
Homogeneity Analysis in R:

The Package homals

Jan de Leeuw
University of California, Los Angeles

Patrick Mair
Wirtschaftsuniversität Wien

Abstract

Homogeneity analysis combines maximizing the correlations between variables of a multi-
variate data set with that of optimal scaling. In this article we present methodological and
practical issues of the R package homals which performs homogeneity analysis and various
extensions. By setting rank constraints nonlinear principal component analysis can be per-
formed. The variables can be partitioned into sets such that homogeneity analysis is extended
to nonlinear canonical correlation analysis or to predictive models which emulate discriminant
analysis and regression models. For each model the scale level of the variables can be taken
into account by setting level constraints. All algorithms allow for missing values.

Keywords: homogeneity analysis, correspondence analysis, nonlinear principal component analysis,
nonlinear canonical correlation analysis, homals, R.

1. Introduction

During the last years correspondence analysis (CA) has become a popular descriptive statistical
method to analyze categorical data (Benzécri 1973; Greenacre 1984; Gifi 1990; Greenacre and
Blasius 2006). Due to the fact that the visualization capabilities of statistical software have
increased during this time, researchers of many areas apply CA and map objects and variables
(and their respective categories) onto a common metric plane.

Currently, R (R Development Core Team 2007) offers a variety of routines to compute CA and re-
lated models. An overview of corresponding functions and packages is given in Mair and Hatzinger
(2007). The package ca (Nenadic and Greenacre 2006) is a comprehensive tool to perform simple
and multiple CA. Various two- and three-dimensional plot options are provided.

In this paper we present the R package homals, starting from the simple homogeneity analysis,
which corresponds to a multiple CA, and providing several extensions. Gifi (1990) points out that
homogeneity analysis can be used in a strict and a broad sense. In a strict sense homogeneity
analysis is used for the analysis of strictly categorical data, with a particular loss function and a
particular algorithm for finding the optimal solution. In a broad sense homogeneity analysis refers
to a class of criteria for analyzing multivariate data in general, sharing the characteristic aim of
optimizing the homogeneity of variables under various forms of manipulation and simplification
(Gifi 1990, p.81). This view of homogeneity analysis will be used in this article since homals allows
for such general computations. Furthermore, the two-dimensional as well as three-dimensional
plotting devices offered by R are used to develop a variety of customizable visualization techniques.
More detailed methodological descriptions can be found in Gifi (1990) and some of them are
revisited in Michailidis and de Leeuw (1998).

2. Homogeneity Analysis

In this section we will focus on the underlying methodological aspects of homals. Starting with
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the formulation of the loss function, the classical alternating least squares algorithm is presented
in brief and the relation to CA is shown. Starting from basic homogeneity analysis we elaborate
various extensions such as nonlinear canonical analysis and nonlinear principal component analysis.

2.1. Establishing the loss function

Homogeneity analysis is based on the criterion of minimizing the departure from homogeneity.
Homogeneity is measured by a loss function. To write the corresponding basic equations the
following definitions are needed. For i = 1, . . . , n objects, data on m (categorical) variables are
collected where each of the j = 1, . . . ,m variable takes on kj different values (their levels or
categories). We code them using n × kj binary indicator matrices Gj , i.e., a dummy matrix for
each variable. The whole set of indicator matrices can be collected in a block matrix

G
∆=

[
G1

... G2

... · · ·
... Gm

]
. (1)

Missing observations are coded as complete zero row sums; if object i is missing on variable j, then
row sum i of Gj is 0, otherwise row sum becomes 1 since the category entries are disjoint. This
corresponds to the first missing option presented in Gifi (1990, p.74). Other possibilities would
be to add an additional column to the indicator matrix for each variable with missing data or to
add as many additional columns as there are missing data for the j-th variable. However, all row
sums of Gj are collected in the diagonal matrix Mj . Suppose M? is the sum of the Mj and M• is
their average. Furthermore, we define

Dj
∆=G′jMjGj = G′jGj , (2)

where Dj is the diagonal matrix (kj × kj) with the relative frequencies of variable j in its main
diagonal.
Now let X be the unknown n× p matrix containing the coordinates (object scores) of the object
projections into Rp. Furthermore, let Yj be the unknown kj ×p matrix containing the coordinates
of the category projections into the same p-dimensional space (category quantifications). The
problem of finding these solutions can be formulated by means of the following loss function to be
minimized:

σ(X;Y1, . . . , Ym) ∆=
1
m

m∑
j=1

tr(X −GjYj)′Mj(X −GjYj) (3)

We use the normalization u′M•X = 0 and X ′M•X = I in order to avoid the trivial solution X = 0
and Yj = 0. The first restriction centers the graph plot (see Section 4) around the origin whereas
the second restriction makes the columns of the object score matrix orthogonal.

