
inetwork package demo

Sun-Chong Wang

December 2, 2007

R version 2.5.1 (2007-06-27) i386-pc-mingw32

1 Introduction

The package implements functions for network analysis and plotting. It includes
a function for the detection of communities or modules in a network. The algo-
rithm for community-finding, also known in engineering as network partitioning,
is based on a spectral method developed by M.E.J. Newman[1, 2]. Layout and
visualization of networks become challenging when the topology of the networks
is complex. The network plotting functions in this package purport to display
complex networks in a compact and organized fashion by taking advantage of
the community structure embedded in the networks. This vignette explains with
examples how the goals are achieved.

2 Scheme

2.1 Hierarchical structure

Before plotting, one finds the communities by calling the network partitioning
function icommunity:

> data(icashflow)

> cluster5 <- icommunity(cf5, labelcf5)

The network cf5, which comes with the package in icashflow, has a total of 56
vertices. 16 of them are isolated, meaning they are not connected to any other
vertices in the network. To get the communities in the 40 connected vertices, the
function icommunity was called given the adjacency matrix cf5. The second
input to icommunity is optional, providing labels for the vertices. To show the
detected communities, we use the other function in the package:

> ihierarchy(cluster5)

The resulting plot in Fig. 1 shows the four detected communities, whose sizes
are 8 in navy-blue, 11 in green, 6 in light-blue and 15 in red. The vertical depths
from the top in the plot indicate improvements in the modularity, a measure of
clique, with divisions of the (sub)network into (sub)subnetworks. For example,
in the first division, the original network, consisting of 40 connected vertices, was
divided into two subnetworks: navyblue+green on the left and lightblue+red on

1

mars

bookie
linsm
lala

kisc91389
black7447

jarli

tachiii
admin

u83020
angelmoomin

magpower

gkniles
fayfly

smallming

b93202022
Kudo

littleyam
paice

taipeiwolf

evenlee

donhon
littlegame

helen
asmuch
aliceding
ryoohki
bunby

vivi24665066

lancelot59
wei7614
vladimir

allan
samniloy

tony

aaice
dope

kkstone
bluepie
mpemial

Figure 1: Communities, i.e. modules, are identified and shown in different colors

the right (cf Fig. 1). The magnitude of the gain in modularity resulting from
this division is proportional to the length of the vertical bar along the top
center. Specifically, length=(∆Q)1/3. Further gain is achieved by dividing the
19 vertices on the left into 8 navyblue and 11 green vertices. The magnitude
of the gain is measured by the length of the left vertical bar. The algorithm
also applied to the 21 vertices on the right, resulting in two other subnetworks.
Further divisions to the resulting subnetworks failed because of no gain in the
modularity. The algorithm thus stopped and returned the results.

The order in which the vertices in a community appear in the column in the
plot (cf Fig. 1) conveys information about the importance of the vertices in the
community. For example, donhon in the navyblue community can be considered
ringleader of that community in that if donhon is moved from the navyblue
community to any other communities, the modularity of the network suffers
more than if littlegame or any other member in the navyblue community are
moved. Likewise, helen assumes a more important role than any others below
her. Note however that the ringleadership scores of the members can tie so that,
for example, donhon is as important as littlegame, etc.

Sub-(sub)communities within (sub)communities reveal hierarchical structure
in the network. A nice feature of such a hierarchical display is that if a partition
of the network into two parties is enough, we know it is a 19-member left gang
versus a 21-member right gang as in Fig. 1. In the case of voting, the left gang
may then try to recruit evenlee, smallming, ... etc of the right gang in an
effort to become majority.

As the size of the network grows, laying out vertices under a roof can become
clumsy as seen in the following example (cf Fig. 2),

> ihierarchy(icommunity(cf9, labelcf9))

2

lala
wei7614

kisc91389
taipeiwolf
lancelot59

admin
Geny
devin
linsm

sasaka
gkniles

black7447
angelmoomin

tachiii
square
mars

magpower
jarli

bookie
sinpiece
u83020
ryoohki

mpemial
vladimir
aaice

samniloy
hank1003

bluepie

gratain
fayfly

vivi24665066
evenlee
peter1
bunby
Mulder
dope
allan

skysky123
mygod

chocobo
ddwhite

9527
t523290

tony

asmuch
aliceding

helen
saeea

littleyam
littlegame
dancer31
donhon

teafish
bi0star

xingying
kkstone

ArseneLupin
smallming
wanayk

seansu30
muddy

paice
novaser

Kudo
b93202022

Figure 2: A larger network with more communities

The ihierarchy function provides an option fan=TRUE to turn on bending
of the shoulders into arcs (cf Fig. 3):

> ihierarchy(icommunity(cf9, labelcf9), fan = TRUE, spread = 0.5)

The option spread sets the opening of the arc. For example, increasing to
spread=1.7 in the present case turns the hierarchical ladders into circles (cf
Fig. 4):

> ihierarchy(icommunity(cf9, labelcf9), fan = TRUE, spread = 1.6)

Note that the text size can be changed via par(cex=0.7).

