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Abstract

This vignette is based on a manuscript under review at the Journal of Statistical
Software.

This paper discusses a generalization of the Dirichlet distribution, the ‘hyperdirichlet’,
in which various types of incomplete observations may be incorporated. It is conjugate
to the multinomial distribution when some observations are censored or grouped. The
hyperdirichlet R package is introduced and examples given. A number of statistical tests
are performed on the example datasets, which are drawn from diverse disciplines including
sports statistics, the sociology of climate change, and psephology.

Keywords: Dirichlet distribution, combinatorics, R, multinomial distribution, constrained op-
timization.

1. Introduction

The Dirichlet distribution is conjugate to the multinomial distribution in the following sense.
If random variables p1, . . . , pk satisfy

∑k
i=1 pi = 1 and are Dirichlet, that is, they have a prior

distribution

P(p1, . . . , pk) = pα1−1
1 pα2−1

2 · · · pαk−1
k ·

Γ (
∑n

i=1 αi)∏k
i=1 Γ (αi)

(1)

then if the pi are interpreted as the parameters of a multinomial distribution from which
independent observations of types a1, a2, . . . ak are made, the posterior PDF for the p’s will
be

P(p1, . . . , pk) = pa1+α1−1
1 pa2+α2−1

2 · · · pak+αk−1
k ·

Γ (
∑n

i=1 ai + αi)∏n
i=1 Γ (ai + αi)

, (2)

thus belonging to the same family as the prior, the Dirichlet.

In this paradigm, an observation is informative because it increases the Dirichlet parameter
of its category by one. However, an observation may be informative even if it does not belong
unambiguously to a single category: Consider making r = r123 + r456 censored observations
whose exact classes are not observed but r123 are known to be one of categories 1, 2, or 3,
and r456 are known to be one of categories 4,5, or 6. The posterior P would satisfy

P(p1, . . . , pk) ∝ pα1−1
1 pα2−1

2 · · · pαk−1
k · (p1 + p2 + p3)r123 · (p1 + p3 + p5)r135 (3)

and is not Dirichlet. Consider now the case where observations are made from a conditional
multinomial. Suppose s123 observations are made whose class is known a priori to be one
of 1,2, and 3, and there are si of class i where i = 1, 2, 3, then the posterior would be
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P(p1, . . . , pk) ∝ pα1−1
1 pα2−1

2 · · · pαk−1
k · ps11 p

s2
2 p

s3
3

(p1 + p2 + p3)s123
, (4)

also not Dirichlet. These types of observation occur frequently in a wide range of contexts
and naturally lead one to consider the following generalization of the Dirichlet distribution:

P(f ; p1, . . . , pk) ∝

(
k∏
i=1

pi

)−1 ∏
g∈P(K)

∑
i∈g

pi

f(g)

(5)

where K is the set of positive integers not exceeding k, P(K) is its power set, and f : P(K) −→
R maps P(K) to the real line. Here, pi > 0 for 1 6 i 6 k and

∑k
i=1 pi = 1. We call this the

hyperdirichlet distribution.

The first term is there so that defining

d(G) =
{
αi if G == {i}
0 otherwise.

(6)

results in P (d; . . .) being the Dirichlet distribution.

The distribution appears to have |P(k)| = 2k real parameters but the effective number of
degrees of freedom is actually 2k − 2, as the first and last parameter do not affect the PDF.

Normalizing constant and moments

The normalizing factor of the PDF given in equation 5 is given by

B(f) =
∫
p>0,

Pk−1
i=1 pi61

(
k∏
i=1

pi

)−1 ∏
g∈P(k)

∑
i∈g

pi

f(g)

d (p1, . . . , pk−1) (7)

where pk = 1 −
∑k−1

i=1 pi. This is given by function B() in the package. Moments are given
by B(f + m)/B(f) where

m(G) =
{
mj if G == {j}
0 otherwise.

(8)

Also define

fH(G) =
{

1 if G == H
0 otherwise.

(9)

It is convenient to introduce the notation i(·), with

i(G) =
{

1 if G == {i}
0 otherwise.

(10)

Here it is understood that 1 6 i 6 n [thus f{i} = i]. This gives E (pi) = B(f + i)/B(f).

Updating a prior f in the light of observations is then straightforward. If an observation i,
drawn from a multinomial distribution, is made, then the posterior is f + i.
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If the observation is restricted a priori to be in G ⊆ K, and subsequently specified to be
amongst H ⊆ G, then the posterior is f + fH − fG.