2.2. Geometry of the loss function

In the homals package we use homogeneity analysis as graphical method to explore multivariate
data sets. The joint plot where the object scores and the category quantifications are mapped in a
joint space, can be considered as the classical or standard homals plot. The category points are the
center of gravity of the object points that share the same category. The larger the spread between
category points the better a variable discriminates and thus, it indicates how much a variable
contributes to relative loss. The distance between two object scores is related to the “similarity”
between their response patterns. A “perfect” solution, i.e., without any loss at all, would imply
that all object points coincide with their category points.
Moreover, we can think of G as the adjacency matrix of a bipartite graph in which the n objects
and the categories kj are the vertices. In the corresponding graph plot an object and a category
are connected by an edge if the object is in the corresponding category. The loss in (3) pertains
to the sum of squares of the line lengths in the graph plot. Producing a star plot, i.e., connecting
the object scores with their category centroid, the loss corresponds to the sum over variables of
the sum of squared line lengths. More detailed plot descriptions are given in Section 4.
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2.3. Minimizing the loss function

Typically, the minimization problem is solved by the iterative alternating least squares algorithm
(ALS; sometimes quoted as reciprocal averaging algorithm). At iteration t = 0 we start with
arbitrary object scores X(0). Each iteration t consists of three steps:

1. Update category quantifications: Y (t)
j = D−1

j G′jX
(t)

2. Update object scores: X̃(t) = M−1
?

∑m
j=1GjY

(t)
j

3. Normalization: X(t+1) = orth(X̃(t))

Note that matrix multiplications using indicator matrices can be implemented efficiently as cumu-
lating the sums of rows over X and Y .
Here orth is some technique which computes an orthonormal basis for the column space of a ma-
trix. We can use QR decomposition, modified Gram-Schmidt, or the singular value decomposition
(SVD). In homals the left singular vectors of X̃(k), here denoted as lsvec, are used.
To simplify, let Pj denote the orthogonal projector on the subspace spanned by the columns of
Gj , i.e., Pj = GjD

−1
j G′j . Correspondingly, the sum over the m projectors is

P? =
m∑

j=1

Pj =
m∑

j=1

GjD
−1
j G′j . (4)

Again, P• denotes the average. By means of the lsvec notation and including P• we can describe
a complete iteration step as

X(k+1) = lsvec(X̃(k)) = lsvec(M−1
• P•X

(k)). (5)

In each iteration we compute the value of the loss function to monitor convergence. Note that
Formula (5) is not suitable for computation, because it replaces computation with sparse indicator
matrices by computations with a dense average projector.
Computing the homals solution in this way is the same as performing a CA on G. Usually,
multiple CA solves the generalized eigenproblem for the Burt matrix C = G′G and its diagonal
D (Greenacre 1984; Greenacre and Blasius 2006). Thus, we can put the problem in Equation 3
into a SVD context (de Leeuw, Michailides, and Wang 1999). Using the block matrix notation,
we have to solve the generalized singular value problem of the form

GY = M?XΛ, (6)
G′X = DY Λ, (7)

or equivalently one of the two generalized eigenvalue problems

GD−1G′X = M?XΛ2, (8)
G′M−1

? GY = DY Λ2. (9)

Here the eigenvalues Λ2 are the ratios along each dimension of the average between-category vari-
ance and the average total variance. Also X ′PjX is the between-category dispersion for variable
j. Further elaborations can be found in Michailidis and de Leeuw (1998).
Compared to the classical SVD approach, the ALS algorithm only computes the first p dimensions
of the solution. This leads to an increase in computational efficiency. Moreover, by capitalizing
the sparseness of G, homals is able to handle large data sets.