2.2 Interconnectivity

The ihierarchy function displays network vertices in a useful way. It however
displays no edges linking the vertices. Seeing is believing, so oftentimes we
desire to witness the interconnectivity among vertices. This section introduces
a function that draws both vertices and edges.

Again, let’s start with an example network.

> partite7 <- icommunity(cf7, labelcf7, partite = TRUE)

Notice the option partite=TRUE in the clustering function icommunity. It is
to partition the network into communities within which the densities of edges
are smaller and between which the densities of edges are larger than average.
The default is partite=FALSE, giving the traditional communities in terms of
links among nodes as in the examples of the previous subsection. The point

3

lala
wei7614

kisc91389
taipeiwolf
lancelot59

admin
Geny

devin
linsm
sasaka

gkniles
black7447
angelmoomin

tachiii
square

mars
magpower

jarli
bookie
sinpiece

u83020
ryoohki

mpemial

vladimir
aaice

samniloy

hank1003
bluepie

gratain
fayfly

vivi24665066
evenlee

peter1
bunby

Mulder
dope

allan

skysky123
mygod

chocobo
ddwhite
9527

t523290
tony

asmuch
aliceding

helen
saeea

littleyam
littlegame

dancer31
donhon

teafish
bi0star

xingying

kkstone
ArseneLupin
smallming
wanayk

seansu30
muddy

paice
novaser
Kudo

b93202022

Figure 3: The structure of Fig. 2 but displayed along concentric arcs

lalawei7614

kisc91389taipeiwolflancelot59

admin
Genydevinlinsmsasaka

gknilesblack7447
angelmoomintachiii

squaremars
magpowerjarlibookie

sinpieceu83020
ryoohki

mpemial
vladimir

aaice
samniloy
hank1003

bluepie

gratainfayfly
vivi24665066evenleepeter1bunby

Mulderdope
allan

skysky123
mygod

chocobo
ddwhite
9527

t523290
tony

asmuch
aliceding

helen
saeea

littleyam
littlegame
dancer31

donhon

teafish
bi0star

xingying
kkstoneArseneLupinsmallmingwanayk

seansu30muddy

paicenovaserKudob93202022

Figure 4: The spreading of Fig. 3 increases to become concentric circles

4

i= 1

i= 2

i= 3

i= 4

i= 5

Figure 5: Identified communities are placed along a spiral

is that the definition of a community would depend on the context. Section 4
illustrates with examples. Let’s continue with network plotting.

The cashflow network now consists of five communities whose sizes are held
in the array:

> partite7$sizes

[1] 6 3 1 33 3

The problem now is to organize the communities and their vertices on a
two-dimension graph for display. We propose to arrange the communities along
a spiral (cf. Fig. 5): spiral = rθ in polar coordinates. Its x and y components
in Cartesian coordinates are,

spiralix = Ri cos(i∆θ)
spiraliy = Ri sin(i∆θ)

(1)

where the subscript i indicates the ith community. The inetplot function starts
plotting the community of the largest size, then the 2nd largest community, ...,
etc along the spiral. So, in the cf7 example, i runs from 1 to 5 with i = 1 for
the community consisting of 33 vertices, and i = 2 for the community having 6
vertices, ..., etc. Organization is this way reveals the modular structure in the
network while simplifying the algorithm as to how deep (i.e. how many levels
or cells) to display all the modules.

The pitch between two neighboring communities on the spiral is set by the
theta option. That is, theta=30 dictates ∆θ = 30 in Eq. (1). The cf7 example
in Fig. 5 has five communities and thus four pitches crossing 120 degrees at
theta=30. A larger ∆θ spreads the communities farther apart along the spiral.

5

i= 1

i= 2

i= 3

i= 4

i= 5

Figure 6: The same as Fig. 5 but the distances Ri’s to the spiral origin are
weighted by their sizes relative to the largest community

The Ri in Eq. (1) increases with the angle i∆θ, i.e. proportional to i by our
definition: Ri = i − 1.