Restrictions

Not every f is ‘proper’, that is, gives a distribution with a finite integral. A sufficient condition
is that for all nonempty G ⊆ K,

∑
H⊆G f(H) > 0. For example,

α1 > 0
α2 > 0
α3 > 0
α4 > 0

α1 + α2 + α12 > 0
α1 + α3 + α13 > 0
α1 + α4 + α14 > 0
α2 + α3 + α23 > 0
α2 + α4 + α24 > 0
α3 + α4 + α34 > 0

α1 + α2 + α3 + α12 + α13 + α23 + α123 > 0
α1 + α2 + α4 + α12 + α14 + α24 + α124 > 0
α1 + α3 + α4 + α13 + α14 + α34 + α134 > 0
α2 + α3 + α4 + α23 + α24 + α34 + α234 > 0

(11)

[function is.proper() in the package tests for normalizability].

If f(G) = 0 whenever |G| > 1 the hyperdirichlet distribution reduces to a Dirichlet; likewise
Equation 11 reduces to the standard Dirichlet restriction αi > 0 for 1 6 i 6 k.

In this paper I discuss this natural generalization of the Dirichlet distribution and introduce
an R (R Development Core Team 2008) package, hyperdirichlet, that provides some numerical
functionality.

Generalizations of the Dirichlet distribution

Previous generalizations of the Dirichlet distribution include the work of Bradley and Terry
(1952), who considered rank analysis of incomplete designs. In the case of pairs, ranking is
equivalent to choosing a winner from two items, their likelihood function would correspond
to ∏

i<j

p
nij

i p
nji

j

(p1 + pj)
nij+nji

(12)

in current notation (here there are a total of nij + nji Bernoulli trials beween player i and
player j > i of which nij are won by player i). This is a special case of Equation 5.

Censored observations, in which the class of an object is specified to be one of a subset
of {1, . . . , k}, lead naturally to a likelihood function that is a generalization of Dirichlet’s;
a survey is given by Paulino (1991). Paulino and de Bragança Pereira (1995) present a
comprehensive Bayesian methodology for censored observations and a simplified analysis of
their sample dataset is provided exempli gratia in the package, documented under paulino.
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A different generalization was presented by Connor and Mosimann (1969), who observed that
the Dirichlet distribution was neutral1 and proved that

P (p1, . . . , pk) =
k−1∏
i=1

Γ (ai + bi)
Γ (ai) Γ (bi)

· pbk−1−1
k

k−1∏
i=1

pai−1
i

 k∑
j=i

pj

bi−1−(ai+bi)
 (13)

[function gd() in the package] is the most general form of a random variable with neutrality.
Wong (1998) extended this work and showed that the generalized Dirichlet distribution was
conjugate to a particular type of sampling experiment.

2. Prior information and the hyperdirichlet distribution

The Bayesian paradigm allows one to use prior information in the form of a prior distribution
on the parameters. There are many types of prior information that are expressed in a natural
way using the hyperdirichlet distribution and some examples are discussed here.

Consider four tennis players P1 − P4. When Pi plays Pj with i 6= j, the result is a single

observation from a Bernoulli distribution with parameters
(

pi

pi+pj
,

pj

pi+pj

)
(Zermelo 1929),

where the pi are the unknown probabilities of victory; we require
∑
pi = 1.

A Dirichlet prior would be proportional to
∏4
i=1 p

αi−1
i where αi > 0, but suppose our prior

information is that P1 and P2 are considerably stronger than P3 and P4 (perhaps we know P1

and P2 to be strong squash players, and P3 and P4 weak badminton players—surely informa-
tive about the pi—but remain ignorant of P1’s strength relative to P2, and of P3’s strength
relative to P4.

Then an appropriate prior might be ∝ (p1 + p2)γ12 where the magnitude of γ12 reflects the
strength of our prior beliefs. If γ12 is large, then the probability density is small everywhere
except near points in Sk with p1 + p2 = 1.

