x, we see we again have an exponential family with the same canonical
parameter and same canonical parameter space but with Laplace transform

ck,α(θ) = cα(θ) Prα,µ{Y > k}

4

and hence
ψk,α(θ) = ψα(θ) + log Prα,µ{Y > k}

where µ is given as a function of θ by µ = exp(θ) for the Poisson and (4) for
the negative binomial. Hence we can also write this

ψk,α(θ) = ψα(θ) + log Prα,θ{Y > k} (8)

The mean and variance of X are again given by the first and second
derivatives of the cumulant function (8)

ψ′k,α(θ) = Ek,α,θ{X} = Eα,θ{Y | Y > k} (9a)

ψ′′k,α(θ) = vark,α,θ{X} = varα,θ{Y | Y > k} (9b)

These identities must hold by exponential family theory. Of course, they
can also be verified directly by evaluating the derivatives seeing that they
do indeed give the appropriate expectation.

Note that although we still use µ as a parameter, it is no longer the
mean of the k-truncated variable X (it is the mean of the corresponding
untruncated variable Y). The mean of X is yet another parameter

τ = ψ′k,α(θ) (10)

which is called the mean value parameter of the family. The fact that

dτ

dθ
= vark,α,θ(X)

is necessarily positive (because it is a variance) means the map θ 7→ τ is
one-to-one, an invertible change-of-parameter. We will make no use of this
fact. The only point of this paragraph is to stress that the mean of X is not
µ; the mean of X is τ .

3 Computing

As always, we wish to compute things, in this case the cumulant function
and its first two derivatives, without overflow or cancellation error. Problems
arise when µ is nearly zero or when µ is very large.

5

3.1 Cumulant Function

We consider (8) fairly behaved computationally. The computation of
log Prα,θ{Y > k} can be left to the relevant R function (ppois or pnbinom)
using the lower.tail = FALSE and log.p = TRUE optional arguments to
avoid cancellation error and overflow.

Any of the cumulant functions we are discussing are continuous, because
differentiable, and strictly increasing, because their derivatives are the mean
value parameters, which are strictly positive. It can be checked directly from
(6a) and (7a) that

ψα(θ) → 0, as θ → −∞
ψα(θ) → +∞, as θ → supΘα

where, of course, supΘα is zero for the negative binomial and +∞ for the
Poisson. It can also be checked directly that

Prα,θ{Y > k} → 0, as θ → −∞
Prα,θ{Y > k} → 1, as θ → supΘα

hence

log Prα,θ{Y > k} → −∞, as θ → −∞
log Prα,θ{Y > k} → 0, as θ → supΘα

Thus ψk,α, which is also continuous and strictly increasing (because its
derivative is strictly positive), goes from −∞ to +∞ as θ goes from the
lower end of Θα to the upper end.

Since the addition in the computation of (8) involves terms of opposite
sign, ψk,α(θ) positive and log Prα,θ{Y > k} negative, cancellation error may
occur. Also overflow to -Inf or Inf (if the machine arithmetic is IEEE, as is
true with most machines nowadays) may occur when θ is near an endpoint
of Θα,

What cannot happen is that we get -Inf + Inf = NaN (in IEEE arith-
metic) because when the first term is large, the second is near zero, and vice
versa. Thus we regard whatever cancellation error occurs as not a prob-
lem. There seems to be nothing that can be done about it if we use the
floating-point arithmetic native to the machine.

3.2 First Derivative of Cumulant Function

In evaluating derivatives of (8), we have no problem evaluating deriva-
tives of ψα(θ). The only problematic part is derivatives of log Prα,θ{Y > k}.
Since we have no formulas for that, we proceed differently.

6

From (9a) we have

ψ′k,α(θ) = Eα,θ{Y | Y > k}

=
Eα,θ{Y I(Y > k)}

Prα,θ{Y > k}

where Y denotes a random variable having the corresponding untruncated
distribution, and I(Y > k) is one if Y > k and zero otherwise. There being
no functions that evaluate expectations with respect to Poisson and negative
binomial distributions, we need to rewrite this in terms of probabilities using
special properties of each distribution.

3.2.1 Poisson

E∞,θ{Y I(Y > k)} =
∞∑

y=k+1

µy

(y − 1)!
e−µ

= µPr∞,θ{Y ≥ k}

(11)

Hence

E∞,θ{Y | Y > k} =
µPr∞,θ{Y ≥ k}
Pr∞,θ{Y > k}

= µ+
µPr∞,θ{Y = k}
Pr∞,θ{Y > k}

= µ+
µk+1e−µ/k!

