
The OCE package

Dan E. Kelley

November 18, 2008

Abstract

The oce package makes it easy to read, summarize and plot data from a variety of Oceanographic
instruments, isolating the researcher from the quirky data formats that are common in this field. It also
provides functions for working with basic seawater properties such as the equation of state, and with
derived quantities such as the buoyancy frequency. Although simple enough to be used in a teaching
context, oce is powerful enough for a research setting. These things are illustrated here with practical
examples.

1 Introduction

Oceanographers must deal with measurements made by a wide variety of instruments, a task that is
complicated by the delight instrument manufacturers seem to take in inventing new data formats. The
manufacturers often provide software for scanning the data files and producing some standard plots, but this
is of limited use to researchers who work with several instrument types at the same time, and who need to
carry the analysis beyond the first step.

The need to scan diverse data files was one motivation for the creation of oce, but an equal goal was
to make it easy to work with the data once they are in the system. This was accomplished partly by the
provision of functions to work with the data, and partly by developing a uniform object design that lets
users reach inside without guesswork.

At the core of the oce design process is a policy of adding features according to the priorities of practical
research. As a result, oce is a fairly comfortable tool today, and it should remain so as it grows.

2 Object design

As illustrated in Figure 1, each oce object is a list containing three elements: (a) data, a list or a
data frame containing the actual data, for a CTD object, this will contain pressure, temperature, etc.,
(b) metadata, a list containing data such things as file headers, the location of a CTD cast, etc., and (c)
processing.log, a list that documents how the file was created (often by a read or as method) and how
it was changed thereafter (e.g. by decimating a CTD cast). Elements in the metadata can be edited with
oce.edit(), a function that adds a line to the object’s changelog file for every change that is made. The
uniformity of the various oce objects makes it easy to build skill in examining and modifying objects.

1

CTD object

data metadata processing.log

scan

pressure

temperature

...

salinity

depth

header

filename

...

time

action

Figure 1: Sketch of the contents of a ctd object. The elements data, metadata, and processing.log are
shared by all oce objects, although their contents vary from object to object.

3 Calculations of seawater properties

The oce package provides many functions for dealing with seawater properties. Probably the most used is
sw.rho(S,T,p), which computes seawater density ρ as a function of salinity S (PSU), in-situ temperature T
(◦C) and pressure p (decibar). (Note that this and similar functions starts with the letters sw. to designate
that they relate to seawater properties. Future versions of oce may include the properties of air, so the
prefix is an example of planning, rather than necessity.) The result is a number in the order of 1000 kg/m3.
For many purposes, Oceanographers prefer to use the density anomaly σ = ρ − 1000 kg/m3, provided with
sw.sigma(S,t,p), or its adiabatic cousin σθ, provided with sw.sigma.theta(S,t,p).

Most of the functions use the UNESCO formulations of seawater properties, but new formulations
may be added as they come into use in the literature. A partial list of seawater functions is as follows:
sw.dynamic.height (dynamic height), sw.N2 (buoyancy freqency), sw.S.C.T.p (salinity S from C, T
and p), sw.S.T.rho (S from T and ρ), sw.T.S.rho (T from S and ρ), sw.T.freeze (freezing tempera-
ture), sw.alpha (thermal expansion coefficient α = −ρ−1

0 ∂ρ/∂T), sw.beta (haline compression coefficient
β = ρ−1

0 ∂ρ/∂S), sw.alpha.over.beta (α/β), sw.conductivity (conductivity from S, T and p), sw.depth
(depth from p and latitude), sw.lapse.rate (adiabatic lapse rate), sw.rho (density ρ from S, T and p),
sw.sigma (ρ−1000 kg/m3), sw.sigma.t (σ with p set to zero and temperature unaltered), sw.sigma.theta
(σ with p set to zero and temperature altered adiabatically), sw.sound.speed (speed of sound in m/s),
sw.specific.heat (specific heat in J/kg/◦C), sw.spice (a quantity used in double-diffusive research),
sw.theta (potential temperature in ◦C), and sw.viscosity (viscosity). Details and examples are provided
in the documentation of these functions.