The best one could do with a standard Dirichlet prior would be to assign small values for α1

and α2 and large values for α3 and α4. But this would have the disadvantage that one would
have to have firm beliefs about the relative strengths of P3 and P4, and in particular that a
match between P3 and P4 would be a Bernoulli trial with unknown probability p, where p is
itself drawn from a beta distribution with parameters (α3, α4). Thus E(p) = α3/ (α3 + α4)
and VAR(p) = α3α4

/(
(α3 + α4)2(α3 + α4 + 1)

)
[ie small if α3, α4 are large]; and one might

not have sufficient information to make such an assertion—compare this with a prior ∝
(p1 + p2)γ12 in which the density is uniform along lines of constant p3 + p4.

Situations where one has prior information that is not representable with a Dirichlet distri-
bution arise frequently, especially when the identities of the various players are not known.
The special case of k = 3 is readily visualized because the system possesses two degress of
freedom and the PDF may be plotted on a triangular plot. In the context of the sports
estimation problem above, an example of prior information might be that a knowledgeable

1Consider a random vector V = (P1, . . . , Pk). Element i, 1 6 i < k is neutral if Pi and Pj/
“

1−
Pi

k=1 Pk

”
are independent for j > i (Connor and Mosimann 1969). A completely neutral vector is one all of whose
elements are neutral. Note that the ordering of the vector is relevant: Thus neutrality of V does not imply
neutrality of V ′ = (P2, P1, P3, . . . , Pk). If V is Dirichlet, then any permutation of V is neutral.
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Topalov Anand Karpov total
22 13 - 35
- 23 12 34
8 - 10 18
30 36 22 87

Table 1: Results of 87 chess matches (dataset chess in the aylmer package) between three
Grandmasters; entries show number of games won up to 2001 (draws are discarded). Topalov
beats Anand 22-13; Anand beats Karpov 23-12; and Karpov beats Topalov 10-8

person observed the players and noted that two were very much stronger than the third; he
in fact reported that “the guy with a red shirt got hammered” (West 2008). But whether it
was player 2 or player 3 who wore the red shirt is not known; and no information about the
relative strengths of the two non-red wearing players is available. Figure 1 shows an example
of how observations affect prior information in this case.

3. Examples

This section presents the hyperdirichlet package in use. Examples drawn from diverse disci-
plines are given.

3.1. Chess

Many attributes of the hyperdirichlet distribution are evident in the simplest non-trivial case,
that of k = 3. This case is also facilitated by the fact that, having two degrees of freedom,
the distribution may be readily visualized. In addition, the normalization factor is easily
evaluated, the integrand having arity two.

Consider Table 1 in which matches between three chess players are tabulated; this dataset
has been used by West and Hankin (2008).

The likelihood function is

C
p30
1 p

36
2 p

22
3

(p1 + p2)35 (p2 + p3)34 (p1 + p3)18

(the symbol ‘C’ consistently stands for an undetermined constant). This dataset is included
in the aylmer package; it may be loaded and coerced to an S4 object of class hyperdirichlet:

> data("chess")

> (ch <- as.hyperdirichlet(chess))

Topalov Anand Karpov params powers
[1] 0 0 0 0 0
[2] 0 0 1 23 22
[3] 0 1 0 37 36
[4] 0 1 1 -35 -35
[5] 1 0 0 31 30
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(a)

p1p3

p2

(b)

p1p3

p2

(c)

p1p3

p2

(d)

p1p3

p2

Figure 1: Density plots for the three-way hyperdirichlet distribution corresponding to differ-
ent information sets. (a), prior PDF ∝

[
p1p2p3

(p1+p2)(p1+p3)(p2+p3)

]α
with α = 0.1 corresponding

to one player being known to be weaker than the other two; see how the high-probability
region adheres to the edges of the triangle, thus implying that at least one player is weak.
(b), posterior PDF following the observation that p1 beat p2 7 times out of 10 (note the
induced asymmetry between p1 and p2). (c), prior PDF ∝

[
p1p2

(p1+p2)2

]α
, again with α = 0.1,

corresponding to p3 being good and one (but not both) of p1 or p2 being good. (d), posterior,
again following p1 beating p2 7 times out of 10
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[6] 1 0 1 -18 -18
[7] 1 1 0 -35 -35
[8] 1 1 1 0 0

Normalizing constant not known

This simple example shows how a matrix, each row of which corresponds to repeated multi-
nomial trials (here restricted to two outcomes), may be coerced to a hyperdirichlet object.
Each output line of the print method corresponds to a subset of {p1, p2, p3}; in columns 1-3,
0 means “not included” and 1 means “included”; thus, for example, the second line shows that
Karpov won 22 (=10+12) games overall; and the fourth line shows that Anand and Karpov
played 35 games.