µk+1e−µ/(k + 1)! + Pr∞,θ{Y > k + 1}

= µ+
k + 1

1 + Pr∞,θ{Y >k+1}
Pr∞,θ{Y =k+1}

To simplify notation we give the fraction in the denominator a name

β =
Prα,θ{Y > k + 1}
Prα,θ{Y = k + 1}

(12)

(We use subscript α because we will use the same definition of β for both
cases. The Poisson case has α = ∞.) Then

ψ′k,∞(θ) = µ+
k + 1
1 + β

(13)

7

We are pleased with this formula, which took a bit of formula bashing to
find, since it behaves very well computationally.

Since both terms in (13) are positive, we never have cancellation error.
When µ is near zero, we have β near zero, and (13) calculates a result
near k + 1 accurately. When µ is large, we have β also large, and (13)
calculates a result near µ accurately. The result may overflow (to Inf in
IEEE arithmetic), but only when µ itself is near overflow.

3.2.2 Negative Binomial

Eα,θ{Y I(Y > k)} =
∞∑

y=k+1

y
Γ(y + α)
Γ(α)y!

pα(1− p)y

= (1− p)
∞∑

y=k+1

(y − 1 + α)
Γ(y − 1 + α)
Γ(α)(y − 1)!

pα(1− p)y−1

= (1− p)Eα,θ{(Y + α)I(Y ≥ k)}
= (1− p)Eα,θ{Y I(Y ≥ k)}+ α(1− p) Prα,θ{Y ≥ k}
= (1− p)Eα,θ{Y I(Y > k)}+ k(1− p) Prα,θ{Y = k}

+ α(1− p) Prα,θ{Y ≥ k}

Moving the term containing the expectation (rather than probability) from
the right hand side to the left, we obtain

pEα,θ{Y I(Y > k)} = k(1− p) Prα,θ{Y = k}+ α(1− p) Prα,θ{Y ≥ k}
= (k + α)(1− p) Prα,θ{Y = k}+ α(1− p) Prα,θ{Y > k}

(14)

and have expressed this expectation in terms of probability functions (which
are implemented in R).

Hence

Eα,θ{Y | Y > k} =
α(1− p)

p
+

(k + α)(1− p) Prα,θ{Y = k}
pPrα,θ{Y > k}

= µ+
(k + α)(1− p) Prα,θ{Y = k}

pPrα,θ{Y > k}

(15)

8

We work on

(1− p)(k + α) Prα,θ{Y = k} = (1− p)(k + α)
Γ(k + α)
Γ(α)k!

pα(1− p)k

=
Γ(k + 1 + α)

Γ(α)k!
pα(1− p)k+1

= (k + 1)
Γ(k + 1 + α)
Γ(α)(k + 1)!

pα(1− p)k+1

= (k + 1) Prα,θ{Y = k + 1}

Hence

Eα,θ{Y | Y > k} = µ+
(k + 1) Prα,θ{Y = k + 1}

pPrα,θ{Y > k}

= µ+
(k + 1)

p+ p
Prα,θ{Y >k+1}
Prα,θ{Y =k+1}

Defining β by (12) as in the Poisson case, we get

ψ′k,α(θ) = µ+
k + 1

p(1 + β)
(16)

as our simple computational formula for the mean value parameter in the
negative binomial case. Formula (16) is not as well behaved as its Pois-
son analogue (13), but only in that we can have p underflow to zero and
Prα,θ{Y = k + 1} also underflow to zero, giving a possible NaN result for
p(1 + β). However, when p underflows to zero, µ evaluates to Inf, and
hence (16), being the sum of positive terms should evaluate to Inf as well.
Thus, if we simply return Inf when computing (16) and p == 0.0, we avoid
NaN and produce a correct result. We may produce Inf, but consider that
not a problem.

In testing (Section 3.4 below) we discovered another issue. The R func-
tions pnbinom and dnbinom just punt on very small µ and so β can be
calculated as 0.0 / 0.0 = NaN when µ is very near zero (and θ very large

9

negative). What should we get in this case? From (12)

β =
Prα,θ{Y > k + 1}
Prα,θ{Y = k + 1}

=

∑∞
y=k+2

Γ(y+α)
Γ(α)y! p

α(1− p)y

Γ(k+1+α)
Γ(α)(k+1)!p

α(1− p)k+1

=
(k + 1)!