3. Extensions of homogeneity analysis

Gifi (1990) provides various extensions of homogeneity analysis and elaborates connections to other
multivariate methods. The package homals allows for imposing restrictions on the variable ranks
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and levels as well as defining sets of variables. These options offer a wide spectrum of additional
possibilities for multivariate data analysis beyond classical homogeneity analysis (cf. broad sense
view in the Introduction).

3.1. Nonlinear principal component analysis

Having a n × m data matrix with metric variables, principal components analysis (PCA) is a
common technique to reduce the dimensionality of the data set, i.e., to project the variables into
a subspace Rp where p � m. The Eckart-Young theorem states that this classical form of linear
PCA can be formulated by means of a loss function. Its minimization leads to a n× p matrix of
component scores and an m× p matrix of component loadings.
However, having nonmetric variables, nonlinear PCA (NLPCA) can be used. The term“nonlinear”
pertains to nonlinear transformations of the observed variables (de Leeuw 2006). In Gifi termi-
nology, NLPCA can be defined as homogeneity analysis with restrictions on the quantification
matrix Yj . Let us denote rj ≤ p as the parameter for the imposed restriction on variable j. If no
restrictions are imposed, as e.g. for a simple homals solution, rj = kj − 1 iff kj ≤ p, and rj = p
otherwise.
We start our explanations with the simple case for rj = 1 for all j. In this case we say that all
variables are single and the rank restrictions are imposed by

Yj = zja′j , (10)

where zj is a vector of length kj with category quantifications and aj a vector of length p with
weights. Thus, each quantification matrix is restricted to rank-1, which allows for the existence of
object scores with a single category quantification.
Straightforwardly, Equation 10 can be extended to the general case

Yj = ZjA
′
j (11)

where again 1 ≤ rj ≤ min (kj − 1, p), Zj is kj × rj and Aj is p × rj . We require, without loss of
generality, that Z ′jDjZj = I. Thus, we have the situation of multiple quantifications which implies
imposing an additional constraint each time PCA is carried out.
To establish the loss function for the rank constrained version we write r? for the sum of the rj
and r• for their average. The block matrix G of dummies now becomes

Q
∆=

[
G1Z1

... G2Z2

... · · ·
... GmZm

]
. (12)

Gathering the Aj ’s in a block matrix as well, the p× r? matrix

A
∆=

[
A1

... A2

... · · ·
... Am

]
(13)

results. Then, Equation 3 becomes

σ(X;Z;A) =
m∑

j=1

tr(X −GjZjA
′
j)′Mj(X −GjZjA

′
j) =

= tr(Q−XA′)′(Q−XA′) +m(p− r•). (14)

This shows that σ(X;Y1, · · · , Ym) ≥ m(p− r•) and the loss is equal to this lower bound if we can
choose the Zj such that Q is of rank p. In fact, by minimizing (14) over X and A we see that

σ(Z) ∆= min
X,A

σ(X;Z;A) =
r?∑

s=p+1

λ2
s(Z) +m(p− r•), (15)
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where the λs are the ordered singular values. A corresponding example in terms of a lossplot
is given in Section 4. Now we will take into account the scale level of the variables in terms of
restrictions within Zj . To do this, the starting point is to split up Equation 14 into two separate
terms (Gifi 1990; Michailidis and de Leeuw 1998). Using Ŷj = D−1

j G′jX this leads to∑m
j=1 tr(X −GjYj)′Mj(X −GjYj)

=
∑m

j=1 tr(X −Gj(Ŷj + (Yj − Ŷj)))′Mj(X −Gj(Ŷj + (Yj − Ŷj)))

=
∑m

j=1 tr(X −Gj Ŷj)′Mj(X −Gj Ŷj) +
∑m

j=1 tr(Yj − Ŷj)′Dj(Yj − Ŷj). (16)

Obviously, the rank restrictions Yj = ZjA
′
j affect only the second term and hence, we will proceed

on our explanations by regarding this particular term only, i.e.,

σ(Z;A) =
m∑

j=1

tr(ZjA
′
j − Ŷj)′Dj(ZjA

′
j − Ŷj). (17)

Now, level constraints for nominal, ordinal, polynomial, and numerical variables can be imposed
on Zj in the following manner. For nominal variables, all columns in Zj are unrestricted. Equation
17 is minimized under the conditions u′DjZj = 0, Z ′jDjZj = I, and u′DjYj = 0. The stationary
equations are

