
Center for Tropical Forest Science R Package Manual
Pamela Hall, Suzanne Lao, Ellen Connell and Marie Massa

Version 1.00  March 29, 2006

6.0 Reading and Writing Datafiles

Data can be entered using the keyboard (short datasets or test files) or with the CTFS read
and write data functions.  To use the read and write functions in R, a data file created in
data management software or a spreadsheet must be converted to a tab delimited text file
without quotes. Include the column headings (variable names) as the first line of the file.
Use database and spreadsheet software that provide this option, either as part of the “Save
As” or “Export”.

One concept to keep in mind is that data files exist external to the R environment, that is
they exist on the harddrive when R isn’t running.  To address these files in R, you have to
designate the location of the file by providing a path or designating the working directory
for R to be in a specific folder where the files are AND you have to provide the name of
the file.  Since the file is outside the R environment, the file name is consider a character
string and must always appear in quotes and as the entire file name.

There are several ways to read large text files into the R environment.  In addition to the
information provided here, please read the R help pages for each function described
below and for the CTFS specific functions.

The related CTFS R help pages for reading and writing CTFS files is : CTFS.readwrite.
Take a look at it while reading this manual chapter.  CTFS.datafiles provides a full
description of the structure of all of the CTFS datafiles.

6.1 Reading Datafiles

The named  files to be read into R must be located by an explicit path name or be in the
working directory of the current R session. In R, use setwd() to make the working
directory the one containing the data file to be read in or give the ENTIRE path and file
name for each function. The following examples assume that setwd() was used and the
working directory for the R session is the directory in which the data files are located.
Since reading a data file from disk into an R session only has to be done once, then it is
easier to just temporarily change directories.  Once an R data file structure has been
created and that file has been saved to disk, then the Data Manager menu can be used to
read that file into a current R session.

scan()
reads data from a text file into a vector or a list of vectors directly from the console. The
general syntax of scan() is:

>scan(file , what , sep , quote , skip)



file : name of the input file to read data from. The path should be included if it is not the
default path, i.e. the working directory. If the file is specified as '""', which is an
empty name, then input is taken from the keyboard.

what : specifies the type of data to be read: logical, integer, numeric, character, or list.
sep : specifies what the field separator is, which by default, is a blank space between 2

fields as known as “white space”.  Other common separators are tab (“\t”) and
commas (“,”)

quote : specifies the set of quoting characters used to define where one character string
begins and ends.

skip : designates the number of  lines of the input file to skip before  beginning to read the
data values, as in the case of column names, which you would skip.

Scan returns a list of vectors with the types given by the types of the elements in 'what'.
This provides a way of reading columnar data. For example:

scancensdata=function(alsebl.txt)
 {
 data.read=scan(censdata,skip=1,what=list("","","","","","",""))
  tag=as.numeric(data.read[[1]])
  dbh=as.numeric(data.read[[2]])
  status=data.read[[3]]
  pom=as.numeric(data.read[[4]])
  stems=as.numeric(data.read[[5]])
  date=as.numeric(data.read[[6]])
  codes=data.read[[7]]

return(data.frame(tag=tag,dbh=dbh,status=status,pom=pom,stems=stems,
date=date,codes=codes))
 }

This function reads in your text datafile which is called alsebl.txt on the disk into a file in
the R session called censdata.  The file contains the fields tag, dbh, status, pom, number
of stems, date, and codes.  The specified parameters for this function skip the first row
containing the names of the columns, and specifies that the data be read in as a list of
character vectors. The vectors are converted to numeric when applicable and a data.frame
is returned as output.  Note that the column names as provided in the text file are not
included in the output except with the explicit inclusion of the column names in the
data.frame statement.

