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Assessing agreement between two measurement
methods (Y, X) is not an immediate statistical ap-
proach. Among the several approaches, Altman and
Bland method (Altman and Bland, 1983) is prone to
subjective interpretation leading to not appropriate
conclusions.

The Concordance Correlation Coefficient (CCC)
has been proposed by Lin (Lin, 1989) as an objective
agreement index and it is obtained by the product of
the Precision (Pearson’s correlation coefficient, ρYX)
and Accuracy (Cb = 2σXσY / [σ2

Y +σ2
X + (µX −µY)2])

as ρYX · Cb. Furthermore, a formal agreement deci-
sion approach has been proposed by Lin et al. (2002),
in the context of a bivariate Gaussian (Y, X) dis-
tribution, by using CCC and several other indices
such as Precision, Accuracy, Total Deviation Index (TDI)
and Coverage Probability (CP) of different agreement
boundary.

It is worthwhile to stress that in this case the role
of the null (H0) and alternative (H1) hypotheses has
to be reversed: H0 is of no agreement and H1 is of
agreement. So, the testing procedure is usually based
on the confidence interval approach, such as in the
equivalence studies and in the non-inferiority con-
trolled clinical trials models.

The aim of this paper is to illustrate the agree-
ment package (in R language) that allows to calcu-
late the agreement indices, proposed by Lin et al.
(2002), and their transformed values for obtaining
a better approximation to the Gaussian distribution.
Furthermore, and as a more relevant tool, this pack-
age investigates their asymptotic properties accord-
ing to a simulation study under the bivariate Gaus-
sian model. So, having fixed the five parameters of
the model (µY, µX , σ2

Y, σ2
X , ρYX or σYX) under the null

(H0) or the alternative (H1) hypothesis it is possible
to investigate, for example, the influence of differ-
ent sample sizes on the asymptotic properties of the
agreement considered indices. In addition, this al-
lows to obtain the different proportions of rejection,
given the sample sizes.

In the next section we will introduce the context
of the topic in this article. In the section Analytical
Expressions we will explain analytical formulae when
the target values are random (measured with error)
while in the sections The features of lin.simulation()
and How-to we will give some details of the current
release of agreement and we will provide an example.

Analytical Expressions

agreement package implements the function
lin.simulation() which performs:

(a) the simulation study

(b) the calculation of the five agreement indices
proposed by Lin et al. (2002) together their ap-
proximately Gaussian distributed transforma-
tions:

– Precision (Z inverse hyperbolic tangent
transformation)

– Accuracy (logit transformation)

– CCC (Z inverse hyperbolic tangent trans-
formation)

– TDI (W logarithmic transformation for
mean square error MSD, not directly TDI)

– CPk (logit transformation)

(c) the calculation of their theoretical values under
H0 and under H1

(d) the rejection proportions of H0 (upper or lower
unilateral confidence interval above or un-
der the pertinent agreement threshold, respec-
tively)

(e) produces a summary of the simulation results

This paper shows the results for CCC and its Z
transformation for sake of simplicity. One can eas-
ily find the same pattern for the other agreement in-
dices. Particularly, if the lower unilateral (1 −α) ·
100% confidence limit of the Z transformed CCC
value is greater than its theoretical value under H0
we can conclude for the agreement:

Z ≥ ζ0 + Φ−1(1−α)σZ0 (1)

where ζ0 and σZ0 are the asymptotic expected
value and standard deviation of the Z transforma-
tion of CCC under H0. It is a one tail test with a right
region of rejection. It is clear that we have to anti-
transform ζ0 + Φ−1(1−α)σZ0 to obtain the thresh-
old in terms of CCC. The asymptotic power of ac-
cepting agreement by using Z is:

PZ = Φ

[
ζ0 −ζ1 + Φ−1 (1−α) σZ0

σZ1

]
(2)
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The features of lin.simulation()

We illustrate some of the capabilities of the agree-
ment package using the lin.simulation() function.
Seven inputs are available for this command:

• NUM_CAMP number of samples to simulate. Its
default value is 5000.

• NUM sample size. Its default value is 30.

• matH0 matrix of parameters under null hy-
pothesis (H0). It has 2 rows and 3 columns:

(
σ2

x σxy µx
σxy σ2

y µy

)
• matH1 matrix of parameters under alternative

hypothesis (H1). It has exactly the same struc-
ture of matH0.

• underH0 logical parameter to determine what
condition to simulate. Its default value is TRUE
(simulation under H0).

• ALPHA_CI leading to a 1−α confidence level
with a unilateral confidence interval. Its de-
fault value is 0.05

• la_CP1 the threshold used for TDI. Its default
value is 0.9

The funcion lin.simulation() has a list of eight
objects as output (see Figure 1):

• table it is a matrix. Each row represents a
measure of agreement and each column a sum-
mary of the simulation.