Γ(k + 1 + α)

∞∑
y=k+2

Γ(y + α)
y!

(1− p)y−(k+1)

Now 1 − p → 0 as µ → 0 and the sum in the last expression converges to
zero (by dominated convergence). Thus we should replace NaN calculated
for β when µ is near zero by zero.

3.3 Second Derivative of Cumulant Function

We obtain a formula for the second derivative of ψk,α by differentiating
our computationally stable formulas (13) and (16) and using

∂µ

∂θ
= ψ′′α(θ)

for which we already have the formulas (6c) and (7c) so we only need for-
mulas for the derivatives of the second terms on the right hand sides of (13)
and (16).

3.3.1 Poisson

∂

∂θ

(
k + 1
1 + β

)
= − k + 1

(1 + β)2
· ∂β
∂θ

10

and
∂β

∂θ
=

∂

∂θ

(
Pr∞,θ{Y > k + 1}
Pr∞,θ{Y = k + 1}

)
=

∂

∂θ

∞∑
y=k+2

e[y−(k+1)]θ(k + 1)!
y!

=
∞∑

y=k+2

[y − (k + 1)]
e[y−(k+1)]θ(k + 1)!

y!

=
E∞,θ{[Y − (k + 1)]I(Y > k + 1)}

Pr∞,θ{Y = k + 1}

=
E∞,θ{Y I(Y > k + 1)} − (k + 1) Pr∞,θ{Y > k + 1}

Pr∞,θ{Y = k + 1}

=
µPr∞,θ{Y ≥ k + 1} − (k + 1) Pr∞,θ{Y > k + 1}

Pr∞,θ{Y = k + 1}

the preceding step resulting from plugging in (11)

=
µPr∞,θ{Y = k + 1}+ [µ− (k + 1)] Pr∞,θ{Y > k + 1}

Pr∞,θ{Y = k + 1}

= µ

(
1 + β − k + 1

µ
β

)
Putting this all together we get

ψ′′k,∞(θ) = µ

[
1− k + 1

1 + β

(
1− k + 1

µ
· β

1 + β

)]
(17)

The only particular care required in evaluating (17) is to evaluate β/(1+β)
as written when β is small but as 1/(1/β + 1) when β is large.

3.3.2 Negative Binomial

∂

∂θ

(
k + 1

p(1 + β)

)
= − k + 1

(1 + β)2

(
∂p

∂θ
(1 + β) + p

∂β

∂θ

)
and

∂p

∂θ
=

∂

∂θ
(1− eθ)

= −eθ

= −(1− p)

11

and

∂β

∂θ
=

∂

∂θ

∞∑
y=k+2

Γ(y+α)
Γ(α)y! p

α(1− p)y

Γ(k+1+α)
Γ(α)(k+1)!p

α(1− p)k+1

=
∂

∂θ

∞∑
y=k+2

Γ(y + α)
Γ(k + 1 + α)

· (k + 1)!
y!

· e[y−(k+1)]θ

=
∂

∂θ

∞∑
y=k+2

Γ(y + α)
Γ(k + 1 + α)

· (k + 1)!
y!

· (1− p)y−(k+1) · [y − (k + 1)]

=
Eα,θ{[Y − (k + 1)]I(Y > k + 1)}

Prα,θ{Y = k + 1}

So

p
∂β

∂θ
=
pEα,θ{[Y − (k + 1)]I(Y > k + 1)}

Prα,θ{Y = k + 1}

=
pEα,θ{Y I(Y > k + 1)} − p(k + 1) Prα,θ{Y > k + 1}

Prα,θ{Y = k + 1}

which using (14) becomes

=
1

Prα,θ{Y = k + 1}
[
(k + 1 + α)(1− p) Prα,θ{Y = k + 1}

+ α(1− p) Prα,θ{Y > k + 1} − p(k + 1) Prα,θ{Y > k + 1}
]

=
1

Prα,θ{Y = k + 1}
[
(k + 1 + α)(1− p) Prα,θ{Y = k + 1}

+ [α− p(k + 1 + α)] Prα,θ{Y > k + 1}
]

= (k + 1 + α)(1− p) + [α− p(k + 1 + α)]β

Putting everything together we get

ψ′′k,α(θ) = ψ′′α(θ)− k + 1
[p(1 + β)]2

[
∂p

∂θ
(1 + β) + p

∂β

∂θ

]
= ψ′′α(θ)− k + 1

[p(1 + β)]2
[
−(1− p)(1 + β)

+ (k + 1 + α)(1− p) + [α− p(k + 1 + α)]β
]

= ψ′′α(θ)− k + 1
p2(1 + β)

[
−(1− p)

+
(k + 1 + α)(1− p)

1 + β
+ [α− p(k + 1 + α)]

β

1 + β

]
(18)

12

As with (17) the only particular care needed with (18) is in carefully calcu-
lating β/(1 + β).