2

Exercise 1. (a) What is the density of a seawater parcel at pressure 100 dbar, with salinity 34 PSU
and temperature 10◦C? (b) What temperature would the parcel have if raised adiabatically to the
surface? (c) What density would it have if raised adiabatically to the surface? (d) What density would
it have if lowered about 100m, increasing the pressure to 200dbar? (e) Draw a blank TS diagram with
S from 30 to 40 PSU and T from −2 to 20◦C. (Answers are provided at the end of this document.)

4 CTD data

4.1 Example with pre-trimmed data

To get you started with CTD data, oce provides a sample data set that has been trimmed to just the
downcast portion of the sampling. (See the next section to learn how to do this trimming.). The commands

> library(oce)

> data(ctd)

> plot(ctd)

produce Figure 2. You may also get a summary of the data with

> summary(ctd)

The object used to hold CTD data stores not just the data, but also the raw header sequence, and
whatever has been discovered about the dataset by parsing the header; use

> names(ctd)

to learn about these metadata, and use

> names(ctd$data)

to find out what sensors were attached to the instrument, thus providing data columns.

Of course, you may apply any R techniques to the data in oce objects, e.g. hist(ctd$data$temperature)
would produce a histogram of temperature for the ctd object. It is always worth checking, though, to see if
oce has already defined a function that you may be applying, e.g. plot.TS will produce a lovely temperature-
salinity diagram, with isopycnals and proper units on the axes.

The package provides facilities for some common operations with oceanographic data, such as trimming
CTD profiles with ctd.trim(), but of course you may do that sort of work by acting on the data directly, if
necessary. Just make sure you realize that the metadata will not be altered if you do that. Also, it is a good
idea to add log entries to any objects that you change, by using the processing.log.append() function.
(You can see an example of this in action with ?section.)

Exercise 2. Plot a profile of σθ and N2, for just the data in the pycnocline.

3

P
re

ss
ur

e
[d

ba
r

]

4 5 6 7 8 9

Temperature [°°C]
40

30
20

10
0

24 25 26 27 28 29 30

Salinity [PSU]

P
re

ss
ur

e
[d

ba
r

]

19 20 21 22 23 24

σσθθ [kg m3]

40
30

20
10

0

0.000 0.002 0.004 0.006 0.008 0.010 0.012

N2 [s−−2]

●
●

● ● ● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●
●●

24 25 26 27 28 29 30

4
5

6
7

8
9

Salinity [PSU]

T
em

pe
ra

tu
re

 [
°°C

]

19 20 21 22 23

24

CTD Station
 File: ctd.cnv
 Scientist: Peter S. Galbraith
 Institute: Maurice Lamontagne Institute, Dept. of Fisheries and Oceans
 Date: 2002−08−23 15:28:52
 Ship: Le Petit Lievre (Societe Duvetnor)
 Cruise: IML−02−59
 Station: 04
 Depth: 40
 Location: 47.8878N 69.7327W

Figure 2: Overview graph of the sample CTD dataset ctd, acquired in the St Lawrence Estuary Internal
Wave Experiment. (This dataset has been trimmed to the downcast; see the text and Figure 3.)

scan

P
re

ss
ur

e
[d

ba
r]

0 200 400 600 800

0
50

15
0

Scan

0 200 400 600 800

0
40

80
T

em
pe

ra
tu

re
 [d

eg
C

]

S
al

in
ity

 [P
S

U
]

0
40

80

Figure 3: Scanwise plot of the ctd.raw sample data set. Note the wild spike at the start, the equilibration
phase before the downcast, and the spurious freshening signal near the start of the upcast. See the text for
a discussion of how inspection of such graphs can help in trimming CTD data.

4

4.2 Example with raw data

Practicing Oceanographers may be wondering how the CTD cast used in the preceding section was
trimmed of equilibration-phase and upcast-phase data. Data from these sections are spurious and must be
trimmed as a first step in processing. For example, consider the following code.

