
On the Usage of the gRbase Package

Claus Dethlefsen
Aalborg Hospital, Aarhus University Hospital, Denmark

Søren Højsgaard
Aarhus University, Denmark

December 4, 2008

Contents

1 Introduction 1

2 A small sample session 2

3 The gmData class 3
3.1 Creating a gmData object from a data frame or a table 3
3.2 Creating a gmData object manually 4
3.3 Editing gmData objects . 5
3.4 Writing new conversion methods 5

4 The gModel class 6
4.1 Model editing . 7

1 Introduction

This document is a supplement to Dethlefsen and Højsgaard (2005) (hereafter
called CDSH) which is the formal reference to the gRbase package. In CDSH
several broader perspectives are outlined and references to litterature as well
as to software are given. The present document is more down to earth as it
describes what is actually working.

The core of gRbase is the gmData and gModel classes described below.

gmData objects: A fundamental element of gRbase is a common class for
representing data. No matter the actual representation of data, the important
characteristics are contained in a graphical metadata (gmData) object. It con-
tains the abstraction of data into a meta data object including variable names

1

and types etc. Also, it may be possible to work without data, which may be
valuable if the point of interest is in the model alone.

Separating the specification of the variables from data has the benefit, that
some properties of a model can be investigated without any reference to data,
for example decomposability and collapsibility. The gmData class is described
in Section 3.

In principle this allows for working with a reference to data, such as a database.
This enables modelling although data are unavailable at the time of modelling,
or if the data-amount is huge or if the data changes dynamically.

gModel objects: A gModel object links a model specification to a gmData
object. The model given by a model specification which can be quite arbitrary
but which might be a formula.

When defining a gModel object, no fitting is done. This is an important differ-
ence between model in gRbase and e.g. linear models in the function lm in R.
There are two reasons for this: First that some aspects of a model may be of
interest without any reference to data. Secondly once a model is to be fitted
to data, there may be several possible “engines” for doing so. For example, one
might fit a graphical Gaussian model with maximum likelihood or by working
with another type of estimating function. The gModel class is described in
Section 4.

Some features of gRbase will be illustrated in the present paper on the basis of
the rats dataset in the gRbase package. The rats dataset is from a hypothetical
drug trial, where the weight losses of male and female rats under three different
drug treatments have been measured after one and two weeks. The dataset is
provided in the gRbase package, and is further described in Edwards (2000).
We will also refer to the dataset HairEyeColor (Snee, 1974), included in R.

2 A small sample session

Before describing the core elements of gRbase, we present a sample session
intended to give the reader a feel for how an end user will use gRbase.

Creating a gmData object first, data are created as a gmData object from an
existing table object.

> library(gRbase)

> data(HairEyeColor)

> gmdHec <- as.gmData(HairEyeColor)

> gmdHec

varNames shortNames varTypes nLevels

Hair Hair H Discrete 4

Eye Eye E Discrete 4

Sex Sex S Discrete 2

2

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

> valueLabels(gmdHec)

$Hair

[1] "Black" "Brown" "Red" "Blond"

$Eye

[1] "Brown" "Blue" "Hazel" "Green"

$Sex

[1] "Male" "Female"

Then, the model with sex independent of hair-colour and eye-colour is defined,
fitted (with the loglm-engine) and finally the output is analysed using the anova
procedure to test the model against the saturated model.

> hecM1 <- hllm(~Hair * Eye + Sex, gmdHec)

> hecM1 <- fit(hecM1, engine = "loglm")

> anova(getFit(hecM1))

Call:

loglm(formula = loglm.formula, data = c(32, 53, 10, 3, 11, 50,

10, 30, 10, 25, 7, 5, 3, 15, 7, 8, 36, 66, 16, 4, 9, 34, 7, 64,

5, 29, 7, 5, 2, 14, 7, 8))

Statistics:

X^2 df P(> X^2)

Likelihood Ratio 19.85656 15 0.1775045

Pearson 19.56712 15 0.1891745

3 The gmData class

A gmData object contains, by default, information about variable names, vari-
able types, their labels, their levels (for discrete variables), and whether the
variables are latent or not. Unique abbreviations (short names) of the variable
names are created for ease of use when specifying model formulas. Besides, a
gmData object may contain data or a reference to data, but need not do so.

3.1 Creating a gmData object from a data frame or a table

Typically one will create a gmData object (with data) from a data frame as
follows. Section 2 showed how to do this for a table. For a data frame the
scheme is the same:

> data(rats)

> gmdRats <- as.gmData(rats)

> gmdRats

3

varNames shortNames varTypes nLevels

Sex Sex S Discrete 2

Drug Drug D Discrete 3

W1 W1 a Continuous NA

W2 W2 b Continuous NA

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

Observe, that when an object is printed, only the summary of the variables
are printed. Data and value labels are not displayed, but may be accessed
separately.