The layout in Fig. 5 may have one drawback: when the number of com-
munities goes up, the central point area of the spiral populates the majority of
the vertices while the tail of the spiral is rather sparse. To make better use of
the space, we scale back the distance of community i to community 1, which
is the spiral origin, by a factor equal to sizes[i]/sizes[1], i.e. the relative
community size. Such a shrink in the radius Ri gives rise to a better use of
the given plotting area in the sense that the relative sizes of the communities
become discernible as demonstrated in Fig. 6. Figures 7 and 8 show further
operations on the spiral; the pitch is shorten in Fig. 7 to theta=15 and the radii
Ri’s are inflated by a factor of 2 in Fig. 8.

The general idea of network plotting has been given: communities are iden-
tified first. They are sorted in a decreasing order according to their sizes and
then laid out around a spiral trajectory. Next, we consider how to place the
vertices in the designated areas, i.e. the circular regions in Figs. 6-8. We
provide two ways of organizing members of the communities: i) circle and ii)
spiral. In the first option circle=TRUE which is default, community members
are simply placed evenly on the circumferences of the circles (Fig. 9), whose
centers have already been determined according the idea above. The radii of
the circles are proportional to the sizes of the communities. The other option
circle=FALSE is to arrange the members again along spirals originating from
the circular centers. The pitch of these component spirals varies concurrently
with the value set by the theta option for the backbone spiral as illustrated
in Fig. 10. Similar to the shrinking factor reining in the backbone spiral, we
refrain a component spiral with rj = log

2
(j) where j is the jth vertices in the

6

i= 1

i= 2

i= 3

i= 4

i= 5

Figure 7: Same as Fig. 6 except that the pitch angle ∆θ is reduced

i= 1

i= 2

i= 3

i= 4

i= 5

Figure 8: Same as Fig. 6 except that the Ri’s are inflated by a common factor

7

Figure 9: Arrange community members on circumferences

community. The schema of component spirals along a backbone spiral makes
the resulting graph self-similar. The spiral option can be advantageous when
the community sizes are large as seen in the examples to follow.

3 Examples

Let’s take a look at some outputs from the plotting function (cf Fig. 11).

> inetplot(partite7, shaft = 10, circle = TRUE, labels = FALSE)

and the component spiral option (cf Fig. 12):

> inetplot(partite7, shaft = 50, circle = FALSE, points = FALSE)

which does not clutter the vertex labels once they are turned on. Note that in
this case, we have lengthened the Ri’s radii by setting shaft=50 in compari-
son with shaft=10, circle=TRUE options. The edges in gray/black color are
between/within communities.

There may be isolated vertices (i.e. nodes without edges to others in the
network). The isolated vertices are not shown by default. They can be turned
on by setting singlets=TRUE option,

> inetplot(partite7, shaft = 50, points = FALSE, circle = FALSE,

+ singlets = TRUE)

with the singlets evenly placed on the circumference of a circle that encloses the
connected vertices (cf Fig. 13).

An example network with 1000 vertices are shown in Fig. 14.

> inetplot(icommunity(A4))

8

Figure 10: Arrange community members along spirals

Figure 11: Turn on the edges (cf Fig. 9). The intercommunal edges are in gray.

9

kkstone
allanlancelot59

Kudo

donhon

bookie

b93202022

ArseneLupinsamniloy

wei7614

devin

littlegamemars
linsm

evenlee

vladimir
bunbyblack7447

jarli

Mulder

peter1

helen
asmuchaliceding

tachiii

fayfly

admin

littleyam
smallming

dope

tony

u83020

paice

angelmoomin
aaice

vivi24665066

gkniles

sasaka

lala

ryoohki
magpower

kisc91389

taipeiwolf

bluepie
mpemialsinpiece

Figure 12: Turn on the vertex labels (cf Fig. 10)

peaceguy

Andrew

federer

cogon
shamiHBKHWJ

clarinet94

linie

jenson

namtar

curtishu

tonymsjh

castroy
Teafish

Allen

foxzgerald

teafish

kkstone
allanlancelot59

Kudo
donhon

bookie

b93202022
ArseneLupinsamniloy

wei7614

devin
littlegamemars

linsm
evenlee

vladimirbunbyblack7447
jarli

Mulder

peter1
helen

asmuchaliceding
tachiii

fayfly

admin

littleyam
smallmingdope

tony

u83020

paice

angelmoominaaicevivi24665066

gkniles

sasaka

lala

ryoohki
magpowerkisc91389

taipeiwolf

bluepie
mpemialsinpiece

Figure 13: Showing the isolated vertices (cf Fig. 12)