3.4 Checks

We do a few examples to check the formulas.

3.4.1 Poisson

> k <- 2

> theta <- seq(-100, 100, 10)

> psi <- function(theta) {

+ mu <- exp(theta)

+ mu + ppois(k, lambda = mu, lower.tail = FALSE, log.p = TRUE)

+ }

> tau <- function(theta) {

+ mu <- exp(theta)

+ beeta <- ppois(k + 1, lambda = mu, lower.tail = FALSE)/dpois(k +

+ 1, lambda = mu)

+ mu + (k + 1)/(beeta + 1)

+ }

> qux <- function(theta) {

+ mu <- exp(theta)

+ beeta <- ppois(k + 1, lambda = mu, lower.tail = FALSE)/dpois(k +

+ 1, lambda = mu)

+ pbeeta <- ifelse(beeta < 1, beeta/(1 + beeta), 1/(1/beeta +

+ 1))

+ mu * (1 - (k + 1)/(beeta + 1) * (1 - (k + 1)/mu *

+ pbeeta))

+ }

First we check the derivative property.

> epsilon <- 1e-06

> pfoo <- tau(theta)

> pbar <- (psi(theta + epsilon) - psi(theta))/epsilon

> all.equal(pfoo, pbar, tolerance = 10 * epsilon)

[1] TRUE

> pfoo <- qux(theta)

> pbar <- (tau(theta + epsilon) - tau(theta))/epsilon

> all.equal(pfoo, pbar, tolerance = 10 * epsilon)

13

[1] TRUE

Then we check the mean property.

> theta <- seq(log(0.01), log(100), length = 51)

> pfoo <- tau(theta)

> pqux <- qux(theta)

> pbar <- double(length(theta))

> pbaz <- double(length(theta))

> for (i in seq(along = theta)) {

+ mu <- exp(theta[i])

+ xxx <- seq(0, 10000)

+ ppp <- dpois(xxx, lambda = mu)

+ ppp[xxx <= k] <- 0

+ ppp <- ppp/sum(ppp)

+ pbar[i] <- sum(xxx * ppp)

+ pbaz[i] <- sum((xxx - pbar[i])^2 * ppp)

+ }

> all.equal(pfoo, pbar)

[1] TRUE

> all.equal(pqux, pbaz)

[1] TRUE

3.4.2 Negative Binomial

> k <- 2

> alpha <- 2.22

> mu <- 10^seq(-2, 2, 0.1)

> theta <- log(mu) - log(mu + alpha)

> psi <- function(theta) {

+ stopifnot(all(theta < 0))

+ mu <- (-alpha * exp(theta)/expm1(theta))

+ alpha * log1p(1/expm1(-theta)) + pnbinom(k, size = alpha,

+ mu = mu, lower.tail = FALSE, log.p = TRUE)

+ }

> tau <- function(theta) {

+ stopifnot(all(theta < 0))

+ mu <- (-alpha * exp(theta)/expm1(theta))

14

+ p <- alpha/(mu + alpha)

+ beetaup <- pnbinom(k + 1, size = alpha, mu = mu,

+ lower.tail = FALSE)

+ beetadn <- dnbinom(k + 1, size = alpha, mu = mu)

+ beeta <- beetaup/beetadn

+ beeta[beetaup == 0] <- 0

+ result <- mu + (k + 1)/(beeta + 1)/p

+ result[p == 0] <- Inf

+ return(result)

+ }

> qux <- function(theta) {

+ stopifnot(all(theta < 0))

+ mu <- (-alpha * exp(theta)/expm1(theta))

+ p <- alpha/(mu + alpha)

+ omp <- mu/(mu + alpha)

+ beetaup <- pnbinom(k + 1, size = alpha, mu = mu,

+ lower.tail = FALSE)

+ beetadn <- dnbinom(k + 1, size = alpha, mu = mu)

+ beeta <- beetaup/beetadn

+ beeta[beetaup == 0] <- 0

+ pbeeta <- ifelse(beeta < 1, beeta/(1 + beeta), 1/(1/beeta +

+ 1))

+ alpha * omp/p^2 - (k + 1)/p^2/(1 + beeta) * (-omp +

+ (k + 1 + alpha) * omp/(1 + beeta) + (alpha -

+ p * (k + 1 + alpha)) * pbeeta)

+ }

First we check the derivative property.

