
Maximum Entropy Bootstrap for Time Series: The

meboot R Package

Hrishikesh D. Vinod
Fordham University

Javier López-de-Lacalle
Universidad del Páıs Vasco

Abstract

This introduction to the R package meboot is a (slightly) modified version of Vinod
and López-de-Lacalle (2009), published in the Journal of Statistical Software.

The maximum entropy bootstrap is an algorithm that creates an ensemble for time
series inference. Stationarity is not required and the ensemble satisfies the ergodic theorem
and the central limit theorem. The meboot R package implements such algorithm. This
document introduces the procedure and illustrates its scope by means of several guided
applications.

Keywords: time series, dependent data, bootstrap, R.

1. Introduction

This paper illustrates the use of the meboot R package for R (R Development Core Team
2008). The package meboot implements the maximum entropy bootstrap algorithm for time
series described in Vinod (2004, 2006). The package can be obtained from the Comprehensive
R Archive Network at http://CRAN.R-project.org/package=meboot.

In the traditional theory, an ensemble Ω represents the population from which the observed
time series is drawn. The maximum entropy (ME) bootstrap constructs a large number of
replicates (J = 999, say) as elements of Ω for inference using a seven-step algorithm designed
to satisfy the ergodic theorem (the grand mean of all ensembles is close to the sample mean).
The algorithm’s practical appeal is that it avoids all structural change and unit root type
testing involving complicated asymptotics and all shape-destroying transformations like de-
trending or differencing to achieve stationarity. The constructed ensemble elements retain the
basic shape and time dependence structure of the autocorrelation function (ACF) and the
partial autocorrelation function (PACF) of the original time series.

This discussion collects relevant portions of Vinod (2004, 2006) as templates for users of the
meboot package. Let us begin with some motivation. Wiener, Kolmogorov and Khintchine
(WKK, Wiener 1930; Kolmogorov 1931; Khintchine 1934), among others, developed the sta-
tionary model in the 1930’s where the data xt arise from the Ω mentioned above. Stationary
time series are integrated of order zero, I(0). Many real world applications involve a mixture
of I(0) and nonstationary I(d) series, where the order of integration d can be different for dif-
ferent series and even fractional, and where the stationarity assumptions are difficult to verify.
The situation is much worse in the presence of regime switching structural changes and other
jump discontinuities occurring at arbitrary times. The WKK theory mostly needs the zero

http://CRAN.R-project.org/package=meboot

2 meboot: Maximum Entropy Bootstrap for Time Series

memory I(0) white noise type processes, where some WKK results are true only for circular
processes, implying that we can go back in history, (e.g., undo the US Securities and Exchange
Commission, the Federal Communications Commission, or go back to horse and buggy, pre
9/11 days, etc.). Irreversibility is an important property of most economic time series, making
the assumption of zero memory I(0) process quite unrealistic. Actually, social science systems
are often dynamic, complex and adaptive leading to irreversible, non-stationary and some-
times rather short time series. Hence Economists often need: (i) ‘non-standard’ Dickey-Fuller
type sampling distributions for testing regression coefficients (with severe inference problems
for panel data), and (ii) detrending and differencing to convert such series to stationarity.
The motivation then is to achieve greater flexibility and realism by avoiding both (i) and (ii).

Vinod (2004, 2006) offers a computer intensive construction of a plausible ensemble created
from a density satisfying the maximum entropy principle. The ME bootstrap algorithm uses
quantiles xj,t for j = 1, . . . , J (J = 999, say), of the ME density as members of Ω from the
inverse of its ‘empirical’ cumulative distribution function (CDF). The algorithm guarantees
the satisfaction of the ergodic theorem (grand mean of all xj,t representing the ensemble
average equals the time average of xt) and the central limit theorem.

Some authors try to bring realism by testing and allowing for finite ‘structural changes’,
often with ad hoc tools. However, the notion of infinite memory of the random walk I(1)
is unrealistic because the very definitions of economic series (e.g., quality and content of
the gross domestic product, names of stocks in the Dow Jones average) change over finite
(relatively short) time intervals. Changing definitions are generally not a problem in natural
sciences. For example, the definition of water or the height of an ocean wave is unchanged
over time.