10

96
226232311320

417
669860947980

44
58

70106136255256301
345
400
457
481
511622625719729840

902

47
48

157
260293307315330410

412
442
468
554
560604814825861900

905
951

139
148

158285346354389
454
462
601781791823921

994

46
192

381420589653
687
730
826835895922

984

173
258486518582

701
704733760761

49
357672772

786
8218631000

107
129

163317331
460
461
479

732881910
938

150
288485636

655780873

32
113

397407411422477
526

533
553
573
611788859941949

985

65
264284

327
380819

26
2888103364

470
580671808893

34
63

125224283402555
559
645
676683694774917

940

189
291376395

448726764

334
495496509620

628
637
749779789952

446884 587848
156202

522

15

183734

211

197287

132737
115

846

662

735
627 215

711799

133

89
143387393

568
623738920

41313
480

9
186266386

437
472663698

17
42153199

249
279
356502936

20
25

83
92168392438469483

488
551
567
649
680
820854872877944961

991
995

Figure 14: An example graph with 1000 vertices

4 Communities and anti-communities

This section shows the difference between the two values of the logical argument
partite to the clustering function icommunity. In a social network where
an edge between two vertices indicates acquaintance between the two persons
represented by the two vertices. The natural way to define communities in this
context is to partition the network so that a community has a denser edges
among members within than between communities. In this case, we set the
partite option to false, partite=FALSE (cf Fig. 15).

> cluster3 <- icommunity(cf3, labelcf3, partite = FALSE)

> inetplot(cluster3, shaft = 5, theta = 45, points = FALSE)

On other hand, in some cases, a community is better defined where the
within-community edges are sparser than between-community ones. Examples
include the trading network of a market. In this case, a transaction (edge)
between two traders (vertices) indicates that one considers the price of the asset
too low while the other thinks the opposite. A transaction is thus matched
between them. People sharing the same belief about the trend of the asset thus
make no or few trades. They form a community. If this is the case, we set the
partite option to TRUE. The corresponding example is shown below (cf Fig. 16):

> partite3 <- icommunity(cf3, labelcf3, partite = TRUE)

> inetplot(partite3, shaft = 5, theta = 45, points = FALSE)

The above partitioning was on the same network data (i.e. adjacency ma-
trix). Note that vertices belonging to a community are in one color. Comparing
the two partitioning of Figs. 15 and 16, we see that the difference lies in whether
the within- or between-community edges are maximized.

11

wei7614

smallming

bookie

black7447
jarli lala

donhon

samniloy

Figure 15: Partition the network in the way that the edge densities within the
found communities are maximized

jarli

black7447

lala

smallming

donhon

bookie

wei7614samniloy

Figure 16: The same data as Fig. 15 but the partition was performed to maxi-
mize between-community edge densities

12

5 About the modularity detection algorithm

The algorithm[1, 2] works by partitioning the original network into two, each
of which is then subject to further division, and so on. A branching process in
the algorithm is imagined, and thus a recursive call in the function icommunity

is implemented. A nice feature of the algorithm is that the within- or between-
community edge densities are compared to what is expected from the empirical
edge distribution. When the density of the edges in a module falls below the
empirical average, the algorithm stops dividing. As a consequence, the number
of communities to be found in the network does not have to be pre-set; the
algorithm finds the optimal number of communities on its way. This feature is
one of the advantages of the algorithm[1, 2]. The division in each iteration is
according to the signs of the elements in the leading eigenvector of the so-called
modularity matrix. Readers are referred to Newman (2006) for details[1, 2].

Performance of the algorithm implemented in R depends on the numbers
of vertices and edges in the network. As an example, it takes 4 seconds for
icommunity to return the communities in a scale-free network with 1000 vertices
and ∼1 edges per vertex on an Intel laptop (Centrino Duo/1.66 GHz/1 GB
RAM) running Windows XP. The computation can scale as O(n2 log(n)).

References

[1] M.E.J. Newman, Modularity and community structure in networks. In Proc.

Natl. Acad. Sci. U.S.A. 103 (2006) 8577–8582.

[2] M.E.J. Newman, Finding community structure in networks using the eigen-
vectors of matrices. In Phys. Rev. E 74 (2006) 036104-1–19.

13