> epsilon <- 1e-06

> pfoo <- tau(theta)

> pbar <- (psi(theta + epsilon) - psi(theta))/epsilon

> all.equal(pfoo, pbar, tolerance = 20 * epsilon)

[1] TRUE

> pfoo <- qux(theta)

> pbar <- (tau(theta + epsilon) - tau(theta))/epsilon

> all.equal(pfoo, pbar, tolerance = 40 * epsilon)

[1] TRUE

15

Then we check the mean property.

> pfoo <- tau(theta)

> pqux <- qux(theta)

> pbar <- double(length(theta))

> pbaz <- double(length(theta))

> for (i in seq(along = theta)) {

+ mu <- (-alpha * exp(theta[i])/expm1(theta[i]))

+ xxx <- seq(0, 10000)

+ ppp <- dnbinom(xxx, size = alpha, mu = mu)

+ ppp[xxx <= k] <- 0

+ ppp <- ppp/sum(ppp)

+ pbar[i] <- sum(xxx * ppp)

+ pbaz[i] <- sum((xxx - pbar[i])^2 * ppp)

+ }

> all.equal(pfoo, pbar)

[1] TRUE

> all.equal(pqux, pbaz)

[1] TRUE

4 Random Variate Generation

To simulate a k-truncated random variate, the simplest method rejec-
tion sampling with“proposal”the corresponding untruncated random variate
(assuming code to simulate that already exists), that is we simulate Y from
the untruncated distribution of the same family having the same parameter
values and accept only Y satisfying Y > k.

Although this works well when µ = Eα,θ(Y) is large, it works poorly
when µ/(k + 1) is small.

A more general proposal simulates Y from some nonnegative integer val-
ued distribution for which simulation code exists. We then defineX = Y +m
for some integerm and acceptX satisfyingX > k with some probability a(x)
determined by the rejection sampling algorithm. Necessarily 0 ≤ m ≤ k+1.
Otherwise rejection sampling is not possible.

4.1 Negative Binomial

We start with the negative binomial because it is harder, having fewer
algorithms that are analyzable.

16

4.1.1 Algorithm

Suppose Y is negative binomial with parameters α∗ and p∗ and X is
k-truncated negative binomial with parameters α and p. The “proposal” is
Y +m and the “target” distribution is that of X. (After much analysis, it
turns out that there is no advantage obtained by allowing p∗ 6= p. Hence we
consider only the case p∗ = p.)

Then the ratio of target PMF to proposal PMF is proportional to (drop-
ping terms that do not contain x)

r(x) =
Γ(x+ α)

x!
· (x−m)!
Γ(x−m+ α∗)

· I(x > k)

Since the gamma functions are fairly obnoxious when α and α∗ are arbitrary,
we need to enforce some relationship. We try the simplest, α∗ = α+m, which
makes them cancel. Then

r(x) =
(x−m)!

x!
· I(x > k)

is a decreasing function of x. Then the acceptance probability can be taken
to be

a(x) =
r(x)

r(k + 1)
=

(x−m)!
x!

· (k + 1)!
(k + 1−m)!

· I(x > k)

4.1.2 Performance

Now the question arises whether we can calculate the performance of
the the algorithm, which is characterized by its acceptance rate (expected
acceptance probability) E∗{a(Y +m)} where E∗ denotes expectation with
respect to the distribution of Y where Y +m is the proposal, that is,

ρ(m) =
∞∑

y=0

a(y +m)
Γ(y +m+ α)
Γ(m+ α)y!

pm+α(1− p)y

17

(we used α∗ = m+ α)

=
∞∑

y=0

(y +m−m)!
(y +m)!

· (k + 1)!
(k + 1−m)!

· I(y +m > k)

× Γ(y +m+ α)
Γ(m+ α)y!

pm+α(1− p)y

=
(k + 1)!

(k + 1−m)!