> data(ctd.raw)

> plot.ctd.scan(ctd.raw)

This produces a two-panel plot (Figure 3) of the data as a time-series, revealing not just the (useful) downcast,
but also the subsequent upcast sequence. The x-axis in this plot is the scan number, which is a convenient
index for extraction of the downcast portion of the profile by an essentially manual method, e.g. proceeding
with a sequence of commands such as

> plot.ctd.scan(ctd.trim(ctd.raw, "scan", c(140, 250)))

> plot.ctd.scan(ctd.trim(ctd.raw, "scan", c(150, 250)))

This is the “gold standard” method, which is recommended for detailed work. However, for quick work, you
may find that the automatic downcast detection scheme works adequately, e.g.

> ctd.trimmed <- ctd.trim(ctd.raw)

It should be noted that ctd.trim inserts entries into the object’s log file, so that you (or anyone else
with whom you share the object) will be able to see the details of how the trimming was done.

Once the profile has been trimmed, you may wish to use ctd.decimate() to smooth the data and
interpolate the smoothed results to uniformly-spaced pressure values. For example, a quick examination of
a file might be done by the following:

> plot(ctd.decimate(ctd.trim(read.ctd("stn123.cnv"))))

4.3 Example with WOCE archive data

The package has a harder time scanning the headers of data files in the WOCE archive format than it
does in the Seabird format illustrated in the previous examples. This is mainly because front-line researchers
tend to work in the Seabird format, and partly because the WOCE format is odd. For example, the first line
of a WOCE file is of the form CTD,20060609WHPOSIODAM (or BOTTLE,...). Scanning the item to the left of
the comma is not difficult (although there are variants to the two shown, e.g. CTDO sometimes occurs). The
part to the right of the comma is more difficult. The first part is a date (yyyymmdd) so that’s no problem.
But then things start to get tricky. In the example provided, this text contains the division of the institute
(WHPO), the institute itself (SIO), and initial of the investigator (DAM). The problem is that no dividers
separate these items, and that there seem to be no standards for the item lengths. Rather than spend a
great deal of time coding special cases (e.g. scanning to see if the string WHOI occurs in the header line), the
approach taken with oce is to ignore such issues relating to quirky headers. This frees up time to work on
more important things, such as plotting the data.

Of course, R provides access to object constituents, so that you are free to do such things as

> x <- read.ctd("nnsa_00934_00001_ct1.csv", type = "WOCE")

> x$metadata$institute <- "SIO"

> x$metadata$scientist <- "DAM"

5

but it is bad practice to alter metadata in such a way, because doing so alters the object without altering its
documentation. The preferred scheme is to do as follows.

> x <- read.ctd("nnsa_00934_00001_ct1.csv", type = "WOCE")

> x <- oce.edit(x, "institute", "SIO")

> x <- oce.edit(x, "scientist", "DAM")

which will store a note about the changes in the object’s log. Even better, provide a reason for the change,
and sign the change with your name:

> x <- read.ctd("nnsa_00934_00001_ct1.csv", type = "WOCE")

> x <- oce.edit(x, "institute", "SIO", "human-parsed", "Dan Kelley")

> x <- oce.edit(x, "scientist", "DAM", "human-parsed", "Dan Kelley")

For a real-world example (with warts!), visit http://cchdo.ucsd.edu/data_access?ExpoCode=58JH199410
and download the zip file containing the Arctic section called “CARINA”, measured in 1994. Expand the
zip file, enter the directory, and run the code below.