Aj = Y ′jDjZj , (18a)

YjAj = ZjW + uh′, (18b)

with W as a symmetric matrix of Langrange multipliers. Solving, we find

h =
1

u′Dju
A′jY

′
jDju = 0, (19)

and thus, letting Zj
∆=D

1/2
j Zj and Y j

∆=D
1/2
j Yj , it follows that

Y jY
′
jZj = ZjW. (20)

If Y j = KΛL′ is the SVD of Y j , then we see that Zj = KrO with O an arbitrary rotation matrix.
Thus, Zj = D

−1/2
j KrO, and Aj = Y

′
jZj = LrΛrO. Moreover, ZjA

′
j = D

−1/2
j KrΛrL

′
r.

Having ordinal variables, the first column of Zj is constrained to be either increasing or decreas-
ing, the rest is free. Again (17) has to be minimized under the condition Z ′jDjZj = I (and
optionally additional conditions on Zj). If we minimize over Aj , we can also solve the problem
tr(Z ′jDjYjY

′
jDjZj) with Z ′jDjZj = I.

For polynomial constraints the matrix Zj are the first rj orthogonal polynomials. Thus all p
columns of Yj are polynomials of degree rj . In the case of numerical variables, the first column in
Zj denoted by zj0 is fixed and linear with the category numbers, the rest is free. Hence, the loss
function in (17) changes to

σ(Z,A) =
m∑

j=1

tr(ZjA
′
j + zj0a′j0 − Ŷj)′Dj(ZjA

′
j + zj0a′j0 − Ŷj). (21)

Since column zj0 is fixed, Zj is a kj × (rj − 1) matrix and Aj , with aj0 as the first column, is
p× (rj − 1). In order to minimize (21), z′j0DjZj = 0 is required as minimization condition.
Note that level constraints can be imposed additionally to rank constraints. If the data set has
variables with different scale levels, homals allows for setting level constraints for each variable j
separately.
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3.2. Nonlinear canonical correlation analysis

In Gifi terminology, nonlinear canonical correlation analysis (NLCCA) is called “OVERALS”
(van der Burg, de Leeuw, and Verdegaal 1988; van der Burg, de Leeuw, and Dijksterhuis 1994).
This is due to the fact that it has most of the other Gifi-models as special cases. In this section
the relation to homogeneity analysis is shown. The homals package allows for the definition of sets
of variables and thus, for the computation NLCCA between g = 1, . . . ,K sets of variables.
Recall that the aim of homogeneity analysis is to find p orthogonal vectors in m indicator matrices
Gj . This approach can be extended in order to compute p orthogonal vectors in K general matrices
Gv, each of dimension n×mv where mv is the number of variables (j = 1, . . . ,mv) in set v. Thus,

Gv
∆=

[
Gv1

... Gv2

... · · ·
... Gvmv

]
. (22)

The loss function can be stated as

σ(X;Y1, . . . , YK) ∆=
1
K

K∑
v=1

tr

X − mv∑
j=1

GvjYvj

′Mv

X − mv∑
j=1

GvjYvj

 . (23)

X is the n × p matrix with object scores, Gvj is n × kj , and Yvj is the kj × p matrix containing
the coordinates. Missing values are taken into account in Mv which is the element-wise minimum
of the Mj in set v. The normalization conditions are XM•X = I and u′M•X = 0 where M• is
the average of Mv.
Since NLPCA can be considered as special case of NLCCA, i.e., for K = m, all the additional
restrictions for different scaling levels can straightforwardly be applied for NLCCA. Unlike classical
canonical correlation analysis, NLCCA is not restricted to two sets of variables but allows for the
definition of an arbitrary number of sets. Furthermore, if the sets are treated in an asymmetric
manner predictive models such as regression analysis and discriminant analysis can be emulated.
For v = 1, 2 sets this implies that G1 is n× 1 and G2 is n×m− 1. Corresponding examples will
be given in Section 4.2.

