
cluster.Gen(clusterSim) 
 

Random cluster generation with known structure of clusters 
 

Models 
Metric data (dataType="m") 

model=1. No cluster structure. The observations are simulated from the uniform distribution 
over the unit hypercube. 

model=2. The observations are independently drawn from normal distribution with means and 
covariances are taken from arguments means and cov. 

model=3. Two elongated clusters in 2 dimensions. The observations in each of two clusters are 
independent bivariate normal random variables with means (0, 0), (1, 5), and covariance matrix ∑  
( 1=jjσ , 90.−=jlσ ). 

model=4. Three elongated clusters in 2 dimensions. The observations are independently drawn 
from bivariate normal distribution with means (0, 0), (1.5, 7), (3, 14) and covariance matrix ∑  
( 1=jjσ , 90.−=jlσ ). 

model=5. Three elongated clusters in 3 dimensions. The observations are independently drawn 
from multivariate normal distribution with means (1.5, 6, –3), (3, 12, –6), (4.5, 18, –9), and identity 
covariance matrix , where ∑ 1=jjσ  ( )31 ≤≤ j , 901312 .−== σσ , and 9023 .=σ . 

model=6. Five clusters in 2 dimensions that are not well separated. The observations are inde-
pendently drawn from bivariate normal distribution with means (5, 5), (–3, 3), (3, –3), (0, 0), (–5, –
5), and identity covariance matrix ∑  ( 1=jjσ , 90.=jlσ ). 

model=7. Five clusters in 3 dimensions that are not well separated. The observations are inde-
pendently drawn from multivariate normal distribution with means (5, 5, 5), (–3, 3, –3), (3, –3, 3), 
(0, 0, 0), (–5, –5, –5), and covariance matrix ∑ , where 1=jjσ  ( )31 ≤≤ j , and 90.=jlσ  
(1 ). 3≤≠≤ lj

model=8. Five clusters in 2 dimensions. The observations are independently drawn from biva-
riate normal distribution with means (0, 0), (0, 10), (5, 5), (10, 0), (10, 10), and identity covariance 
matrix ∑  ( 1=jjσ , 0=jlσ ). 

model=9. Five clusters in 3 dimensions. The observations are independently drawn from multi-
variate normal distribution with means (0, 0, 0), (10, 10, 10), (–10, –10, –10), (10, –10, 10), (–10, 
10, 10), and identity covariance matrix ∑ , where 3=jjσ  ( )31 ≤≤ j , and 2=jlσ  ( 31 ≤≠≤ lj ). 

model=10. Four clusters in 2 dimensions. The observations are independently drawn from bi-
variate normal distribution with means (–4, 5), (5, 14), (14, 5), (5, –4), and identity covariance ma-
trix  (∑ 1=jjσ , 0=jlσ ). 

model=11. Four clusters in 3 dimensions. The observations are independently drawn from mul-
tivariate normal distribution with means (–4, 5, –4), (5, 14, 5), (14, 5, 14), (5, –4, 5), and identity 
covariance matrix , where ∑ 1=jjσ  ( )31 ≤≤ j , and 0=jlσ  ( 31 ≤≠≤ lj ). 

model=12. Four clusters in 1 dimension. The observations are independently drawn from un-
ivariate normal distribution with means –2, 4, 10, 16 respectively, and identity variance  
( . 

502 .=jσ
)41 ≤≤ j

model=13. Three elongated clusters in 2 dimensions. The observations are independently 
drawn from bivariate normal distribution with means (0, 0), (1.5, 7), (3, 14) and covariance matrices 
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model=14. Four clusters in 3 dimensions. The observations are independently drawn from mul-
tivariate normal distribution with means (–4, 5, –4), (5, 14, 5), (14, 5, 14), (5, –4, 5), and covariance 
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model=15. Five clusters in 3 dimensions that are not well separated. The observations are in-
dependently drawn from multivariate normal distribution with means (5, 5, 5), (–3, 3, –3), (3, –3, 

3), (0, 0, 0), (–5, –5, –5), and covariance matrices , , 
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model=16. Two elongated clusters in 2 dimensions. The observations in each of two clusters 
are independent bivariate normal random variables with means (0, 0), (1, 5), and covariance matric-
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model=21,22,... – if fixedCov=TRUE means should be read from 
means_<modelNumber>.csv and covariance matrix for all clusters should be read from 
cov_<modelNumber>.csv and if fixedCov=FALSE means should be read from 
means_<modelNumber>.csv and covariance matrices should be read separately for each cluster 
from cov_<modelNumber>_<clusterNumber>.csv, e.g. (inputType="csv") 
 

means_21.csv 
"V1","V2" 
"1",4,8 
"2",0,4   

cov_21_1.csv 
"V1","V2" 
"1",1.0,0.9 
"2",0.9,1.0

cov_21_2.csv 
"V1","V2" 
"1",1.0,-0.9 
"2",-0.9,1.0

 
Ordinal data (dataType="o"). The clusters in models 1, 2, ... contain continuous data and a 

discretization process is performed on each variable to obtain ordinal data. The number of catego-

ries  determines the width of each class intervals:jk [ ] jijiiji
kxx }{min){max − . Independently for 

each variable each class interval receive category  and the actual value of variable  is re-
placed by these categories. 

jk,,1K ijx

Symbolic interval data (dataType="s"). To obtain symbolic interval data the data were gen-
erated for each model twice into sets A and B and minimal (maximal) value of {  is treated as 
the beginning (the end) of an interval. 
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Noisy variables. The noisy variables are simulated independently from the uniform distribution. 

We require that the variations of noisy variables in the generated data are similar to non-noisy va-
riables (see Milligan [1985], Qiu and Joe [2006], p. 322). 

Outliers (for metric and symbolic interval data only). The outliers are generated independently 
for each variable for the whole data set from uniform distribution (the default range is [1, 10]). The 
generated values are randomly added to maximum of j-th variable or subtracted from minimum of j-
th variable.  
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