Here is a  datafile called alsebl.txt  that can be made into a dataset accessible by R that
can be read in using scan().  This file is white space delimited.

tag dbh status pom stems date codes
000047 426 A 3 1 5382 B
000049 228 A 1 1 5396 *
000068 277 A 1 1 5390 *



000071 318 A 1 1 5390 *
000073 368 A 2 1 5382 B
000089 580 A 2 1 5382 B
000092 -1 D 0 -1 5387 *
000109 318 A 2 1 5382 B
000122 351 A 2 1 5377 B
000138 246 A 2 1 5377 B
000169 404 A 2 1 5377 B
000172 308 A 2 1 5377 BQ

Using the above function, scanscensdata() to create a data frame  Rdata file.  Note that
alsebl.txt is in quotes because it is the name of a file on the disk.

> alsebl=scancensdata("alsebl.txt")
> alsebl[1:5,]

   tag dbh status pom stems date codes
1  47 426       A      3      1  5382       B
2  49 228       A      1      1  5396       *
3  68 277       A      1      1  5390       *
4  71 318       A      1      1  5390       *
5  73 368       A      2      1  5382       B

> str(alsebl)

`data.frame': 11128 obs. of  14 variables:
 $ tag    : num  -27784     47     49     68     71 ...
 $ dbh   : num  NA 437 228 278 269 360 580 NA 311 348 ...
 $ status:Class 'AsIs'  chr [1:11128] NA "A" "A" "A" ...
 $ pom   : num  0 2 1 1 1 2 2 0 2 2 ...
 $ stems :num 1 1 1 1 1 1 1 1  …
 $ date  : num     0 3702 3632 3627 3627 ...
 $ codes :Class 'AsIs'  chr [1:11128] "*" "B" "*" "*" ...

Notice that the fields tag, dbh, pom, stems, and date are numeric, while status and codes
are character fields. The left most numbers on each  line are row numbers and serve as
row names once the data frame is created.

read.table()
reads a file in table format and outputs a data frame.  This be accomplished with a single
line command line making it much easier to use than scan().  This function is appropriate
for the majority of text datasets that have been created by a spread sheet. However,
read.table()  is an inefficient way to read in very large numerical files, especially those
with many columns. The scan() function is faster and takes up less memory. In fact
read.table() actually uses scan to read the file, and then processes the results of



scan().The difference between these two functions includes the format the variables in
the output file take on.   By default in read.table(), numeric fields are read in as numeric
variables and character fields are read in as factors. The general syntax of read.table() is:

>read.table(file, header, sep, quote, dec, row.names, col.names, as.is, skip)

file : name of the input file to read data from.
header : a logical value indicating whether the input file contains the names of the

variables as its first line.
sep : specifies what the field separator is, which by default, is a blank space between 2

fields as known as “white space”.  Other common separators are tab (“\t”) and
commas (“,”)

quote : specifies the set of quoting characters used to define where one character string
begins and ends.

dec : designates the character used for decimal points.  In the CTFS datasets the period is
used (“.”).

row.names : a vector of names, or a single number giving the column of the table which
contains the names of the rows.  The default is sequentially numbered rows.

col.names : a vector of  names for the variables. The default is a '"V"' followed by the
column number eg V1 V2 V3….

as.is : a logical value. FALSE defines the default behavior, which is to convert the
character variables to factors. Designate as.is = TRUE to suppress conversion of
character variables to factors, leaving them “as is”.

skip : designates the number of  lines of the input file to skip before  beginning to read the
data values, as in the case of column names, which you would skip.

Here is a  text file called bci.spp.info.txt  that can be made into a dataset accessible by R
and can be read in using read.table() .  The file is tab delimited text, with no quoting
characters and contains a header row with the variable names.  The character variables
are to remain as characters and are not to be converted to factors.

