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1 Potentials and operations on these

Consider a set ∆ = {δ1, . . . , δR} of discrete variables where δr has a finite set Ir of levels. Let
|Ir| denote the number of levels of δr and let ir ∈ Ir denote a value of δr. A configuration of
the variables in ∆ is then i = (i1, . . . , iR) ∈ I1×. . .×IR. The total number of configurations
is then |∆| =

∏
r |Ir|. Let U be a non–empty subsets of ∆ with configurations IU and let

iU denote a specific configuration.

A potential TU defined on IU is a non–negative function, i.e. TU(iU) ≥ 0 for all iU ∈ IU .

Let U and V be non–empty subsets of ∆ with configurations IU and IV and let T 1
U and T 2

V

be corresponding potentials.

The product (quotient) of T 1
U and T 2

V are potentials defined on U ∪ V given by

TU∪V := T 1
U × T 2

V and TU∪V := T 1
U/T

2
V

respectively, with the convention that 0/0 = 0. If V ⊂ U is non–empty1 then marginaliza-
tion of T 1

U onto V is defined as
T 1

V :=
∑
U\V

T 1
U

1Marginalization onto an empty set is not implemented.
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1.1 Implementation of potentials

Potentials are represented by ptab objects which are defined as part of the gRain package.
ptab objects are essentially arrays, and the only reason for not simply working with arrays
implementing a special class is a pure technicality: Two–dimensional arrays are (correctly)
in some respects regarded as matrices while one–dimensional arrays are (correctly) in some
respects regarded as vectors. For our purpose we need a class of objects which are regarded
as being of the same type irrespectively of their dimension. However we may for all practical
purposes think of ptab objects as arrays.

1.2 Examples

ptab objects can be created as:

> yn <- c("y", "n")

[1] "y" "n"

> a.1 <- ptab("asia", list(yn), values = c(1, 99))

asia

y n

1 99

> t.a.1 <- ptab(c("tub", "asia"), list(yn, yn), values = c(5, 95, 1, 99))

asia

tub y n

y 5 1

n 95 99

Tables can be normalized in two ways: Either the values are normalized over all configu-
rations to sum to one as

> a.2 <- ptab("asia", list(yn), values = c(1, 99), normalize = "all")

asia

y n

0.01 0.99

Alternatively normalization can be over the first variable for each configuration of all other
variables as

> t.a.2 <- ptab(c("tub", "asia"), list(yn, yn), values = c(5, 95, 1, 99), normalize = "first")

asia

tub y n

y 0.05 0.01

n 0.95 0.99
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1.3 Operations on potentials

Multiplication and division of potentials is implented as follows. Consider multiplication
of φU and ψV .

The vectors, say TU and TV , containing the values of the potentials are given a dimension
attribute, i.e. are turned into arrays.

Assume first that V ⊂ U . Then we reorder the elements of TU to match with those of
T , symbolically as (V, U \ V ) so that we have tables TV into TV,U\V accordingly. This
operation is fast with the aperm() function which is implemented in C. We can then form
the product TV,U\V TV directly because the elements of TV are recycled to match the length
of TV,U\V . If V is not a subset of U then we expand the domain of TU into TV,U\V by first
permuting the array with aperm() and then repeating the entries a suitable number of
times and then carry out the multiplications as above.

Marginalization is similarly based on using apply() where summation is over a specific set
of dimensions.

1.4 Examples

Hence we can calculate the joint, the marginal and the conditional distributions as

> ta.1 <- arrayop(t.a.1, a.1, op = "*")

> ta.1

tub

asia y n

y 5 95

n 99 9801

> arraymarg(ta.1, "tub")

tub

y n

104 9896

> arrayop(ta.1, arraymarg(ta.1, "tub"), op = "/")

asia

tub y n

y 0.048076923 0.9519231

n 0.009599838 0.9904002

The ptab function takes a smooth argument which by default is 0. A non-zero value of
smooth implies that zeros in values are replaced by the value of smooth – before any
normalization is made, e.g.
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> ptab(c("tub", "asia"), list(c("y", "n"), c("y", "n")), values = c(0, 95, 0,

+ 99), normalize = "first", smooth = 1)

asia

tub y n

y 0.01041667 0.01

n 0.98958333 0.99

It is possible to take out a sub–array defined by specific dimensions being at specific
levels. This corresponds finding a specific slice of a multidimensional array: To find the
1–dimensional array defined by asia (variable 1) being “no” (at level 2) do:

> ta.1

tub

asia y n

y 5 95

n 99 9801

> subarray(ta.1, margin = 1, index = 2)

tub

y n

99 9801

1.5 Coercion

Coercion to to ptab is done by as.ptab. For example:

> v <- 1:4

> as.ptab(v)

V1

V11 V12 V13 V14

1 2 3 4

> names(v) <- c("a1", "a2", "a3", "a4")

> as.ptab(v)

V1

V11 V12 V13 V14

1 2 3 4
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> v <- array(1:4, c(4))

> as.ptab(v)

V1

V11 V12 V13 V14

1 2 3 4

> v <- array(1:4, c(4), dimnames = list(a = c("a1", "a2", "a3", "a4")))

> as.ptab(v)

a

a1 a2 a3 a4

1 2 3 4

> v <- array(1:4, c(2, 2))

> as.ptab(v)

V2

V1 V21 V22

V11 1 3

V12 2 4

> v <- array(1:4, c(2, 2), dimnames = list(a = c("a1", "a2"), b = c("b1", "b2")))

> as.ptab(v)

b

a b1 b2

a1 1 3

a2 2 4
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> v <- array(1:8, c(2, 2, 2))

> as.ptab(v)

, , V3 = V31

V2

V1 V21 V22

V11 1 3

V12 2 4

, , V3 = V32

V2

V1 V21 V22

V11 5 7

V12 6 8

> v <- array(1:4, c(2, 2, 2), dimnames = list(a = c("a1", "a2"), b = c("b1", "b2"),

+ c = c("c1", "c2")))

> as.ptab(v)

, , c = c1

b

a b1 b2

a1 1 3

a2 2 4

, , c = c2

b

a b1 b2

a1 1 3

a2 2 4
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