The final two columns show the parameters and the powers of the the 2k = 8 subsets re-
spectively. Although these two columns give identical information, having both displayed
simultaneously avoids much confusion in practice.

The normalizing constant B is as yet unknown; it is unevaluated by default as its calculation is
numerically expensive, especially when k becomes large—Evans and Swartz (2000) and others
refer to “the curse of dimensionality” when discussing the difficulty of integrating over spaces
of large dimension. This consideration motivates much of the design of the hyperdirichlet
package.

The R idiom to calculate B is

> (ch <- as.hyperdirichlet(ch , calculate_NC = TRUE))

Topalov Anand Karpov params powers
[1] 0 0 0 0 0
[2] 0 0 1 23 22
[3] 0 1 0 37 36
[4] 0 1 1 -35 -35
[5] 1 0 0 31 30
[6] 1 0 1 -18 -18
[7] 1 1 0 -35 -35
[8] 1 1 1 0 0

Normalizing constant: 1.47463101081191e-28

Thus object ch now includes the normalizing constant.

This allows one to test various hypotheses using the standard methodology. For example,
consider H0 : p =

(
1
3 ,

1
3 ,

1
3

)
. The p-value for such a test is the integrated probability density,

the integration proceeding over regions more extreme than H0. The R idiom would be

> f <- function(p){dhyperdirichlet(p, ch) > dhyperdirichlet(rep(1/3), 3, ch)}

> calculate_B(ch, disallowed=f) / B(ch)

[1] 0.3951652
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TopalovKarpov

Anand

Figure 2: Support function for the three chess players of Table 1. Each player has an associ-
ated p, and we demand p1 + p2 + p3 = 1. When player i plays player j 6= i, the outcome is a
Bernoulli trial with parameter pi/ (pi + pj). Each labelled corner corresponds to a canonical
basis vector; the top corner, for example, is point (0, 1, 0): Anand wins all games (this point
has zero likelihood as the dataset includes games in which Anand lost). Note that the support
is unimodal
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Here, function calculate_B() integrates over the domain of the distribution, but excluding
regions where f() returns TRUE. In this case, the integration proceeds over regions of the
simplex that are more extreme than H0, where a point is held to be ‘more extreme’ if its
likelihood is lower than that of H0. The test has a p-value of about 0.395, indicating that
there is insufficient evidence to reject H0 at the 5% level (in practice one would use function
probability() which achieves the same result more compactly).

This functionality can be applied in a slightly different context. If ch is interpreted as a prob-
ability density function with domain p = (p1, p2, p3) where

∑
pi = 1, it is straightforward to

use the Bayesian paradigm (taking a uniform prior for simplicity) to estimate the probability
that p lies within any specified region. For example, the probability that Topalov is indeed
a better player than Anand is merely the probability that p ∈ {p|p1 > p2}. With a slight
abuse of notation, this is given by

∫
p>0, p1+p261, p1>p2

(
3∏
i=1

pi

)−1 ∏
g∈P(3)

∑
i∈g

pi

ch(g)

d (p1, p2)

∫
p>0, p1+p261

(
3∏
i=1

pi

)−1 ∏
g∈P(3)

∑
i∈g

pi

ch(g)

d (p1, p2)

(14)

which may be evaluated with function probability():

> T.lt.A <- function(p){p[1] < p[2]}

> probability(ch , disallowed = T.lt.A)

[1] 0.7011418

Note that this is not the probability that Topalov would beat Anand in a game. The figure
is the posterior probability that the Bernoulli parameter for such a game would exceed 0.5.

Examples are given below which illustrate inferential techniques that do not require the value
of the normalizing constant (or indeed any integral) to be evaluated.

3.2. Public perception of climate change

Lay perception of climate change is a complex and interesting process (Moser and Dilling
2007); the issue of immediate practical import is the engagement of non-experts by the use
of “icons”2 that illustrate different impacts of climate change.

In one study (O’Neill 2007), subjects are presented with a set of icons of climate change and
asked to identify which of them they find most concerning. Six icons were used: PB [polar
bears, which face extinction through loss of ice floe hunting grounds], NB [the Norfolk Broads,
which flood due to intense rainfall events], L [London flooding, as a result of sea level rise],
THC [the thermo-haline circulation, which may slow or stop as a result of anthropogenic
modification of the water cycle], OA [oceanic acidification as a result of anthropogenic emis-
sions of CO2], and WAIS [the West Antarctic Ice Sheet, which is rapidly calving as a result
of climate change].