Example:
sp genus species family grform repsize breedsys maxht
acacme Acacia melanoceras Fabaceae:Mimos. U 4 B 6
acaldi Acalypha diversifolia Euphorbiaceae S 2 M 6
acalma Acalypha macrostachya Euphorbiaceae U 2 M 5
ade1tr Adelia triloba Euphorbiaceae U 10 D 5

>bcispp=read.table(file=“/datasets/bci/spplist.txt”, as.is=T, header=T, sep="\t",
quote="")

6.2 Writing Datafiles



Once an R dataset has been created, you may want to continue using it in future analyses.
If you quit an R session without saving the workspace or saving specific objects, you will
lose all objects created in the current session. Instead of recreating the R datasets every
time an R session begins, you will want to save them and be able to call them up in a later
session.

The best way to accomplish this is to save the created file in your directory structure so
that it exists when you exit R.

Alternatively, especially when in a hurry, save the current workspace and loading it again
in the next session and the datafile will be available. Remember, that until the file is
saved into your directory structure, it does not exist permanently on your disk

save()
saves an R object to a specified file on disk which can be called up at a later date using
the load() or attach(). The general syntax is:

> save(…., file)

.… : a list of the names of the objects to be saved.
file :  name of the file on disk, in quotes with the suffix .rdata. By default the file is saves

in the working directory.  Use setwd() to change the directory or include the full
path of the folder where you want to save the file.

Save the R file alsebl created above in the working directory
> save(alsebl,file=”alsebl.rdata”)

Or in an explicitly provided path /R/results/ folder:

> save(alsebl, file=”/R/results/alsebl.rdata”)

A binary file called alsebl.rdata will be created in the /R/results/ folder, that is portable
across all R platforms (Windows, MacOS, Linux).   The name of the file for the R session
will be the file name used when it was created in R.  The saved name is the name of the
file on disk which always includes the .rdata suffix.  These names DO NOT have to be
the same, though it greatly eases remembering what each file contains (see Chapter 4 on
file management).

load()

To call up this same file in the next R working session use:

> load(“/R/results/alsebl.rdata”)

or if the file is in the current working directory:



> load(“alsebl.rdata”)

The R file “alsebl” will be available in the first environment. You can also use the “Load
Workspace” option under “File” in the menu bar to load the file.

attach()

this effectively does the same thing as load() but the file is placed in a different location
within the R session.  It is places in environment #2 also referred to as R search path #2.

> attach(“/R/results/alsebl.rdata”)

By default, the R file “alsebl” will be available in the second environment ( ls(2) ). Once
attached or loaded, the variables in alsebl can be accessed by giving their names alone.

write.table()

This function is used to export a data frame to a text file for use in other software, such as
MS Excel or Word. Remember, R datasets are binary files and are not readable by other
software without conversation to a text file. If the R dataset to export is not a data frame,
this function will try to convert it to a data frame first. The general syntax is:

>write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
                        na = "NA", dec = ".", row.names = TRUE, col.names = TRUE)

x : name of the data frame to be exported. If x is not a data frame, the function will try to
convert it to a data frame.

file :  the name of the file (in quotes) where the data frame is to be saved. The path should
be included if you want to save the file in a folder that is not the default.

append : a logical value which specifies what to do if  file already exists.  If 'TRUE', the
output is appended to the existing file, if 'FALSE', the file is overwritten,
destroying all previous data.

quote :  a logical value or a numeric vector.  If 'TRUE', all character and factor variables
will be surrounded by double quotes. If 'FALSE', nothing is quoted. If it is a
numeric vector, its elements are taken as the indices of the columns to quote.

sep : the separator to use to separate the field values within each row. Common field
separators are blank spaces, commas, tabs, or semicolons.

na : the string to use for missing values in the data. By default, it is assigned the string
“NA”, but you may assign it any other character.

dec : the character to use for the decimal point. The most common characters used are “.”
or “,”.

row.names : either a logical value indicating whether the row names of the data frame are
to be written, or it can be assigned a character vector of row names to be written.



col.names :  either a logical value indicating whether the column names of the data frame
are to be used, or it can be assigned a character vector of column names to be
written.