> library(oce)

> files <- system("ls *.csv", intern = TRUE)

> for (i in 1:length(files)) {

+ cat(files[i], "\n")

+ x <- read.ctd(files[i])

+ if (i == 1) {

+ plot.TS(x, xlim = c(31, 35.5), ylim = c(-1, 10), type = "l",

+ col = "red")

+ }

+ else {

+ lines(x$data$salinity, x$data$temperature, col = "red")

+ }

+ }

What you’ll see is an overall T -S diagram for the entire dataset. It may take a while, since the dataset
contains over 90,000 observations. You may note that, even though this is an official, quality-controlled
dataset, it is not without problems. The graph that is produced by this code has several spurious lines
oriented horizontally (indicating spurious salinity) and vertically (indicating spurious temperature). One
way to find such values is to put the lines

> print(range(x$data$temperature))

> print(range(x$data$salinity))

after the read.ctd() command. One thing you’ll find is that station 987 has a minimum salinity range of
0.0009 to 987. These values are clearly in error, as are the temperatures at this spot in the file. (It is perhaps
revealing that the spurious salinity is equal to the station number.) Indeed, at this spot in the file it can be
seen that the pressure jumps from 1342 to 0, and then starts increasing again; the file contains two profiles,
or the same profile twice. This is not the only flaw that is revealed by the graph, and by range commands;
a generous user would spend a week tracking down such issues, and would then contact the data provider
(or the chief scientist of the field work) with specific suggestions for correcting the files. The point here is to
highlight how this package can be used with real-world data.

6

http://cchdo.ucsd.edu/data_access?ExpoCode=58JH199410

4.4 Section plots

The commands

> data(section)

> data(coastline.hal)

> plot(section, coastline = coastline.hal)

will plot a summary diagram containing sections of T , S, and σθ, along with a chart indicating station loca-
tions. In addition to such overview diagrams, plot can also create individual plots of individual properties.

Exercise 3. Draw a TS diagram for the section data, colour-coded by station

The Halifax section is supplied in a pre-gridded format, but some datasets have different pressure levels
at each station. For such cases, the section.grid function may be used, e.g.

> data(a03)

> Gulf.Stream <- section.subset(a03, 124:102)

> Gulf.Stream.gridded <- section.grid(Gulf.Stream, p = seq(0, 1600,

+ 25))

> data(coastline.world)

> plot(Gulf.Stream.gridded, coastline = coastline.world, map.xlim = c(-80,

+ -60))

produces Figure 4. The ship doing the sampling was travelling westward from the Mediterranean towards
North America, taking 124 stations in total; the station.indices value selects the last few stations of the
section, during which the ship heading was changed to run in a northwesterly direction, to cross isobaths
(and perhaps, the Gulf Stream) at right angles.

Exercise 4. Plot dynamic height across the Gulf Stream, and show the corresponding geostrophic
velocity.

5 Coastline and topographic data

Coastline data are available from a variety of sources. The NOAA site http://www.ngdc.noaa.gov/mgg_
coastline/ is particularly popular, and it has the advantage of providing data in Splus format. The function
read.coastline can handle reading that format (plus some other formats), and plot on the resulting object
will produce a simple coastline map. The only real advantage over plotting things yourself is that latitude
and longitude are scaled to give natural shapes near the centre of the plot.

Bathymetric charts, or more generally topographic maps, can be produced easily. A sample data set is
provided, so that

> library(oce)

> data(topo.maritimes)

> plot(topo.maritimes, xlim = c(-66, -58), ylim = c(44, 50), water.z = c(-50,

+ -100, -150, -200, -300, -400, -500, -1000, -2000), water.lwd = c(1,

+ 1, 1, 1, 1, 1, 1.5, 1.5, 1.5))

will produce a chart of the waters embraced by the Maritime Provinces of Canada (Figure 5).

7

http://www.ngdc.noaa.gov/mgg_coastline/
http://www.ngdc.noaa.gov/mgg_coastline/

●

●

0 100 200 300

15
00

10
00

50
0

0

Distance [km]

P
re

ss
ur

e
[d

ba
r

]

 4

 6

 8

 10

 12
 14

 16

 18

 20
 22 24

T
●

●

0 100 200 300

15
00

10
00

50
0

0

Distance [km]

 34.5 35

 35

 35.5

 36

 36.5
S

●

●

0 100 200 300

15
00

10
00

50
0

0

Distance [km]

P
re

ss
ur

e
[d

ba
r

]

 24 24.5
 25 25.5

 26

 26.5

 27

 27.5

σσθθ

−80 −75 −70 −65 −60

30
35

40
45

Longitude

La
tit

ud
e ●●●●●●●●●●●●●●●●●●●●●●●

Figure 4: Portion of the CTD section designated A03 (Cruise chief scientist: Tereschenkov, SOI.), showing
the region of the Gulf Stream.