2This word is standard in this context. An icon is a “representative symbol”.
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icon
NB L PB THC OA WAIS total
5 3 - 4 - 3 15
3 - 5 8 - 2 18
- 4 9 2 - 1 16
1 3 - 3 4 - 11
4 - 5 6 3 - 18
- 4 3 1 3 - 11
5 1 - - 1 2 9
5 - 1 - 1 1 8
- 9 7 - 2 0 18

23 24 30 24 14 9 124

Table 2: Experimental results from O’Neill (2007) (dataset icons in the package): Respon-
dents’ choice of ‘most concerning’ icon of those presented. Thus the first row shows results
from respondents presented with icons NB, L, THC, and WAIS; of the 15 respondents, 5
chose NB as the most concerning (see text for a key to the acronyms). Note the “0” in row 6,
column 9: This option was available to the 18 respondents of that row, but none of them
actually chose WAIS

Methodological constraints dictated that each respondent could be presented with a maximum
of four icons. Table 2 (dataset icons in the package) shows the experimental results.

One natural null hypothesis H0 is that there exist p = p1, . . . , p6 with
∑
pi = 1 such that

the probability of choosing icon i is proportional to pi. The Aylmer test (West and Hankin
2008) shows that there is insufficient evidence to reject this hypothesis and we proceed on the
assumption that such a p does in fact exist: This is the object of inference.

This paper follows Esty (1992), who gives an example drawn from the field of psephology.
In his voting model, k choices are evaluated by voters; the object of inference is the set pi,
where

∑k
i=1 pi = 1. If the voter has evaluated nominee j, then nominee j is selected with

probability pj/
∑
pk, where the summation is over all evaluated nominees.

The maximum likelihood estimate for p is obtained straightforwardly in the package using
max.like() function; numerical techniques must be used because analytical solutions are not
generally available3.

> data("icons")

> ic <- as.hyperdirichlet(icons)

> (m.null <- max.like(ic))

$MLE
NB L PB THC OA WAIS

0.25234 0.17362 0.22459 0.17009 0.11071 0.06865

$likelihood

3Even the very simplest nontrivial cases have complicated expressions for the maximum likelihood estimate:
three dimensional hyperdirichlet distributions such as the chess dataset do possess an analytical expression
for the MLE, but Maple’s tightest simplification for it occupies over 23 sides of A4.



Robin K. S. Hankin 11

[1] 9.990315e-77

$support
[1] -174.9974

Observe how the first element, NB—corresponding to the Norfolk Broads—is the largest of
the six; this is consistent with the sociological arguments presented by O’Neill in which “local”
issues dominate more distant concerns (the test took place in Norwich).

One natural line of enquiry is to test whether the finding that the point estimate of NB is the
largest of the six is statistically significant.

There seem to be a number of closely related alternative hypotheses. Firstly, one may consider
the null hypothesis H0 :

∑
pi = 1 and H1 :

∑
pi = 1, p1 6 1

6 . Recalling that the normalizing
factor is difficult to calculate, it is possible to use the Method of Support (Edwards 1992).

The maximum support for H1 is given by the following R idiom; the disallowed argument
to max.like() prevents the optimization routine searching outside the domain of H1.

> f1 <- function(p){p[1] > 1/6}

> (m.f1 <- max.like(ic , disallowed=f1))

$MLE
NB L PB THC OA WAIS

0.16667 0.19406 0.25617 0.18303 0.12336 0.07670

$likelihood
[1] 7.359708e-78

$support
[1] -177.6056

Observe that the MLE subject to H1 is on the boundary of admissibility as (to within nu-
merical accuracy) p1 = 1

6 . The relevant statistic is thus

> m.null$support - m.f1$support

[1] 2.608181

indicating that the support at any point admissible under H1 may be increased by 2.6 by the
expedient of allowing the optimization to proceed freely over the domain of H0. Edwards’s
criterion of 2 units of support per degree of freedom is thus met and H1 may be rejected.

Secondly, one might consider H2 :
∑
pi = 1, p1 > max (p2, . . . , p6); thus p1 is held to be

greater than all the others.