To export an R table called bci.mort.spp as a text file to the /bci/mortality/ folder use:

> write.table(bci.mort.spp, file="/bci/mortality/spp.mort.txt", quote=F, sep="\t")

This creates a tab-delimited text file, with no quotes surrounding the character variables,
called spp.mort.txt. This text file can be called up in MS Word, MS Excel, or any other
database management software.

6.3 Creating CTFS Datasets

6.3.1 Preparing Text Datasets

Primary Files

In previous workshops, the datasets at each site were set up as separate species text files
under several folders:

- In the \census folder, the species files contained the location information for each
tree: tag, gx, gy.

- In the \census0 folder, the species files contained the census information from the
first census: tag, dbh (diameter at breast height), status code, pom (point of
measure), number of stems, date of measurement (Julian dates), and other site-
specific codes.

- Sites with recensus data had folders called \census1, \census2, and so on with
measurement data from each recensus.

Currently, however, instead of separate species files, the datasets should be set up as one
large text file for each census with all the trees together, in order of species. These files
will be referred to as the full text datasets, named using the following pattern:

Siteyear.full.rdata

For example, the BCI 1990 enumeration is named:  bci90.full.rdata
The BCI 1990 and 1995 merged enumeration file is named : bci9095.full.rdata
The BCI 1985 to 1995 (3 censuses) file is named: bci85to90.full.rdata

The files for each of the census should include the same exact number of records and
should be in exactly the same tree order. This means that as trees die they are NOT
removed from a census dataset.  When trees are recruited, they are added into ALL
previous censuses.

FORMAT



The columns in these full text datasets include:

tag : the number of the tree. Each record of this file should refer to one tree. All multiple
stem measurements other than the main stem should be moved to the multiple
stem file.

sp : the 4 to 6-letter species code. Every species code should appear in the species file
described below.

gx, gy : the x and y coordinates within the plot.
dbh : the diameter measurement from the current census.
pom : point of measure of the diameter.
date : date of measurement in Julian dates, i.e. number of days since a fixed date (we

suggest 1/1/80 when BCI, the first plot, was established).
codes : codes that each site wants to keep for later analyses or explanations.

Following are more detailed explanations of these variables.

tag :  Each record in the dataset refers to one individual, identified by the tag number.
There should be no duplicate tag numbers.  Tag numbers should always be in
identical and numerical order in all datasets.

sp :  All species codes should be valid and included in the species dataset described
below. There shouldn’t be any extra species codes either in these datasets or in the
species list. All valid morphospecies should appear in the species list.

gx, gy : All gx and gy coordinates should fall within the range of the coordinates of your
plot. If a location is unknown, it should be given a code of –9. If any coordinate
falls exactly on the rightmost or uppermost border, change it to 1 decimal less.
For example, for a plot 1000 x 500 m, make sure that your gx coordinates go from
0 to 999.9 and your gy coordinates from 0 to 499.9.

dbh :  Dbh should be above 10 mm in all cases where the tree is alive. For multiple-
stemmed plants, the largest dbh should appear in this dataset, the rest of the
measurements should appear in the multiple stem file (see below). The following
dbh codes should be used otherwise:

 0 - if the tree is alive, but its main stem broke off and its dbh is below 1 cm,
        or  its stem is under 1.3 m. This is used in the case of resprouts also.
–1 - if the tree died in a later census.
–2 - if the tree had not entered the census yet but will in a later census.
–9 - if the dbh measurement was missed and is unknown.
5 - For Pasoh only, a dbh of 5 refers to trees that were alive and were >=10
      but were not measured.

pom :  Pom refers to the point of measurement of the diameter. Pom is used when we
calculate growth rates.  All trees ≥1 cm dbh should be given a pom code of 1 the
first time they enter a census, and in all subsequent censuses if the height at which



the dbh was measured does not change.  If the diameter of the tree is measured at
a different height or at another stem (as in the case of multiple-stemmed trees) in
a subsequent census, the pom should be increased to the next number.  This may
happen in trees with buttresses where the height at which the diameter was
measured changed, in trees whose main stem broke off or died and whose largest
stem is another one, or in trees whose main stem died but have resprouts.  Trees
that have not entered the census yet, whose dbh is missing, or trees that died
should all be given a pom of 0 (zero).