3.3. Cone restricted SVD

In this final methodological section we show how the loss functions of these models can be solved
in terms of cone restricted SVD. All the transformations discussed above are projections on some
convex cone Kj . For the sake of simplicity we drop the j and v indexes and we look only at the
second term of the partitioned loss function (see Equation 17), i.e.,

σ(Z,A) = tr(ZA′ − Ŷ )′D(ZA′ − Ŷ ), (24)

over Z and A, where Ŷ is k × p, Z is k × r, and A is p× r. Moreover the first column z0 of Z is
restricted by z0 ∈ K, with K as a convex cone. Z should also satisfy the common normalization
conditions u′DZ = 0 and Z ′DZ = I.
The basic idea of the algorithm is to apply alternating least squares with rescaling. Thus we
alternate minimizing over Z for fixed A and over A for fixed Z. The “non-standard” part of the
algorithm is that we do not impose the normalization conditions if we minimize over Z. We show
below that we can still produce a sequence of normalized solutions with a non-increasing sequence
of loss function values.
Suppose (Ẑ, Â) is our current best solution. To improve it we first minimize over the non-
normalized Z, satisfying the cone constraint, and keeping A fixed at Â. This gives Z̃ and a
corresponding loss function value σ(Z̃, Â). Clearly,

σ(Z̃, Â) ≤ σ(Ẑ, Â), (25)

but Z̃ is not normalized. Now update Z to Z+ using the weighted Gram-Schmidt solution Z̃ =
Z+S for Z where S is the Gram-Schmidt triangular matrix. The first column z̃0 of Z̃ satisfies
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the cone constraint, and because of the nature of Gram-Schmidt, so does the first column of Z+.
Observe that it is quite possible that

σ(Z+, Â) > σ(Ẑ, Â). (26)

This seems to invalidate the usual convergence proof, which is based on a non-increasing sequence
of loss function values. But now also adjust Â to A = Â(S−1)′. Then Z̃Â′ = Z+A

′
, and thus

σ(Z̃, Â) = σ(Z+, A). (27)

Finally compute A+ by minimizing σ(Z+, A) over A. Since σ(Z+, A+) ≤ σ(Z+, A) we have the
chain

σ(Z+, A+) ≤ σ(Z+, A) = σ(Z̃, Â) ≤ σ(Ẑ, Â). (28)

In any iteration the loss function does not increase. In actual computation, it is not necessary to
compute A, and thus it also is not necessary to compute the Gram-Schmidt triangular matrix S.

4. The R package homals

At this point we show how the models described in the sections above can be computed using the
package homals in R (R Development Core Team 2007) available on CRAN.
The core routine of the package is homals. The extended models can be fitted through appropriate
settings on the parameters sets, rank, and level. An object of class "homals" is created and the
following methods are provided: print, summary, plot, plot3d, scatterplot3d and predict.
The package offers a wide variety of plots; some of them are discussed in Michailidis and de Leeuw
(1998) and Michailidis and de Leeuw (2001). In the plot method the user can specify the type
of plot through the argument plot.type. For some plot types three-dimensional versions are
provided in plot3d (dynamic) and plot3dstatic:

� Object plot ("objplot"): Plots the scores of the objects (rows in data set) on two or three
dimensions.

� Category plot ("catplot"): Plots the rank-restricted category quantifications for each vari-
able separately. Three-dimensional plot is available.

� Voronoi plot ("vorplot"): Produces a category plot with Voronoi regions.

� Joint plot ("jointplot"): The object scores and category quantifications are mapped in the
same (two- or three-dimensional) device.

� Graph plot ("graphplot"): Basically, a joint plot is produced with additional connections
between the objects and the corresponding response categories.

� Hull plot ("hullplot"): For each single variable the object scores are mapped onto two
dimensions and the convex hull for each response category is drawn.

� Label plot ("labplot"): Similar to object plot, the object scores are plotted but for each
variable separately with the corresponding category labels. A three-dimensional version is
provided.

� Span plot ("spanplot"): Like label plot, it maps the object scores for each variable and it
connects them by the shortest path within each response category.

� Star plot ("starplot"): Again, the object scores are mapped on two or three dimensions.
In addition, these points are connected with the category centroid.

� Loss plot ("lossplot"): Plots the rank-restricted category quantifications against the un-
restricted for each variable separately.

http://cran.r-project.org
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� Projection plot ("prjplot"): For variables of rank 1 the object scores (two-dimensional) are
projected onto a straight line determined by the rank restricted category quantifications.