2. Maximum entropy bootstrap

The bootstrap studies the relation between the sample and the (unknown) population by
a comparable relation between the sample at hand and appropriately designed (observable)
resamples. If the observed sample is independent and identially distributed (iid), x1, ...xT are
iid random variables with a common original density: F . The joint density of the sample
is given by a T -fold product: F T . If θ̂T estimates a parameter θ, the unknown sampling
distribution of (θ̂T−θ) is given by the conditional distribution of its bootstrap version (θ∗−θ̂T),
Lahiri (2003). This section describes the ME bootstrap algorithm and indicates how it extends
the traditional iid bootstrap to nonstationary dependent data.

2.1. The algorithm

An overview of the steps in Vinod’s ME bootstrap algorithm to create a random realization
of xt is provided in this subsection. The reader should consult the toy example of the next
subsection for concreteness.

1. Sort the original data in increasing order to create order statistics x(t) and store the
ordering index vector.

2. Compute intermediate points zt = (x(t) + x(t+1))/2 for t = 1, . . . , T − 1 from the order
statistics.

Hrishikesh D. Vinod, Javier López-de-Lacalle 3

3. Compute the trimmed mean mtrm of deviations xt − xt−1 among all consecutive obser-
vations. Compute the lower limit for left tail as z0 = x(1) −mtrm and upper limit for
right tail as zT = x(T) +mtrm. These limits become the limiting intermediate points.

4. Compute the mean of the maximum entropy density within each interval such that
the ‘mean-preserving constraint’ (designed to eventually satisfy the ergodic theorem) is
satisfied. Interval means are denoted as mt. The means for the first and the last interval
have simpler formulas.

5. Generate random numbers from the [0, 1] uniform interval, compute sample quantiles
of the ME density at those points and sort them.

6. Reorder the sorted sample quantiles by using the ordering index of step 1. This recovers
the time dependence relationships of the originally observed data.

7. Repeat steps 2 to 6 several times (e.g., 999).

2.2. A toy example

The procedure described above is illustrated with a small example. Let the sequence xt =
(4, 12, 36, 20, 8) be the series of data observed from the period t = 1 to t = 5 as indicated in
the first two columns in Table 1. We jointly sort these two columns on the second column and
place the result in the next two columns (Table 1 columns 3 and 4), giving us the ordering
index vector in column 3.

Next, the four intermediate points in Column 5 are seen to be simple averages of consecutive
order statistics. We need two more (limiting) ‘intermediate’ points. These are obtained
as described in Step 3 above. Using 10% trimming, the limiting intermediate values are
z0 = −11 and zT = 51. With these six zt values we build our five half open intervals:
U(−11, 6]×U(6, 10]×U(10, 16]×U(16, 28]×U(28, 51]. The maximum entropy density of the
ME bootstrap is defined as the combination of T uniform densities defined over (the support
of) T half open intervals.

Time xt
Ordering
vector

Sorted
xt

Interme-
diate
points

Desired
means

Uniform
draws

Preli-
minary
values

Final
replicate

1 4 1 4 6 5 0.12 5.85 5.85
2 12 5 8 10 8 0.83 6.70 8.90
3 36 2 12 16 13 0.53 8.90 23.95
4 20 4 20 28 22 0.59 10.70 10.70
5 8 3 36 32 0.11 23.95 6.70

Table 1: Example of the ME bootstrap algorithm.

The ME density is shown in Figure 1 along with the five (half-open) intervals. Note that these
intervals join all intermediate points zt (those in column 5 plus two limiting ones) without
gaps.

4 meboot: Maximum Entropy Bootstrap for Time Series

−10 0 10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

x

de
ns

ity

Figure 1: Maximum entropy density for the xt = 4, 12, 36, 20, 8 example.

The uniform densities are also designed to satisfy the ‘mean-preserving constraint’, by making
sure that the interval means for the uniform density, mt, satisfy the following relations:

m1 = 0.75x(1) + 0.25x(2) , for the lowest interval,
mk = 0.25x(k−1) + 0.50x(k) + 0.25x(k+1) , for k = 2, . . . , T − 1
mT = 0.25x(T−1) + 0.75x(T) ,

where x(t) are the order statistics. The desired means using these formulas for the toy example
are reported in column 6.

Finally, random numbers from the [0, 1] uniform intervals are independently drawn to compute
quantiles of the ME density. (See left side plot in Figure 2.) The ME density quantiles
obtained in this way provide a monotonic series. The final replicate is obtained after recovering
the original order sorting column 8 according to the index order given in column 3. (See right
side plot in Figure 2.)