date :  Dates refer to the date when the individual was measured. They should be julian
dates, calculated from the number of days since January 1st,1980 (the day the first
census at BCI began). Make sure the dates are all in the correct format before
converting them to julian dates. Some countries specify the month before the day,
while others specify the day before the month. Make sure it is consistent
throughout the dataset. Check that the dates fall within the range of the census
interval. It is very common to find the wrong year entered.

codes :  Codes refer to any codes you have in your database that you want to keep and
may want to use in your analyses. They should not have spaces between them. Put
in underscores, periods, or any other character if you want to separate the codes.

ERROR CHECKING

Following are other inconsistencies to check in those sites with recensus data.

Number and order of records:

Make sure all tag numbers are in exactly the same order in each of your full datasets.
There should be the same number of records in all your census datasets.

Screen the dbh remeasurements:

You should recheck all dbhs that are smaller (allowing for some shrinkage or slight
measurement error) or abnormally larger than the previous census.  A dbh may be smaller
than the previous census if the main stem broke off or died, or if the height at which the
measurement was taken changed.  If so, make sure that it is annotated and increase the
pom to the next larger number.

If you do find an error in a previous dbh measurement, do not change the previous
measurement in your main database, since you will be estimating.  Keep the
measurements, make a note of the problem, and let each scientist/analyst make their own
decision on what to do with the error.

For plots with 3 or more censuses, verify that all dead trees remain dead in the later
censuses.  If a tree was found alive in a later census, the tag number may be incorrect or



you may have to change the previous “dead” code to “alive” and change the dbh to –9
(missing).

For plots with 3 or more censuses, verify that all recruit trees are indicated as to be
recruits in earlier  censuses.

SUPPORT FILES

Besides the full text datasets, each site should also prepare the following files.

Species information file: site.spp.info.txt

This file contains the information for each species found at each site. Each species is a
row and the columns are the information about each species.  Every single species code
that appears in your full datasets should appear in this list (including all morphospecies)
and every species code that appears in this species list should appear in your full datasets.
The file should have the following columns:

sp : the four to six-letter species code,
genus : the genus name
species : the species name
family : the family the species belongs to
grform : the growth form of the species, i.e. shrub, understory tree, mid-sized tree,

canopy tree.
repsize : the reproductive dbh (cm) of the species
breedsys : breeding system, i.e. bisexual, dioecious, monoecious, polygamous, etc.
maxht : maximum height (m) attained by the species.

All columns should have something filled in for every record and there should be no
spaces within each column. If your species name consists of 2 or more words, for
example, make sure to insert an underscore, dash or period in the space between the
words.

The first 5 columns should be filled in as best as possible. No columns should be left
blank. If a species has not been identified yet, put “Unidentified” or “Unknown” in the
relevant columns (family, genus, species). In the cases where information is missing, put
in a –1 or –9 in the columns for numeric fields (repsize, maxht) and a ‘*’ in the character
fields (grform, breedsys).

Any other information that is identified with a species can be placed into this file.  For
instance, timber type, pioneer status etc. Classification of species that is derived from
analyses can also be kept here such as the degree of habitat specificity that can be
determined by using the torus habitat analysis.  These classifications of species can be
used in further analyses.



An rdata file should be made from this text file and saved in the same directory that the
site rdata census files are kept.  See read.table() and save() functions above.  Save the file
as site.spp.info.rdata.  eg. bci.spp.info.rdata.