> f2 <- function(p){p[1] > max(p[-1])}

> (m.f2 <- max.like(ic , disallowed=f2))
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$MLE
NB L PB THC OA WAIS

0.23757 0.17396 0.23762 0.16989 0.11138 0.06958

$likelihood
[1] 9.173346e-77

$support
[1] -175.0828

Again observe that the MLE lies on the boundary of its restricted hypothesis [p1 == p3]. We
have

> m.null$support - m.f2$support

[1] 0.08531408

indicating that there is insufficient evidence to reject H2: There are points within the region
of admissibility of H2 whence one can gain only a small amount of support (viz. 0.0853) by
optimizing over the whole of H0.

Low frequency responses

O’Neill argues that the fifth and sixth icons are both considered by her respondents to be
“remote” (cf the first, which is definitely local). Thus one might consider H3 :

∑
pi =

1, p5 + p6 > 1
3 :

> f3 <- function(p){sum(p[5:6]) > 1/3}

> m.f3 <- max.like(ic , disallowed=f3)

> m.null$support - m.f3$support

[1] 7.711396

Thus indicating that the observed low frequencies of respondents choosing OA and WAIS are
unlikely to be due to chance, consistent with O’Neill’s sociological analysis.

As a final example, consider H4 :
∑
pi = 1,max {p5, p6} > min {p1, p2, p3, p4}. This corre-

sponds to an assertion that the maximum of the two distant icons is less than any local icon.
The support for this hypothesis is about 3.16, indicating that one may reject H4.

The same techniques can be applied to any dataset in which repeated conditional multinomial
observations are made; observe that a numerical value for the normalizing constant is not
necessary for this type of inference.

3.3. Team sports

Table 3 shows the result of a sports league in which up to n = 9 players compete. A ‘game’ is
a disjoint pair of subsets of K = {1, 2, 3, 4, 5, 6, 7, 8, 9} together with an identification of one
of these subsets as the winning side.
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p1 p2 p3 p4 p5 p6 p7 p8 p9

1 0 NA 1 0 0 NA 1 NA
NA NA 1 1 0 1 0 0 NA
NA NA 1 1 0 NA 1 0 NA
NA 1 1 0 0 NA 1 1 NA
1 1 1 0 0 0 NA NA NA
...

...
...

...
...

...
...

...
...

Table 3: First five results from a sports league comprising five players, p1 to p9; dataset
volleyball in the package. On any given line, a ‘1’ denotes that that player was on the
winning side, a ‘0’ that he was on the losing side, and NA that he did not take part for that
game

Thus the likelihood function for the first two games would be

C · p1 + p4 + p8

p1 + p2 + p4 + p5 + p6 + p8
· p3 + p4 + p6

p3 + p4 + p5 + p6 + p7 + p8
,

on the assumption of independence. The dataset of results provided with the package cor-
responds to a very flat likelihood curve; unrealistically large datasets of this type are appar-
ently necessary to reject alternative hypotheses of practical interest. The analysis below is
based on a synthetic dataset of 4000 games in which the players’ strengths are proportional
to
(
1, 1

2 ,
1
3 , · · · ,

1
9

)
: Zipf’s law (1949).

The first step is to estimate the strengths of the players:

> data("volleyball")

> v.H0 <- max.like(vb_synthetic))

> v.H0$MLE

p1 p2 p3 p4 p5 p6 p7 p8 p9
0.3044 0.1772 0.1005 0.0929 0.0733 0.0841 0.0589 0.0419 0.0668

Given that the actual strengths follow Zipf’s law, the error in the estimate is given by:

> zipf(9) - v.H0$MLE

p1 p2 p3 p4 p5 p6 p7 p8 p9
0.0490 -0.0004 0.0173 -0.0046 -0.0026 -0.0251 -0.0084 0.0023 -0.0275

showing that the estimate is quite accurate. One topic frequently of interest in this context
is the ranking of the players. On the basis of this point estimate, one might assert that p1 >
p2 > p3 > p4; observe that the ranks of the MLE are not correct beyond the fifth, even with
the large amount of data used. How strong is the evidence for this ranking?