2.3. Contrast with traditional iid bootstrap

Singh (1981) used Edgeworth expansions to confirm the superiority of iid boot. He also
proved that iid-boot fails for dependent data. See Davison and Hinkley (1997, Chapter 8)
and Lahiri (2003) for more recent results. A modification of the iid boot for stationary m-
dependent data called the ‘block bootstrap’ is extensively discussed by Lahiri (2003). However,
if the evolutionary data are non-stationary, one cannot always use ‘differencing’ operations
to render them stationary. The ME bootstrap algorithm is more general, since it does not
assume stationarity and does not need possibly ‘questionable’ differencing operations.

In addition to avoiding stationarity, Vinod (2004, 2006) mentions that it is desirable to avoid
the following three properties of traditional iid bootstrap.

Hrishikesh D. Vinod, Javier López-de-Lacalle 5

0.0 0.2 0.4 0.6 0.8 1.0

−10

0

10

20

30

40

50

Quantiles

Uniform interval

x

Intermediate points in the sorted series
Interpolated values
Final values (mean preserving constraint)

1 2 3 4 5

Final time dependent replicate

5

10

15

20

25

30

35

Time

x

1 5
2

4

3

Original series
Monotonic replicate
Final replicate (preserving time dependence)

Figure 2: Example of the ME bootstrap algorithm.

� The traditional bootstrap sample obtained from shuffling with replacement repeats some
xt values while not using as many others. It never admits nearby data values in a
resample. We are considering applications where there is no reason to believe that
values near the observed xt are impossible. For example, let xt = 49.2. Since 49.19 or
49.24, both of which round to xt = 49.2, there is no justification for excluding all such
values.

� The traditional bootstrap resamples must lie in the closed interval [min(xt),max(xt)].
Since the observed range is random, we cannot rule out somewhat smaller or larger
xt. Note that the third step of our algorithm implies a less restrictive and wider range
[z0, zT].

� The traditional bootstrap resample shuffles xt such that any dependence information
in the time series sequence (x1, . . . , xt, xt+1, . . . , xT) is lost in the shuffle. If we try to
restore the original order to the shuffled resample of the traditional bootstrap, we end
up with essentially the original set xt, except that some dropped xt values are replaced
by the repeats of adjacent values. Hence, it is impossible to generate a large number J
of sensibly distinct resamples with the traditional bootstrap shuffle without admitting
nearby values.

2.4. Shape retention

The j-th ME boot resample {xj,t} retains the shape, or local peaks and troughs, of the original
time series xt, by being ‘strongly dependent’ on it. We now imagine that the time series xt
represents a set (or bundle) of levels of ‘utility’ enjoyed by someone. Economic theorists do
not like to make interpersonal comparisons of utility, since two persons can never really ‘feel’
exactly the same level of satisfaction. Yet economists must compare utilities to make policy

6 meboot: Maximum Entropy Bootstrap for Time Series

1950 1952 1954 1956 1958 1960
100

200

300

400

500

600 Original series
Replicate 1

0 1 2 3 4
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Lag

ACF

1.0

1.5

2.0

2.5

3.0

Frequency

Log−periodogram

0 π 6 π 3 π 2 2π 3 5π 6 π

Figure 3: Replicate for the AirPassengers time series.

recommendations by considering preference orderings based on ‘ordinal utility theory,’ which
says that utilities experienced by two individuals can be made comparable to each other,
provided the two utility bundles satisfy a common partial ordering. Indeed our ME boot
resamples do satisfy a common partial ordering, since their ranks match perfectly.

Imagine that the original {xt} represents the evolving time path for an individual’s income,
sensitive to initial resources at birth and intellectual endowments with a corresponding path
of utility (enjoyment) levels. Our ME boot algorithm creates reincarnations of these paths
ensuring that ordinal utilities are comparable across reincarnations, retaining just enough of
the basic shape of xt. See Henderson and Quandt (1980) for a discussion of multi-period
consumption and ordinal utility.

Next we provide an example of how ME boot retains the shape as well as the periodicity of
the original series by using the AirPassengers time series available in R.

Example: AirPassengers time series

Figure 3 displays the AirPassengers time series along with a replicate of the series. An
animation showing different replicates is available as a supplemental AVI file along with
Vinod and López-de-Lacalle (2009). The autocorrelation function and the log-periodogram
are shown for each replicate. One can see that, retaining the shape of the original series, the
replicates remain close to the time and frequency domain properties of the series, without
imposing any parametric restrictions.