8

−66 −64 −62 −60 −58

44
45

46
47

48
49

50

1200
1000
800
600
400
200
−50
−100
−150
−200
−300
−400
−500
−1000
−2000

Figure 5: Topography of eastern Canada, centred on Les ı̂les de la Madeleine, north of Prince Edward Island.

9

6 Sea-level data

6.1 Time-domain analysis

The commands

> library(oce)

> data(sealevel.hal)

> plot(sealevel.hal)

load and graph a build-in dataset of sea-level timeseries. The result, shown in Figure 6, is a four-panel plot.
The top panel is a timeseries view that provides an overview of the entire data set. The second panel is
narrowed to the most recent month, which should reveal spring-neap cycles if the tide is mixed. The third
panel is a spectrum, with a few tidal constituents indicated. At the bottom is a cumulative spectrum, which
makes these narrow-banded constituents quite visible.

Exercise 5. Illustrate Halifax sealevel variations during Hurricane Juan

Exercise 6. Draw a spectrum of sea-level variation, with the M2 tidal component indicated.

6.2 Tidal analysis

In a future version, tidal analysis will be provided, along the lines of the t-tide package in Matlab. A
preliminary version of tidal analysis is provided by the tidem function provided in this version of the package,
but readers are cautioned that the results are certain to change in a future version. (The problems involve
phase, and the inference of satellite nodes.)

7 Lobo data

The commands

> library(oce)

> data(lobo)

> plot(lobo)

produce a plot (Figure 7) of lobo data from the Northwest Arm of Halifax Harbour. Note the relationship
between decreasing nutrients and increasing fluorescence, as well as the diurnal signal in the latter.

The reader should note that the lobo part of oce is somewhat preliminary. In particular, the package
requires that certain data columns be present, and in a certain order. Also, the function read.oce does not
understand lobo files. Why these limitations, you ask? Well, the lobo code was really only written as an
aside, for the author’s contribution to a “predict the spring bloom” contest held at Dalhousie University.

Exercise 7. Draw a T -S plot for these data, using a colour coding to indicate time, and using
plotting tricks to reduce the obscuring of this time signal.

10

ηη
−−

ηη 0
 [

m
]

Jan 01 Feb 01 Apr 01 May 01 Jun 01 Jul 01 Aug 01 Sep 01 Oct 01

−
2

0
2

0.
99

 m

Station 490 (HALIFAX) 44.6667N 63.5833E

ηη
−−

ηη 0
 [

m
]

Jan 01 Jan 08 Jan 15 Jan 22 Jan 29

−
2

0
1

2

0.
99

 m

0.00 0.02 0.04 0.06 0.08 0.10

1e
−

04
1e

+
00

ΓΓ2
[m

2
cp

h]

O1

K1

N2

M2

S2

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
3

Frequency [cph]

⌠⌠ ⌡⌡ 0f ΓΓ
df

 [m
]

O1

K1

N2

M2

S2

Figure 6: Sea-level timeseries measured in 2003 in Halifax Harbour. (The spike in September is the storm
surge associated with Hurricane Juan, regarded by the Canadian Hurricane Centre to be one of the most
powerful and damaging hurricanes to ever hit Canada.

11

29
.5

30
.0

30
.5

31
.0

Feb 21 Feb 26 Mar 03

S
al

in
ity

 [P
S

U
]

0.
0

0.
5

1.
0

1.
5

2.
0

T
em

pe
ra

tu
re

 [
°°C

]

Feb 21 Feb 26 Mar 03

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

−
0.