> o <- function(p){all(order(p[1:4])==1:4)}

> v.HA <- max.like(vb_synthetic, disallowed=o, start_p=1:9)
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match score
{p1, p2} vs {p3, p4} 9-2
{p1, p3} vs {p2, p4} 4-4
{p1, p4} vs {p2, p3} 6-7
{p1} vs {p3} 10-14
{p2} vs {p3} 12-14
{p1} vs {p4} 10-14
{p2} vs {p4} 11-10
{p3} vs {p4} 13-13

Table 4: Results from doubles tennis matches among four players, p1 to p4; dataset doubles
in the package. Note how p1 and p2 dominate the other players when they play together
(winning 9 games out of 11) but are otherwise undistinguished

(the start_p argument specifies a non-disallowed start point for the optimization routine).
Then

> v.H0$support - v.HA$support

[1] 1.576043

shows that there is no strong statistical evidence to support the assertion that the players are
ranked as in the MLE: There exist regions of parameter space with a different ranking for
which less than two units of support are lost.

Tennis

The above analysis assumed that the strength of a team is proportional to the sum of the
strengths of the players.
However, many team sports appear to include an element of team cohesion; Carron, Bray, and
Eys (2002) suggest that there is a ‘strong relationship’ between cohesion and team success.
In the current context, the simplest team is a pair. Doubles tennis appears to be a particularly
favourable example: “if the two partners coordinate. . . well, they force their opponents to
execute increasingly difficult shots” (Cayer 2004). Note that Cayer’s assertion is independent
of the individual players’ strengths.
The hyperdirichlet distribution affords a direct way of assessing and quantifying such claims,
using the likelihood function induced by teams’ scorelines directly. Consider Table 4, in which
results from repeated doubles tennis matches are shown. The likelihood function is

L (p1, p2, p3, p4) =
C · (p1 + p2)9 (p3 + p4)2 · (p1 + p3)4 (p2 + p4)4 · (p2 + p3)6 (p1 + p4)7 ·
p10
1 p

14
2

(p1 + p2)24 ·
p12
2 p

14
3

(p2 + p3)24 ·
p10
1 p

14
4

(p1 + p4)24 ·
p11
2 p

10
4

(p2 + p4)22 ·
p13
3 p

13
4

(p3 + p4)26 .

Players p1 and p2 are known to play together frequently and one might expect them to win
more often when they play together than by chance. Indeed, each matching has a scoreline
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of roughly 50-50, except {p1, p2} vs {p3, p4}, which results in a win for {p1, p2} 9 times out
of 11. Is this likely to have arisen if team cohesion is in fact absent?
Consider the following likelihood function:

L (pG; p1, p2, p3) =

C · (p1 + p2 + pG)9 (p3 + p4)2 · (p1 + p3)4 (p2 + p4)4

(p1 + p2 + p3 + p4)8
· . . . (15)

which formalizes the effectiveness of team cohesion in terms of a ‘ghost’ player with skill pG
who accounts for the additional skill arising when p1 and p2 play together; the null is then
simply pG = 0.
It is straightforward to apply the method of support. Function max.like() takes a zero
argument that specifies which components of the pi are to be constrained at zero; here we
specify that pG = 0:

> data("doubles")

> max.like(doubles)$support - max.like(doubles,zero=1)$support

[1] 2.773369

thus one may reject the hypothesis the ghost player has zero strength. The inference is
that p1 and p2 when playing together are stronger than one would expect on the basis of
their performance either in singles matches, or doubles partnering with other players: The
scoreline provides strong objective evidence that team cohesion is operating.
This technique may be applied to any of the datasets considered in this paper, and in the
context of scorelines the ghost may be any factor whose existence is in doubt. Negative factors
(for example, a member of the audience whose presence adversely affects one competitor’s
performance) may be assessed by recasting the negative effect as a helpful ghost whose skill
is added to the opposition’s.

4. Conclusions

The Dirichlet distribution is conjugate to the multinomial distribution. This paper presents
a generalization of the Dirichlet distribution which is conjugate to a more general class of
observations that arise naturally in a variety of contexts. The distribution is dubbed ‘hyper-
dirichlet’ as it is clearly the most general form of its type.
The hyperdirichlet package of R routines for analysis of the distribution is introduced and
examples of the package in use are given.
One difficulty in using the distribution is that there does not appear to be a closed-form
analytical expression for the normalizing constant; numerical methods must be used. The
normalizing constant is difficult to calculate numerically, especially for distributions of large
dimension.
The normalizing constant is needed for conventional statistical tests; but its evaluation is not
necessary for the Method of Support, which is used to test a wide variety of plausible and
interesting hypotheses using datasets drawn from a range of disciplines.
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