∞∑
y=k+1−m

Γ(y +m+ α)
Γ(m+ α)(y +m)!

pm+α(1− p)y

=
(k + 1)!

(k + 1−m)!

∞∑
x=k+1

Γ(x+ α)
Γ(m+ α)x!

pm+α(1− p)x−m

=
(k + 1)!

(k + 1−m)!
· Γ(α)
Γ(m+ α)

·
(

p

1− p

)m ∞∑
x=k+1

Γ(x+ α)
Γ(α)x!

pα(1− p)x

=
(k + 1)!

(k + 1−m)!
· Γ(α)
Γ(m+ α)

·
(

p

1− p

)m

· Prα,p{Y > k}

Now
ρ(m+ 1)
ρ(m)

=
k + 1−m

m+ α
· p

1− p

This is greater than one (so it pays to increase m) if and only if

m+ α < (k + 1 + α)p

Hence we set
m = d(k + 1 + α)p− αe

or zero, whichever is greater.

4.1.3 Checks

There are a lot of thing to check about our analysis. First we need to
check that we actually have a valid rejection sampling algorithm.

> alpha <- 2.22

> p <- 0.5

> k <- 20

> m <- max(ceiling((k + 1 + alpha) * p - alpha), 0)

> m

18

[1] 10

> nsim <- 1e+06

> y <- rnbinom(nsim, size = alpha + m, prob = p)

> xprop <- y + m

> aprop <- exp(lfactorial(y) - lfactorial(xprop) + lfactorial(k +

+ 1) - lfactorial(k + 1 - m)) * as.numeric(xprop >

+ k)

> max(aprop)

[1] 1

> x <- xprop[runif(nsim) < aprop]

> n <- length(x)

> fred <- tabulate(x)

> xfred <- seq(along = fred)

> pfred <- dnbinom(xfred, size = alpha, prob = p)

> pfred[xfred <= k] <- 0

> pfred <- pfred/sum(pfred)

> mfred <- max(xfred[n * pfred > 5])

> o <- fred

> o[mfred] <- sum(o[seq(mfred, length(fred))])

> o <- o[seq(k + 1, mfred)]

> e <- n * pfred

> e[mfred] <- sum(e[seq(mfred, length(fred))])

> e <- e[seq(k + 1, mfred)]

> chisqstat <- sum((o - e)^2/e)

> pchisq(chisqstat, lower.tail = FALSE, df = length(o))

[1] 0.7497403

Seems to be o. k. (This number changes every time Sweave is run due to
randomness in the simulation.)

Next we check that our performance formula is correct.

> length(x)/nsim

[1] 0.17628

> rho <- function(m, p) {

+ exp(lfactorial(k + 1) - lfactorial(k + 1 - m) + lgamma(alpha) -

19

+ lgamma(m + alpha) + m * (log(p) - log1p(-p)) +

+ pnbinom(k, size = alpha, prob = p, lower.tail = FALSE,

+ log.p = TRUE))

+ }

> rho(m, p)

[1] 0.1765559

Finally, we check the performance of the algorithm over the range of
mean values for which it may have trouble, from zero to a little more than
k.

> mu <- seq(0.01, k + 5, 0.01)

> p <- alpha/(alpha + mu)

> m <- pmax(ceiling((k + 1 + alpha) * p - alpha), 0)

> r <- rho(m, p)

Figure 1 (page 21) shows the performance as a function of µ.
The performance is not great, but it will have to do until we find a better

algorithm.

4.2 Poisson

We now work out the analogous algorithm for the Poisson distribution.

4.2.1 Algorithm

It is clear that taking limits as α→∞ that the analogous algorithm for
Poisson variates is as follows. The target distribution is k-truncated Poisson
with untruncated mean µ. The proposal is Y +m, where Y is untruncated
Poisson with mean µ.

Then the ratio of target PMF to proposal PMF is proportional to (drop-
ping terms that do not contain x)

r(x) =
(x−m)!

x!
· I(x > k)

This is a decreasing function of x. So the acceptance probability can be
taken to be

a(x) =
r(x)

r(k + 1)
=

(k + 1)!
(k + 1−m)!

· (x−m)!
x!

· I(x > k)

20

0 5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

µµ

ac
ce

pt
an

ce
 r

at
e

Figure 1: Performance of our algorithm for simulating k-truncated negative
binomial with k = 20, α = 2.22 and µ plotted.