Hrishikesh D. Vinod, Javier López-de-Lacalle 7

3. Applications

3.1. Consumption function

This example describes how to carry out inference through the ME boot ensemble in the
following regression:

ct = β1 + β2 ct−1 + β3 yt−1 + ut, (1)

for the null hypothesis β3 = 0.

We use the annual data set employed in Murray (2006, pp. 799–801) to discuss a Keynesian
consumption function on the basis of the Friedman’s permanent income hypothesis (PIH) and
a simpler version of Robert Hall’s model. The data are the logarithm of the US consumption,
ct, and disposable income, yt, in the period 1948–1998. The packages car (Fox 2002) and
lmtest (Zeileis and Hothorn 2002) will be useful to extract information from linear regression
models. We use the interface in package dynlm (Zeileis 2008) for dynamic linear regression.

R> library("meboot")

[1] "kinship is loaded"

R> library("car")

R> library("lmtest")

R> library("dynlm")

R> data("USconsum")

R> USconsum <- log(USconsum)

R> lmcf <- dynlm(consum ~ L(consum, 1) + L(dispinc, 1), data = USconsum)

R> coeftest(lmcf)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0269 0.0261 1.03 0.31
L(consum, 1) 0.9697 0.1426 6.80 1.6e-08 ***
L(dispinc, 1) 0.0270 0.1439 0.19 0.85

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> set.seed(135)

R> durbin.watson(model = lmcf, max.lag = 4)

lag Autocorrelation D-W Statistic p-value
1 0.14598 1.690 0.138
2 -0.03521 2.018 0.986
3 -0.08826 2.083 0.740
4 -0.08850 2.078 0.622

Alternative hypothesis: rho[lag] != 0

8 meboot: Maximum Entropy Bootstrap for Time Series

The residuals are serially uncorrelated since the p values of the generalized Durbin-Watson
(DW) statistics up to order 4 are larger than the significance level 0.05. The seed was needed
in the above code for a reproducible computation of p values for the DW statistics. The
estimated coefficient of lagged income, β̂3 = 0.027, with the standard error se = 0.1439, is
statistically insignificant. The 95% confidence interval (−0.263, 0.316) has the zero inside this
interval.

This result was initially interpreted as supporting Friedman’s PIH. However, the large unit
root literature argued that the sampling distribution of β̂3 is nonstandard, and that traditional
inference based on the Student’s t or asymptotic normal distributions may lead to spurious
results. Hence, these days, one uses unit root tests to decide whether differencing or de-
trending of ct and yt would make all variables in a regression integrated of the same order, say
I(0). The critical values from a Dickey-Fuller type nonstandard density (originally obtained
by a simulation) replace the usual Student’s t critical values. Our bootstrap also reveals
any nonstandard features of the sampling distribution and confidence intervals specific to the
problem at hand, avoiding the use of critical values altogether. Thus we can cover a wide
variety of situations beyond the one simulated by Dickey and Fuller.

Instead of resampling the residuals, our ME bootstrap resamples all time series in the re-
gression themselves by following the ‘resampling cases’ bootstrap method. Three advantages
of this method noted by Davison and Hinkley (1997, Section 6.2.4) are: (a) This method
does not use any simulated errors based on the assumed reliability of a parametric model.
(b) It does not need to assume that the conditional mean of the dependent variable given a
realization of regressors (E(y|X = x) in standard notation) is linear. (c) It is robust against
heteroscedastic errors.

Now we briefly describe the ‘resampling cases’ method in the context of time series regressions,
where the ‘case’ refers to time. From (1) it is intuitively clear that we should resample
only the two ‘original’ time series ct and yt, and then lag them as needed instead of blindly
resampling (ct, ct−1, yt−1) all three variables in the model. Our bootstrap inference will rely
on a confidence interval for any function θ = f(β) of coefficients β. For example, θ = β3 for
assessing the Friedman hypothesis based on (1).