� Vector plot ("vecplot"): For variables of rank 1 the object scores (two-dimensional) are
projected onto a straight line determined by the rank restricted category quantifications.

� Transformation plot ("trfplot"): Plots variable-wise the original (categorical) scale against
the transformed (metric) scale Zj for each solution.

� Loadings plot ("loadplot"): Plots the loadings aj and connects them with the origin. Note
that if rj > 1 only the first solution is taken.

4.1. Simple Homogeneity Analysis

The first example is a simple (i.e., no level or rank restrictions, no sets defined) three-dimensional
homogeneity analysis for the senate data set (ADA 2002). The data consists of 2001 senate votes
on 20 issues selected by Americans for Democratic Action. The votes selected cover a full spectrum
of domestic, foreign, economic, military, environmental and social issues. We tried to select votes
which display sharp liberal/conservative contrasts. As a consequence, Democrat candidates have
many more “yes” responses than Republican candidates. A full description of the items can be
found in the corresponding package help file. The first column of the data set (i.e., 50 Republicans
vs. 49 Democrats and 1 Independent) is inactive and will be used for validation.

> library(homals)

> data(senate)

> res <- homals(senate, active = c(FALSE, rep(TRUE, 20)), ndim = 3)

> plot3d(res, plot.type = "objplot", sphere = FALSE, bgpng = NULL)

> plot(res, plot.type = "spanplot", plot.dim = c(1, 2), var.subset = 1)

> plot(res, plot.type = "spanplot", plot.dim = c(1, 3), var.subset = 1)

> plot(res, plot.type = "spanplot", plot.dim = c(2, 3), var.subset = 1)

> plot3dstatic(res, plot.type = "loadplot")

Figure 1 shows four “wings” of senators which we will denote by north, south, west and east. The
west and the north wings are composed by Republicans, the east and south wings by Democrats.
Note that the 3D-plot is rotated in a way that Dimension 3 is horizontally aligned, Dimension 2
is vertically aligned, and Dimension 1 is the one aligned from front to back. The two-dimensional
slices show that Dimension 1 vs. 2 does not distinguish between Democrats and Republicans. If
Dimension 3 is involved, as in the two bottom plots in Figure 1, the separation between Democrats
and Republicans is obvious. To distinguish within north-west and south-east, respectively, Item
19 has to be taken into account:
V19: S 1438. Military Base Closures. Warner (R-VA) motion to authorize an additional round
of U.S. military base realignment and closures in 2003. Motion agreed to 53-47. September 25,
2001. A “yes” vote is a +.
Republicans belonging to the north wing as well as Democrats belonging to the east wing gave a
“yes” vote. South-Wing Democrats and West-Wing Republicans voted with “no”. It is well known
that the response on this item mainly depends on whether there is a military base in the senator’s
district or not; those senators who have a military base in their district do not want to close
it since such a base provides working places and is an important income source for the district.
Hence, this is the determining factor and not the party affiliation of the senator. This result is
underpinned by Figure 2 where Item 19 is clearly separated from the remaining items.
Given a (multiple) homals solution, we can reconstruct the indicator matrix by assigning each
object to the closest points of the variable.



Jan de Leeuw, Patrick Mair 9

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

−0.02 0.00 0.02 0.04 0.06

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

Span plot for Party

Dimension 1

D
im

en
si

on
 2

Category (D)
Category (I)
Category (R)

Category (D)
Category (I)
Category (R)

Category (D)
Category (I)
Category (R)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

−0.02 0.00 0.02 0.04 0.06

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02
0.

03

Span plot for Party

Dimension 1

D
im

en
si

on
 3

Category (D)
Category (I)
Category (R)

Category (D)
Category (I)
Category (R)

Category (D)
Category (I)
Category (R)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

−0.04 −0.02 0.00 0.02 0.04

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02
0.

