
MAPPING LEVELS OF A FACTOR

Mapping levels of a factor
The gdata package

by Gregor Gorjanc

Introduction

Factors use levels attribute to store information on
mapping between internal integer codes and charac-
ter values i.e. levels. First level is mapped to internal
integer code 1 and so on. Although some users do
not like factors, their use is more efficient in terms
of storage than for character vectors. Additionally,
there are many functions in base R that provide ad-
ditional value for factors. Sometimes users need to
work with internal integer codes and mapping them
back to factor, especially when interfacing external
programs. Mapping information is also of interest
if there are many factors that should have the same
set of levels. This note describes mapLevels function,
which is an utility function for mapping the levels of
a factor in gdata 1 package (Warnes, 2006).

Description with examples

Function mapLevels() is an (S3) generic function and
works on factor and character atomic classes. It
also works on list and data.frame objects with
previously mentioned atomic classes. Function
mapLevels produces a so called “map” with names
and values. Names are levels, while values can
be internal integer codes or (possibly other) levels.
This will be clarified later on. Class of this “map”
is levelsMap, if x in mapLevels() was atomic or
listLevelsMap otherwise - for list and data.frame
classes. The following example shows the creation
and printout of such a “map”.

> library(gdata)

> (fac <- factor(c("B", "A", "Z", "D")))

[1] B A Z D
Levels: A B D Z

> (map <- mapLevels(x=fac))

A B D Z
1 2 3 4

If we have to work with internal integer codes,
we can transform factor to integer and still get
“back the original factor” with “map” used as ar-
gument in mapLevels<- function as shown bellow.
mapLevels<- is also an (S3) generic function and
works on same classes as mapLevels plus integer
atomic class.

> (int <- as.integer(fac))

[1] 2 1 4 3

> mapLevels(x=int) <- map

> int

[1] B A Z D
Levels: A B D Z

> identical(fac, int)

[1] TRUE

Internally “map” (levelsMap class) is a list (see
bellow), but its print method unlists it for ease of in-
spection. “Map” from example has all components
of length 1. This is not mandatory as mapLevels<-
function is only a wrapper around workhorse func-
tion levels<- and the later can accept list with
components of various lengths.

> str(map)

List of 4
$ A: int 1
$ B: int 2
$ D: int 3
$ Z: int 4
- attr(*, "class")= chr "levelsMap"

Although not of primary importance, this “map”
can also be used to remap factor levels as shown bel-
low. Components “later” in the map take over the
“previous” ones. Since this is not optimal I would
rather recommend other approaches for “remap-
ping” the levels of a factor, say recode in car pack-
age (Fox, 2006).

> map[[2]] <- as.integer(c(1, 2))

> map

A B B D Z
1 1 2 3 4

> int <- as.integer(fac)

> mapLevels(x=int) <- map

> int

[1] B B Z D
Levels: A B D Z

Up to now examples showed “map” with inter-
nal integer codes for values and levels for names. I
call this integer “map”. On the other hand character
“map” uses levels for values and (possibly other) lev-
els for names. This feature is a bit odd at first sight,
but can be used to easily unify levels and internal in-
teger codes across several factors. Imagine you have
a factor that is for some reason split into two factors
f1 and f2 and that each factor does not have all lev-
els. This is not uncommon situation.

1from version 2.3.1

1



SUMMARY MAPPING LEVELS OF A FACTOR

> (f1 <- factor(c("A", "D", "C")))

[1] A D C
Levels: A C D

> (f2 <- factor(c("B", "D", "C")))

[1] B D C
Levels: B C D

If we work with this factors, we need to be careful
as they do not have the same set of levels. This can be
solved with appropriately specifying levels argu-
ment in creation of factors i.e. levels=c("A", "B",
"C", "D") or with proper use of levels<- function.
I say proper as it is very tempting to use:

> fTest <- f1

> levels(fTest) <- c("A", "B", "C", "D")

> fTest

[1] A C B
Levels: A B C D

Above example extends set of levels, but also
changes level of 2nd and 3rd element in fTest!
Proper use of levels<- (as shown in levels help
page) would be:

> fTest <- f1

> levels(fTest) <- list(A="A", B="B",

+ C="C", D="D")

> fTest

[1] A D C
Levels: A B C D

Function mapLevels with character “map” can
help us in such scenarios to unify levels and inter-
nal integer codes across several factors. Again the
workhorse under this process is levels<- function
from base R! Function mapLevels<- just controls the
assignment of (integer or character) “map” to x. Lev-
els in x that match “map” values (internal integer
codes or levels) are changed to “map” names (pos-
sibly other levels) as shown in levels help page.
Levels that do not match are converted to NA. In-
teger “map” can be applied to integer or factor,
while character “map” can be applied to character
or factor. Result of mapLevels<- is always a factor
with possibly “remapped” levels.

To get one joint character “map” for several fac-
tors, we need to put factors in a list or data.frame
and use arguments codes=FALSE and combine=TRUE.
Such map can then be used to unify levels and inter-
nal integer codes.

> (bigMap <- mapLevels(x=list(f1, f2),

+ codes=FALSE,

+ combine=TRUE))

A B C D
"A" "B" "C" "D"

> mapLevels(f1) <- bigMap

> mapLevels(f2) <- bigMap

> f1

[1] A D C
Levels: A B C D

> f2

[1] B D C
Levels: A B C D

> cbind(as.character(f1), as.integer(f1),

+ as.character(f2), as.integer(f2))

[,1] [,2] [,3] [,4]
[1,] "A" "1" "B" "2"
[2,] "D" "4" "D" "4"
[3,] "C" "3" "C" "3"

If we do not specify combine=TRUE (which is the
default behaviour) and x is a list or data.frame,
mapLevels returns “map” of class listLevelsMap.
This is internally a list of “maps” (levelsMap ob-
jects). Both listLevelsMap and levelsMap objects
can be passed to mapLevels<- for list/data.frame.
Recycling occurs when length of listLevelsMap is
not the same as number of components/columns of
a list/data.frame.

Additional convenience methods are also imple-
mented to ease the work with “maps”:

• is.levelsMap, is.listLevelsMap, as.levelsMap
and as.listLevelsMap for testing and coer-
cion of user defined “maps”,

• "[" for subsetting,

• c for combining levelsMap or listLevelsMap
objects; argument recursive=TRUE can be used
to coerce listLevelsMap to levelsMap, for ex-
ample c(llm1, llm2, recursive=TRUE) and

• unique and sort for levelsMap.

Summary

Functions mapLevels and mapLevels<- can help
users to map internal integer codes to factor levels
and unify levels as well as internal integer codes
among several factors. I welcome any comments or
suggestions.

2



BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

J. Fox. car: Companion to Applied Regression, 2006. URL
http://socserv.socsci.mcmaster.ca/jfox/. R
package version 1.1-1.

G. R. Warnes. gdata: Various R program-
ming tools for data manipulation, 2006. URL
http://cran.r-project.org/src/contrib/

Descriptions/gdata.html. R package version
2.3.1. Includes R source code and/or documenta-
tion contributed by Ben Bolker, Gregor Gorjanc
and Thomas Lumley.

Gregor Gorjanc
University of Ljubljana, Slovenia
gregor.gorjanc@bfro.uni-lj.si

3

http://socserv.socsci.mcmaster.ca/jfox/
http://cran.r-project.org/src/contrib/Descriptions/gdata.html
http://cran.r-project.org/src/contrib/Descriptions/gdata.html
mailto:gregor.gorjanc@bfro.uni-lj.si

	Mapping levels of a factor
	Introduction
	Description with examples
	Summary