R> theta <- function(y, x) {

+ reg <- dynlm(y ~ L(y, 1) + L(x, 1))

+ thet <- coef(reg)[3]

+ return(thet)

+ }

The above code represents our choice of simplicity over generality. It is intended to be used
upon replacing the y by ct and the x by yt, for its use as θ = β3 in (1). For any other
example it provides a template, needing modifications. If a researcher wishes to analyze the
scale elasticity of a Cobb-Douglas type production function, Vinod (2008, pp. 10–11), the
regression becomes y = β1x1 +β2x2. Then the parameter of interest: θ = β1 +β2, is a sum of
two slope coefficients. The modified theta for this example denoted by theta.cobbd is given
by the following code:

R> theta.cobbd <- function(y, x1, x2) {

+ reg <- lm(y ~ x1 + x2)

Hrishikesh D. Vinod, Javier López-de-Lacalle 9

+ thet <- coef(reg)[2] + coef(reg)[3]

+ return(thet)

+ }

In general, a modification of theta can involve a nonlinear function of several coefficients.
For example, Vinod (2008, Section 3.2), if the parameter of interest is the long-run multiplier,
it becomes a nonlinear function. The main point is that our θ refers to only one parameter of
interest. Any researcher interested in two or more parameters can readily repeat our procedure
as often as needed.

The following function called bstar.consu generates a large number of bootstrap single pa-
rameter estimates. The bstar in its name suggests that resamples of the third regression
coefficient might be denoted as {b∗3}. More important, it is a template, expecting modifi-
cations. Its initial arguments refer to data on all ‘original’ time series (not counting leads
and lags as separate series) using the notation y for the dependent variable and x for the
regressor. It is flexible, allowing the user to choose the confidence level (default: 95%), the
R function theta (defining the parameter of interest must be predefined), size of resamples
as bigJ (default: bigJ = 999) and the seed for random number generator as seed1 (default:
seed1 = 135).

R> bstar.consu <- function(y, x, theta,

+ level = 0.95, bigJ = 999, seed1 = 135) {

+ set.seed(seed1)

+ semy <- meboot(x = y, reps = bigJ)$ensemble

+ semx <- meboot(x = x, reps = bigJ)$ensemble

+ n <- NROW(y)

+ m <- length(theta(y, x))

+ if(m!=1) stop("too many parameters in theta")

+ bb <- matrix(NA, bigJ)

+ for(j in 1:bigJ) {

+ yy <- semy[,j]

+ xx <- semx[,j]

+ bb[j] <- theta(yy, xx)

+ }

+ return(bb)

+ }

Since the Cobb-Douglas model involves regressing y on x1 and x2, its function (called
bstar.cobbd below) has an additional input x2. It calls the function meboot thrice for
y, x1 and x2. Also, the input to the function theta.cobbd needs both xx1 and xx2 instead
of simply xx, in the code bstar.consu above. We believe that it is easy to make such changes
to our simple and intuitive bstar type functions. The template bstar.cobbd, for the two
regressor Cobb-Douglas case below, explicitly shows how to extend the function bstar.consu
to two or more regressors by using x2, x3, x4, . . . as needed.

R> bstar.cobbd <- function(y, x1, x2, theta = theta.cobbd,

+ level = 0.95, bigJ = 999, seed1 = 135) {

+ set.seed(seed1)

10 meboot: Maximum Entropy Bootstrap for Time Series

+ semy <- meboot(x = y, reps = bigJ)$ensemble

+ semx1 <- meboot(x = x1, reps = bigJ)$ensemble

+ semx2 <- meboot(x = x2, reps = bigJ)$ensemble

+ n <- NROW(y)

+ m <- length(theta.cobbd(y, x1, x2))

+ if(m!=1) stop("too many parameters in theta")

+ bb <- matrix(NA, bigJ)

+ for(j in 1:bigJ) {

+ yy <- semy[,j]

+ xx1 <- semx1[,j]

+ xx2 <- semx2[,j]

+ bb[j] <- theta.cobbd(yy, xx1, xx2)

+ }

+ return(bb)

+ }

Now we return to constructing an approximation to the sampling distribution of β̂3 in (1),
without having to assume that the distribution is Student’s t or Dickey-Fuller. That is, we
use the output of the function bstar.consu to construct a confidence interval for β3 to help
decide whether β̂3 is statistically significantly different from zero. Assuming the earlier code is
in the memory, let us begin by computing the simplest percentile interval, using the function
quantile of R, while choosing type = 8 (as recommended by Hyndman and Fan 1996, see
also help("quantile")).