3
−

0.
1

0.
1

0.
2

0.
3

U
 [m

/s
]

V
 [m

/s
]

0
1

2
3

4
5

6

Feb 21 Feb 26 Mar 03

F
lu

or
es

ce
nc

e

2
3

4
5

6
7

N
itr

at
e

●●●●
●● ●
●●

●●●●●●
●●●● ●

●
●
●

●

●●

● ●●●●●
●

●●
●●●

●
● ●● ●●●●●●●●

●●
●

●
●

●
●

●●

●●●●●●●●

●
●●

●
●

●

●
●

●

●

●
●

●●●●
●

●●●
●

●●●●●●●●
●●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●● ●●●●●●●

●
●

●
●
●
●●●
●●●●●●●● ●

●
●

●●●●●●●●
●

●
● ●●●●●●●●●●● ●●●●●●

●
●● ●

●
●

●
●

●

●●●

●

●

●●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

● ●
●

●●
●●

●
●●

●
●

●

● ●
● ●●

●●
●

●●
●

●
●● ● ●●●

●●●
●●●●●●● ● ●●

●●
●

●

●
●

●
●

●●

●
●

●

●

●

●

● ●
● ●

● ●●●●
●

●
● ● ● ●

● ●
●●

● ●
● ●

●●

●
●

●
● ● ●

●

●

●

● ●● ● ● ●●●
●

● ●● ●

29.5 30.0 30.5 31.0

0.
0

1.
0

2.
0

Salinity [PSU]

T
em

pe
ra

tu
re

 [
°°C

]

23.5 24 24.5

25

Figure 7: Lobo measurements in Northwest Arm of Halifax Harbour, at the time of the 2007 Spring bloom.

12

8 The future of oce

The present version of oce can only handle data types that the author has been using lately in his
research. New data types will be added as the need arises in that work, but the author would also be happy
to add other data types that are likely to prove useful to the Oceanographic community. (The data types
need not be restricted to Physical Oceanography, but the author will need some help in dealing with other
types of data, given his research focus.)

As for algorithms, there are plenty of gaps in oce. Dealing with measurements of turbulence is a high
priority for the author, for example, and it is also clear that there are some methods of ADP processing that
should be provided by the package.

Two principles will guide the addition of data types and functions: (a) the need, as perceived by the
author or by other contributors and (b) the ease with which the additions can be made.

9 Development website

The site http://code.google.com/p/r-oce/ provides a window on the development that goes on be-
tween the CRAN releases of the package. Please visit the site to report bugs, to suggest new features, or
just to see how oce development is coming along.

Oce versions are only made official, i.e. released to the CRAN package system, when they are considered
to be of a high quality. However, you may also get the bleeding-edge version from the development website,
perhaps to see whether the author has successfully addressed a deficiency that you reported. You will need
to have subversion installed on you machine, and then can do e.g.

svn checkout http://r-oce.googlecode.com/svn/trunk/ -r 441 r-oce-read-only

to retrieve the intermediate version number 441. Naturally, you should rename the directory from r-oce-
read-only to oce before attempting to check, build, or install the package.

Answers to exercises

Exercise 1 – Seawater properties.

> library(oce)

> sw.rho(S = 34, t = 10, p = 100)

[1] 1026.624

> sw.theta(S = 34, t = 10, p = 100)

[1] 9.988598

> sw.rho(S = 34, t = sw.theta(S = 34, t = 10, p = 100), p = 0)

[1] 1026.173

> sw.rho(S = 34, t = sw.theta(S = 34, t = 10, p = 100, pref = 200),

+ p = 200)

[1] 1027.074

> plot.TS(as.ctd(c(30, 40), c(-2, 20), rep(0, 2)), grid = TRUE,

+ col = "white")

13

http://code.google.com/p/r-oce/

Exercise 2 – Profile plots. Although one may argue as to the limits of the pycnocline, for illustration
let us say it is in 5bar to 12dbar range.

> library(oce)

> data(ctd)

> pycnocline <- ctd.trim(ctd, "pressure", c(5, 12))

> plot.profile(pycnocline, type = "density+N2")

Exercise 3 – TS diagram for section data.