• underH0 see above

• matH0 see above

• matH1 see above

• NUM_CAMP see above

• NUM see above

• alpha see above

• rho is the value for the correlation coeffi-
cient under H0 (if underH0 = TRUE) or H1 (if
underH0 = FALSE)

table is the most important; its columns are:

• Th val theoretical value of each agreement
measurement

• Thr inverse transformation of the threshold
for each transformation

• Th prob theoretical value of probability. It
should be equal to α

• Mean of est antitransformation of the mean
estimate of the transformation of each measure
of agreement

• Std of est standard deviation of the transfor-
mation of each measure of agreement

• Mean of std mean of the estimates of the
standard deviation of each transformation

• Prop rej the proportion of samples which lie
in the rejection region under H0

How-to

We must first select a single simulation
case. We can choose between null hy-
pothesis (underH0 = TRUE) or the alternative
(underH0 = FALSE). We must set sample size (for
example NUM = 30) and the number of samples (for
example NUM_CAMP = 10000). Now we must have
two different matrices which represent the param-
eters of the bivariate normal distribution under H0
(no agreement) and H1 (yes agreement). The val-
ues tested in literature (Lin et al., 2002, Table 2) are
translated in R code by:

> sigma2x0 <- 1 / 1.15
> sigma2y0 <- 1.15
> covxy0 <- 0.95 * sqrt(1 / 1.15 * 1.15)
> mux0 <- 0
> muy0 <- 0.15
> matH0 <- matrix(0,nrow = 2,ncol = 3)
> matH0[1,1] <- sigma2x0
> matH0[1,2] <- covxy0
> matH0[1,3] <- mux0
> matH0[2,1] <- covxy0
> matH0[2,2] <- sigma2y0
> matH0[2,3] <- muy0
> matH0

[,1] [,2] [,3]
[1,] 0.8695652 0.95 0.00
[2,] 0.9500000 1.15 0.15

and

> sigma2x1 <- 1 / 1.1
> sigma2y1 <- 1.1
> covxy1 <- 0.9662055 * sqrt(1 / 1.1 * 1.1)
> mux1 <- 0
> muy1 <- 0.1
> matH1 <- matrix(0,nrow = 2,ncol = 3)
> matH1[1,1] <- sigma2x1
> matH1[1,2] <- covxy1
> matH1[1,3] <- mux1
> matH1[2,1] <- covxy1
> matH1[2,2] <- sigma2y1
> matH1[2,3] <- muy1
> matH1

[,1] [,2] [,3]
[1,] 0.9090909 0.9662055 0.0
[2,] 0.9662055 1.1000000 0.1

Let α = 0.05 (default value). Now we have set
all the parameters to run lin.simulation() (see Fig-
ure 1).

2



CONCLUSIONS BIBLIOGRAPHY

Conclusions

The first column of table object is the theoretical
value of the indices (Th val) while the second column
(Thr) represent the threshold used to determine the
rejection region. Theoretical values ofα and 1−β are
reported in the third column (Th prob). The fourth
column (Mean of est) represents the inverse transfor-
mation of the mean estimate of the agreement mea-
sure (see above). We expect the first and the fourth
columns to be similar in order to consider the esti-
mate robust. The same conclusion is made between
the fifth and the sixth columns which represent the
standard deviation of the transformation (Std of est)
and the mean of the standard deviation (Mean of
std) respectively. In the seventh column (Prop rej) it
is calculated the proportion between NUM_CAMP runs
fall in the rejection region. If we simulate under H0
then we expect that this value is aboutα = 0.05 (type
one error probability) while we expect it is about the
true value 1−β (power) if we simulate under H1.

Summary

In this paper we describe the agreement pack-
age. This provides the lin.simulation() function
to simulate and to perform a complete analysis of an
agreement measurement study.
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> lin.simulation(matH0 = matH0,matH1 = matH1,NUM = 30,NUM_CAMP = 10000,underH0 = TRUE)

$table

Th val Thr Th prob Mean of est Std of est Mean of std Prop rej

Precision 0.95000 0.97283 0.05 0.95160 0.19110 0.19245 0.07

Accuracy 0.97940 0.99254 0.05 0.97847 0.63310 0.64053 0.00

TDI 0.61997 0.09204 0.05 0.62036 0.25665 0.26147 0.11

CCC 0.93043 0.95994 0.05 0.92812 0.17014 0.16935 0.04

Cpk1 0.83026 0.90620 0.05 0.82192 0.39877 0.40945 0.03

CPk3 0.97892 0.99465 0.05 0.97761 0.83295 0.83488 0.04

$underH0

[1] TRUE

$matH0

[,1] [,2] [,3]

[1,] 0.8695652 0.95 0.00

[2,] 0.9500000 1.15 0.15

$matH1

[,1] [,2] [,3]

[1,] 0.9090909 0.9662055 0.0

[2,] 0.9662055 1.1000000 0.1

$NUM_CAMP

[1] 10000

$NUM

[1] 30

$alpha

[1] 0.05

$rho

[1] 0.95

Figure 1: The output of the simulation by lin.simulation() command.
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