21

4.2.2 Performance

To understand the performance of this algorithm, hence to understand
how to chose m, we need to calculate the acceptance rate

ρ(m) = E∗{a(Y +m)}

=
∞∑

y=0

a(y +m)
µy

y!
e−µ

=
∞∑

y=0

(k + 1)!
(k + 1−m)!

· (y +m−m)!
(y +m)!

· I(y +m > k) · µ
y

y!
e−µ

=
(k + 1)!

(k + 1−m)!

∞∑
y=k+1−m

µy

(y +m)!
e−µ

=
(k + 1)!

(k + 1−m)!
· µ−m

∞∑
x=k+1

µx

x!
e−µ

=
(k + 1)!

(k + 1−m)!
· µ−m · Pr∞,µ{Y > k}

Everything is fixed in our formula for acceptance rate except m, which
we many choose to be any integer 0 ≤ m ≤ k + 1. Consider

ρ(m+ 1)
ρ(m)

=
(k + 1−m)

µ
.

This is greater than one (so it pays to increase m) when

k + 1−m < µ.

Hence we set
m = dk + 1− µe

or zero, whichever is greater.

4.2.3 Checks

There are a lot of thing to check about our analysis. First we need to
check that we actually have a valid rejection sampling algorithm.

> mu <- 2.22

> k <- 20

> m <- max(ceiling(k + 1 - mu), 0)

> m

22

[1] 19

> nsim <- 1e+06

> y <- rpois(nsim, lambda = mu)

> xprop <- y + m

> aprop <- exp(lfactorial(y) - lfactorial(xprop) + lfactorial(k +

+ 1) - lfactorial(k + 1 - m)) * as.numeric(xprop >

+ k)

> max(aprop)

[1] 1

> x <- xprop[runif(nsim) < aprop]

> n <- length(x)

> fred <- tabulate(x)

> xfred <- seq(along = fred)

> pfred <- dpois(xfred, lambda = mu)

> pfred[xfred <= k] <- 0

> pfred <- pfred/sum(pfred)

> mfred <- max(xfred[n * pfred > 5])

> o <- fred

> o[mfred] <- sum(o[seq(mfred, length(fred))])

> o <- o[seq(k + 1, mfred)]

> e <- n * pfred

> e[mfred] <- sum(e[seq(mfred, length(fred))])

> e <- e[seq(k + 1, mfred)]

> chisqstat <- sum((o - e)^2/e)

> pchisq(chisqstat, lower.tail = FALSE, df = length(o))

[1] 0.4244595

Seems to be o. k. (This number changes every time Sweave is run due to
randomness in the simulation.)

Next we check that our performance formula is correct.

> length(x)/nsim

[1] 0.29748

> rho <- function(m, mu) {

+ exp(lfactorial(k + 1) - lfactorial(k + 1 - m) - m *

23

+ log(mu) + ppois(k, lambda = mu, lower.tail = FALSE,

+ log.p = TRUE))

+ }

> rho(m, mu)

[1] 0.2975126

Finally, we check the performance of the algorithm over the range of
mean values for which it may have trouble, from zero to a little more than
k.

> mu <- seq(0.01, k + 5, 0.01)

> m <- pmax(ceiling(k + 1 - mu), 0)

> r <- rho(m, mu)

Figure 2 (page 25) shows the performance as a function of µ.

> kseq <- c(0, 1, 2, 20, 100)

> mseq <- double(length(kseq))

> for (i in seq(along = kseq)) {

+ k <- kseq[i]

+ mu <- seq(0.01, k + 5, 0.01)

+ m <- pmax(ceiling(k + 1 - mu), 0)

+ r <- rho(m, mu)

+ mseq[i] <- min(r)

+ }

The performance of this algorithm seems to be fine for small k. However
the worst case acceptance rate, which occurs for µ between k/4 and k/2,
does seem to go to zero as k goes to infinity. For a zero-truncated Poisson
distribution the worst case acceptance rate is 63.2%. For a two-truncated
Poisson distribution the worst case acceptance rate is 48.2%. For a twenty-
truncated Poisson distribution the worst case acceptance rate is 21.7%. For
a one-hundred-truncated Poisson distribution the worst case acceptance rate
is 10.2%.

24

0 5 10 15 20 25

0.
2

0.
4

0.
6

0.
8

1.
0

µµ

ac
ce

pt
an

ce
 r

at
e

Figure 2: Performance of our algorithm for simulating k-truncated poisson
with k = 20 and µ plotted.

25