03
Span plot for Party

Dimension 2

D
im

en
si

on
 3

Category (D)
Category (I)
Category (R)

Category (D)
Category (I)
Category (R)

Category (D)
Category (I)
Category (R)

Figure 1: 3D Object Plot and Span Plots for Senate Dataset

> p.res <- predict(res)

> p.res$cl.table$Party

pre
obs (D) (I) (R)
(D) 49 1 0
(I) 0 1 0
(R) 0 8 41

From the classification table we see that 91% of the party affiliations are correctly classified. Note
that in the case of such a simple homals solution it can happen that a lower dimensional solution
results in a better classification rate than a higher dimensional. The reason is that in simple
homals the classification rate is not the criterion to be optimized.
To show additional plotting features of the homals package we run a three-dimensional homogeneity
analysis on the mammals dentition dataset (Hartigan 1975). In this dataset dental characteristics
are used in the classification of mammals. The teeth are divided into four groups: incisors, canines,
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Figure 2: Loadings Plot for Senate Dataset

premolars, and molars. Within each group top and bottom teeth are classified.

> data(mammals)

> res <- homals(mammals, ndim = 3)

> plot(res, plot.type = "graphplot")

> plot3dstatic(res, plot.type = "starplot", var.subset = 3, box = FALSE)

On the left hand side of Figure 3 we have a graph plot where the object scores are drawn as green
stars and the category quantifications as red circles. The objects are connected with the respective
category responses in the dataset.
For the variable-wise star plot we pick out the top canines with zero canines coded as 1 and one
canine coded as 2 (the full coding description can be found in package help file). In the star plot
the object scores are connected with the corresponding category centroid. Among the animals
with more than one canine, the elk and the reindeer, which have the same object scores, are quite
distant from their centroid. All other animals lie close around their category centroid.

4.2. Predictive Models and Canonical Correlation

The sets argument allows for partitioning the variables into sets in order to emulate canonical
correlation analysis and predictive models. As outlined above, if the variables are partitioned
into asymmetric sets of one variable vs. the others, we can put this type of homals model into a
predictive modeling context. If not, the interpretation in terms of canonical correlation is more
appropriate.
To demonstrate this, we use the galo dataset (Peschar 1975) where data of 1290 school children
in the sixth grade of an elementary school in the city of Groningen (Netherlands) were collected.
The variables are Gender, IQ (categorized into 9 ordered categories), Advice (teacher categorized
the children into 7 possible forms of secondary education, i.e., Agr = agricultural; Ext = extended
primary education; Gen = general; Grls = secondary school for girls; Man = manual, including
housekeeping; None = no further education; Uni = pre-University) and SES (parent’s profession
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Figure 3: Graph plot and 3D star plot for Mammals data

in 6 categories). In this example it could be of interest to predict Advice from Gender, IQ, and
SES.

> data(galo)

> res <- homals(galo, active = c(rep(TRUE, 4), FALSE), sets = list(c(1,

+ 2, 4), 3, 5))

> predict(res)

Classification rate:
Variable Cl. Rate %Cl. Rate

1 gender 0.5690 56.90
2 IQ 0.6333 63.33
3 advice 0.6318 63.18
4 SES 0.2907 29.07
5 School 0.0124 1.24

> plot(res, plot.type = "vorplot", var.subset = 3)

> plot(res, plot.type = "labplot", var.subset = 2)

A rate of .6318 correctly classified teacher advice results. The Voronoi plot in Figure 4 shows the
Voronoi regions for the same variable. A labeled plot is given for the IQs which shows that on the
upper half of the horseshoe there are mainly children with IQ-categories 7-9. Distinctions between
these levels of intelligence are mainly reflected by Dimension 1. For the lower horseshoe half it
can be stated that both dimensions reflect differences in lower IQ-categories.
Using the classical iris dataset, the aim is to predict Species from Petal/Sepal Length/Width. The
polynomial level constraint is posed on the predictors and the response is treated as nominal. A
hull plot for the response, a label plot Petal Length and loss plots for all predictors are produced.