> library(oce)

> data(section)

> SS <- TT <- pp <- id <- NULL

> n <- length(section$data$station)

> for (i in 1:n) {

+ stn <- section$data$station[[i]]

+ SS <- c(SS, stn$data$salinity)

+ TT <- c(TT, stn$data$temperature)

+ pp <- c(pp, stn$data$pressure)

+ id <- c(id, rep(i, length(stn$data$pressure)))

+ }

> ctd <- as.ctd(SS, TT, pp)

> plot.TS(ctd, col = hsv(0.7 * id/n), cex = 2, pch = 21)

Exercise 4 – Gulf Stream. (Try ?sw.dynamic.height for hints on smoothing.)

> library(oce)

> data(a03)

> Gulf.Stream <- section.subset(a03, 124:102)

> dh <- sw.dynamic.height(Gulf.Stream)

> par(mfrow = c(2, 1))

> plot(dh$distance, dh$height, type = "b", xlab = "", ylab = "Dyn. Height [m]")

> grid()

> f <- coriolis(Gulf.Stream$data$station[[1]]$metadata$latitude)

> g <- gravity(Gulf.Stream$data$station[[1]]$metadata$latitude)

> v <- diff(dh$height)/diff(dh$distance) * g/f/1000

> plot(dh$distance[-1], v, type = "l", col = "blue", xlab = "Distance [km]",

+ ylab = "Velocity [m/s]")

> grid()

> abline(h = 0)

Exercise 5 – Halifax sealevel during Hurricane Juan. A web search will tell you that Hurricane
Juan hit about midnight, 2003-sep-28. The author can verify that the strongest winds occurred a bit after
midnight – that was the time he moved to a room without windows, in fear of flying glass.

> library(oce)

> data(sealevel.hal)

> plot(sealevel.hal, focus.time = c("2003-09-23", "2003-10-05"))

> abline(v = as.POSIXct("2003-09-28 23:30:00"), col = "red", lty = "dotted")

> mtext("Hurricane\nJuan", at = as.POSIXct("2003-09-28 23:30:00"),

+ col = "red")

14

Exercise 6 – Sealevel spectrum. Notice the use of (object)$data$(item) here. All oce objects are
lists, and all of them contain a data element of a similar form to this.

> library(oce)

> data(sealevel.hal)

> spectrum(sealevel.hal$data$eta, spans = c(3, 7))

> abline(v = 1/12.42)

> mtext("M2", at = 1/12.42, side = 3)

Exercise 7 – Lobo plot. The resampling with i is to avoid obscuring colours by overplotting. Note
the use of as.ctd to assemble the data into something that plot.TS can handle. This is an example of the
practicality of oce; eventually, plot.TS may be altered to take simple columns of data, but for now it seems
reasonable to require the user to assemble these data into a CTD object, and to spend development time on
something that will pay off better.

> library(oce)

> data(lobo)

> i <- sample(length(lobo$data$temperature))

> a <- as.numeric(lobo$data$time[i] - lobo$data$time[1])

> col <- hsv(0.5 * a/max(a), 1, 1)

> plot.TS(as.ctd(lobo$data$salinity[i], lobo$data$temperature[i],

+ 0), col = col, pch = 1)

15

Index

calculation
seawater properties, 2

changelogs in oce objects, 6

data
coastline, 7
lobo timeseries, 15
topography, 7

dynamic height, 2

editing oce objects, 6

Gulf Stream, 7
geostrophic calculation, 14

Hurricane Juan
surge seen in time-series of sea level, 10
worked example of sea-level plot, 14

logged changes to oce objects, 6

object structure, 1
oce object changelog, 6
oce.edit, 6

reading
ctd profile, 5
ctd section, 7

sea level
during Hurricane Juan, 10, 14

seawater properties, calculations of, 2
section

extracting profile data from, 14

16

	Introduction
	Object design
	Calculations of seawater properties
	CTD data
	Example with pre-trimmed data
	Example with raw data
	Example with WOCE archive data
	Section plots

	Coastline and topographic data
	Sea-level data
	Time-domain analysis
	Tidal analysis

	Lobo data
	The future of oce
	Development website