3.2 Creating a gmData object manually

A gmData object may be created with newgmData:

> gmdRatsNodata <- newgmData(varNames = c("Sex", "Drug", "W1", "W2"),

+ varTypes = c("Discrete", "Discrete", "Continuous", "Continuous"),

+ nLevels = c(2, 3, NA, NA), valueLabels = list(Sex = c("M", "F"),

+ Drug = c("D1", "D2", "D3")))

> gmdRatsNodata

varNames shortNames varTypes nLevels

Sex Sex S Discrete 2

Drug Drug D Discrete 3

W1 W1 a Continuous NA

W2 W2 b Continuous NA

To see the values of the factors use the 'valueLabels' function

> valueLabels(gmdRatsNodata)

$Sex

[1] "M" "F"

$Drug

[1] "D1" "D2" "D3"

Note that there is some redundancy in the specification above: The value of
nLevels can be deduced from valueLabels. Therefore nLevels needs not to
be specified. If valueLabels are not given, then default labels are created based
on nLevels. If neither nLevels nor valueLabels are given, then all discrete
variables are assumed to be binary. Following this convention we can write

> d <- newgmData(varNames = c("Sex", "Drug", "W1", "W2"), varTypes = c("Discrete",

+ "Discrete", "Continuous", "Continuous"))

> d

varNames shortNames varTypes nLevels

Sex Sex S Discrete 2

Drug Drug D Discrete 2

W1 W1 a Continuous NA

W2 W2 b Continuous NA

To see the values of the factors use the 'valueLabels' function

4

> valueLabels(d)

$Sex

[1] "Sex1" "Sex2"

$Drug

[1] "Drug1" "Drug2"

Valid variable types Default is that the valid variable types are as given by
the function validVarTypes():

> validVarTypes()

[1] "Discrete" "Ordinal" "Continuous"

The valid variable types can be extended. This could be of relevance if e.g.
a variable y takes only strictyly positive values and should be “read as” log y.
Then we can extend the valid variable types as:

> oldtypes <- validVarTypes()

> validVartypes <- function() c(oldtypes, "PosCont")

> validVartypes()

[1] "Discrete" "Ordinal" "Continuous" "PosCont"

3.3 Editing gmData objects

The information contained in a gmData object may be accessed or modified
by the methods: varTypes, varNames, nLevels, latent, valueLabels, and
observations. For example, to redefine the levels of the variable Sex, we can
do:

> observations(gmdRatsNodata) <- rats

> valueLabels(gmdRatsNodata)$Sex <- c("Male", "Female")

> valueLabels(gmdRatsNodata)

$Sex

[1] "Male" "Female"

$Drug

[1] "D1" "D2" "D3"

3.4 Writing new conversion methods

It is also possible to write conversion methods for other data types, if needed.
Suppose we have a 2× 2 table from cross classifying factors Aa and Bb and that
the counts (in some order) are 12, 20, 33 and 41. We may represent data as e.g.

> d <- list(varNames = c("Aa", "Bb"), nLevels = c(2, 2), counts = c(12,

+ 20, 33, 41))

> class(d) <- "countsList"

> d

5

$varNames

[1] "Aa" "Bb"

$nLevels

[1] 2 2

$counts

[1] 12 20 33 41

attr(,"class")

[1] "countsList"

A conversion method can be defined as

> as.gmData.countsList <- function(from) {

+ ans <- newgmData(varNames = from$varNames, nLevels = from$nLevels)

+ observations(ans) <- from$counts

+ return(ans)

+ }

Then we get:

> gd <- as.gmData(d)

varNames shortNames varTypes nLevels

Aa Aa A Discrete 2

Bb Bb B Discrete 2

To see the values of the factors use the 'valueLabels' function

To see the data use the 'observations' function

> valueLabels(gd)

$Aa

[1] "Aa1" "Aa2"

$Bb

[1] "Bb1" "Bb2"

> observations(gd)

[1] 12 20 33 41

4 The gModel class

The general class gModel contains a formula object and a gmData object. Im-
plementations of different specific graphical model classes can inherit from this
class and provide methods for parsing the formula. Here, we illustrate by im-
plementation of a class for hierarchical log–linear models, hllm.

For a hierarchical log–linear model, we use the following formula language. The
right hand side of the formula is a list of the generators separated by ’+’. A
generator is specified by variable names with separated by ’*’. Commonly used
models have short hand notations: saturated model (~.^.), main effects (~.^1),

6

all kth order interactions (~.^k). By an optional argument, marginal, it is
possible to specify a subset of the variables from the gmData object.
The saturated model

> m1 <- hllm(~.^., gmdHec)

> formula(m1)

~Hair * Eye * Sex

The model where sex is independent of hair- and eye-color

> m2 <- hllm(~Hair * Eye + Sex, gmdHec)

The model with all main effects

> m3 <- hllm(~.^1, gmdHec)

> formula(m3)

~Hair + Eye + Sex

The saturated model in the hair-eye marginal

> m4 <- hllm(~.^., gmdHec, marginal = c("Hair", "Eye"))

> formula(m4)

~Hair * Eye

Also, the gModel class will have associated methods for making inference, which
will be treated in Section ??.

4.1 Model editing

One important aspect of graphical modelling is the ability to interact with the
model. Editing the model means e.g. that edges are added or removed and the
resulting model is further investigated. The package developer needs to provide
the methods addEdge and dropEdge for his model class.

In addition, variables may be added or deleted from the model by the methods
dropVertex and addVertex, which should also be provided by the package
developer.

It is up to the package developer to define the body of these methods. The
output should be an object similar to the input object. If for example the input
object is a fitted object, the returned object should also be fitted with the same
engine.

Acknowledgements

The members of the gR project are acknowledged for their inspiration.

7

References

Claus Dethlefsen and Søren Højsgaard. A common platform for graphical models
in R: The gRbase package. Journal of Statistical Software, 14:1–12, 2005.

David Edwards. Introduction to Graphical Modelling. Springer-Verlag, 2nd
edition, 2000.

Ronald D. Snee. Graphical display of two-way contingency tables. The American
Statistician, 28:9–12, 1974.

8