Quadrate information file:  site.quad.info.txt

This file contains information about each 20 by 20 m quadrate. Each quadrate is a row
and the columns are the information about each quadrate.  There must be a row for each
quadrate.  There are 1250 rows for a standard 1000 by 500 m CTFS plot.  At a minimum
this file should contain the elevation data (m) for each 5 meter interval of the plot in order
of x and y. In addition, slope and convexity can be added for use in habitat analysis.  The
elevation file should be tab-delimited.  The columns are:

x : x coordinate of tree (east-west axis of plot)
y : y coordinate of tree (north-south axis of plot)
elev : elevation in m a.s.l.
slope : degrees (see “torus” analysis for computation)
convex : degrees (see “torus” analysis for computation)

The results of any form of habitat classification can also be put into this file.  For
instance, the “torus” habitat analysis can be used to provide 8 classes of habitat and these
are assigned to each quadrate.

An rdata file should be made from this text file and saved in the same directory that the
site rdata census files are kept.  See read.table() and save() functions above.  Save the file
as site.quad.info.rdata.  eg. bci.quad.info.rdata.

Multiple stem file: siteyear.mult.txt

There should be one multiple stem file for each census. Each file should include at least a
tag and dbh column. Each multiple stem file includes all stem measurements of all
multiple-stemmed individuals for that census, excluding the measurement of the largest
main stem, which is in the full database. The multiple stem files do not include the largest
stem measurement of each tree. The multiple stem files from each census will not
necessarily have the same number of records nor the same tag numbers, unlike the full
datasets for each census. At this time the multiple stem files are named: mult0 (first
census), mult1 (second census), etc.

An rdata file should be made from this text file and saved in the same directory that the
site rdata census files are kept.  See read.table() and save() functions above. To be
consistent with the naming of other files, save the file as siteyear.mult.rdata.  eg.
bci95.mult.rdata.

6.3.1 Preparing R Datasets



Once your text datasets are cleaned up, checked for errors and inconsistencies, and in the
correct format, make them into rdata files.

Once your tab-delimited text file (with no quotes) is ready with the appropriate column
headings, create the full dataset in R with the following command:

> siteyear.full=read.table(file=”FILENAME”, as.is=T, header=T, sep="\t",
quote="")

where site refers to the site (bci, yasuni, sinharaja, hkk, etc.), year  refers to the census
year, and FILENAME refers to the name of your tab-delimited text file. Remember to
include the path in the FILENAME if your file is not found in working directory.

Similarly, to create a tab-delimited species text file with no quotes to an R species
dataset, use the following command:

> sitespp.info=read.table(file=”FILENAME”, as.is=T, header=T, sep="\t",
quote="")

To create an R multiple stem dataset:

> siteyear.mult0= read.table(file=”mult0.txt”, as.is=T, header=T, sep="\t",
quote="")

To create the R elevation file:

> sitequad.info=read.table(file=”FILENAME”, as.is.=T, header=T, sep=”\t”,
quote=“”)

You may then use this file to create an elevation matrix with the CTFS R function
readelevdata().

Split datasets by species

After the R full datasets are created, you can create a list of data frames separated by
species with the CTFS R function called sep.data().

> siteyear.spp=sep. data(siteyear.full,sepcol=”sp”,handle.na=NA)

This contains the same fields as the full dataset, but separated by species. The file
siteyear.spp is a list of data frames, one for each species.

To extract a single species' data frame from siteyear.spp, use the CTFS R function
load.species(). To create a subset of the data frames in siteyear.spp use sep.species().



Merged datasets from two censuses

To run the growth, mortality, and recruitment functions, you need to merge the full
datasets from at least two censuses, using the CTFS R function mergecensus(). Following
is an example using the 90 and 95 BCI censuses.

> bci9095.full=mergecensus(“bci”, census0=bci90.full, census1=bci95.full)

Again, it is very important that the full datasets from the two censuses be in the exact
same tag order, since the program just merges the two datasets, it does not verify that the
tag numbers match before merging.

After merging the two datasets, you can create the split files on this merged dataset with
the sep.fulldata() function mentioned above:

> bci9095.spp=sep.data(bci9095.full)

Save all these R datasets to a folder on your computer with the save() function described
above.