> data(iris)

> res <- homals(iris, sets = list(1:4, 5), level = c(rep("polynomial",

+ 4), "nominal"), rank = 2, itermax = 2000)

> plot(res, plot.type = "hullplot", var.subset = 5, cex = 0.7)

> plot(res, plot.type = "labplot", var.subset = 3, cex = 0.7)

> plot(res, plot.type = "lossplot", var.subset = 1:4, cex = 0.7)
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Figure 4: Voronoi Plot and Star Plot for Galo Data
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Figure 5: Hullplot and Label Plot for Iris Data

For this two-dimensional homals solution, 100% of the iris species are correctly classified. The
hullplot in Figure 5 shows that the species are clearly separated on the two-dimensional plane. In
the label plot the object scores are labeled with the response on Petal Length and it becomes obvi-
ous that small lengths form the setosa“cluster”, whereas iris virginica are composed by obervations
with large petal lengths. Iris versicolor have medium lengths.
The loss plots in Figure 6 show the fitted rank-2 solution (red lines) against the unrestricted
solution. The implication of the polynomial level restriction for the fitted model is obvious.
To show another homals application of predictive (in this case regression) modeling we use the
Neumann dataset (Wilson 1926): Willard Gibbs discovered a theoretical formula connecting the
density, the pressure, and the absolute temperature of a mixture of gases with convertible com-
ponents. He applied this formula and the estimated constants to 65 experiments carried out by
Neumann, and he discusses the systematic and accidental divergences (residuals). In homals such
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Figure 6: Loss plots for Iris Predictors

a linear regression problem can be emulated by setting numerical levels. Constraining the levels
to be ordinal, we get a monotone regression (Gifi 1990).

> data(neumann)

> res.lin <- homals(neumann, sets = list(3, 1:2), level = "numerical",

+ rank = 1)

> res.mon <- homals(neumann, sets = list(3, 1:2), level = "ordinal",

+ rank = 1)

> plot(res.lin, plot.type = "loadplot", main = "Loadings Plot Linear Regression")

> plot(res.mon, plot.type = "loadplot", main = "Loadings Plot Monotone Regression")

The points in the loadings plot in Figure 7 correspond to regression coefficients.

4.3. NLPCA on Roskam data

Roskam (1968) collected preference data where 39 psychologists ranked all nine areas (see Table
1) of the Psychology Department at the University of Nijmengen.
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Figure 7: Loading Plots for Neumann Regression

SOC Social Psychology
EDU Educational and Developmental Psychology
CLI Clinical Psychology

MAT Mathematical Psychology and Psychological Statistics
EXP Experimental Psychology
CUL Cultural Psychology and Psychology of Religion
IND Industrial Psychology
TST Test Construction and Validation
PHY Physiological and Animal Psychology

Table 1: Psychology Areas in Roskam Data.

Using this data set we will perform two-dimensional NLPCA by restricting the rank onto 1. Note
that the objects are the areas and the variables are the psychologists. Thus, the input data
structure is a 9× 39 data frame. Note that the scale level is set to “ordinal”.

> data(roskam)

> res <- homals(roskam, rank = 1, level = "ordinal")

> plot(res, plot.type = "objplot")

> plot(res, plot.type = "labplot", var.subset = 2, main = "Labelplot Rater 2")

> plot(res, plot.type = "vecplot", var.subset = 2, main = "Vector Plot Rater 2",

+ xlim = c(-0.08, 0.12))

> plot(res, plot.type = "prjplot", var.subset = 2, main = "Projection Plot Rater 2",

+ xlim = c(-0.08, 0.12))

The object plot in Figure 8 shows interesting rating “twins” of departmental areas: mathematical
and experimental psychology, industrial psychology and test construction (both are close to the
former two areas), educational and social psychology, clinical and cultural psychology. Physiologi-
cal and animal psychology are somewhat separated from the other areas. The label plot allows us
to look closer at a particular rater; we pick out rater #2. Obviously this rater is attracted to areas
like social, cultural and clinical psychology rather than to methodological fields. Further analyses
of this dataset within a PCA context can be found in de Leeuw (2006).
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Figure 8: Plots for Roskam data

5. Discussion

In this paper theoretical foundations of the methodology used in homals are elaborated and package
application and visualization issues are presented. Basically, homals covers the models described
in Gifi (1990): Homogeneity analysis, NLCCA, predictive models, and NLPCA. It can handle
missing data and the scale level of the variables can be taken into account. The package offers
a broad variety of real-life datasets and furthermore provides numerous methods of visualization,
either in a two-dimensional or in a three-dimensional way. Future enhancements will be replacing
indicator matrices by more general B-spline bases and incorporating weights for observations.
To conclude, homals provides flexible, easy-to-use routines which allow researchers from different
areas to compute, interpret, and visualize models belonging to the Gifi-family.
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