R> y <- USconsum[,2]

R> x <- USconsum[,1]

R> reg <- dynlm(y ~ L(y, 1) + L(x, 1))

R> su <- summary(reg)

R> se <- su$coefficients[3,2]

R> t0 <- theta(y, x)

R> b3s <- bstar.consu(y, x, theta)

R> simple.percentile <- quantile(b3s, c(0.025, 0.975), type = 8)

R> asymmetric.around.0 <- null.ci(b3s)

R> out <- list(t = b3s, t0 = t0, var.t0 = se^2, R = 999)

R> class(out) <- "boot"

R> library("boot")

R> boot.percentile <- boot.ci(out, type = "perc")$percent[4:5]

R> boot.norm <- boot.ci(out, type = "norm")$normal[2:3]

R> boot.basic <- boot.ci(out, type = "basic")$basic[4:5]

R> rbind(simple.percentile, asymmetric.around.0, boot.percentile,

+ boot.norm, boot.basic)

2.5% 97.5%
simple.percentile -0.04485 0.3733
asymmetric.around.0 -0.06250 0.3221
boot.percentile -0.04501 0.3739
boot.norm -0.16256 0.2643
boot.basic -0.20742 0.2115

Hrishikesh D. Vinod, Javier López-de-Lacalle 11

The code above reports four intervals beyond the simplest one mentioned before. The meboot
package includes the function null.ci (an elegant improvement by Achim Zeileis of our
function zero.ci) which provides asymmetric confidence intervals arond a specified null value
(=0, here). The names of three confidence intervals have the prefix boot to remind us that
they come from the boot package (Canty and Ripley 2009). These are available only after
out is defined with a suitable list and boot.ci function is called with appropriate options.
These options provide some of the well known refinements to the percentile confidence interval
from the bootstrap literature.

Statistical theory behind these refinements is mentioned at the beginning of Section 2. In the
present context, bootstrap estimates of θ (see b3s above) are θ̂∗j , with j = 1, 2, . . . , J . If the
standard error se of θ̂ is known, then (θ̂∗j − θ̂)/se values provide a good approximation to the
sampling distribution of (θ̂ − θ)/se, the Wald statistic. The code in boot.ci is designed to
correct for bias and improve asymptotic properties of bootstrap confidence intervals.

Finally, let us consider sophisticated confidence intervals based on highest density regions
(HDR) of sampling distributions, Hyndman (1996). If f(θ̂) is the density, and α is the type I
error (= 0.05, say), then the 100(1−α)% HDR is the subset of the sample space of the random
variable such that

HDR(fα) = {θ̂ : f(θ̂) ≥ fα}, (2)

where fα is the largest constant such that the following probability statement holds true:
Pr(θ̂ ∈ HDR(fα)) ≥ 1−α. Highest density means every point inside the HDR has probability
density at least as large as every point outside the HDR. When the sampling distribution
is bimodal or multimodal, HDR seems to be a reliable way of finding confidence regions.
Hyndman (1996) discusses many advantages of HDR methods. We use the R package hdrcde
(Hyndman 2008) to find HDR regions with graphics for a study of the sampling distribution
of θ̂ under the null. It also reports the value of fα appearing in equation (2).

R> library("hdrcde")

This is hdrcde 2.08

R> hdr.den(b3s, main = expression(Highest ~ density ~ region ~

+ of ~ beta [3] ~ estimates : ~ Hall ~ model))

$hdr
[,1] [,2]

99% -0.09297 0.4310
95% -0.07104 0.3128
50% 0.01020 0.1571

$mode
[1] 0.1050

$falpha
1% 5% 50%

0.1963 0.6207 3.1236

12 meboot: Maximum Entropy Bootstrap for Time Series

−0.2 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Highest density region of ββ3 estimates :: Hall model

N = 999 Bandwidth = 0.02306

D
en

si
ty

Figure 4: Highest density region for the sampling distribution of β̂3 using Hall’s model.

Note that even the 50% confidence region (HDR) starts at nearly zero, while 95% region
decidedly covers the zero. However the largest constants fα are all positive. Our meboot
results (including the HDR) support Friedman’s PIH, since zero is inside all 95% confidence
intervals for β3.

3.2. Assessment of the Fed effect on stock prices using panel data

This example shows how the ME bootstrap can be employed for panel data analysis. Our
example is from Vinod (2002) where the effect of monetary policy (interest rates) on prices
and their ‘turning points’ in the stock market is evaluated in greater detail.

The ‘Fed effect’ discussed in the financial press refers to a rally in the S&P 500 index of
stock prices a few days before the Federal Reserve Bank (Fed) policy makers’ meeting and
a price decline after the meeting. This example focuses on the longer term than daily price
fluctuations by using the monthly data (May 1993 to November 1998 with T = 67) for stocks
with ticker symbols: ABT, AEG, ATI, ALD, ALL, AOL, and AXP and regard this as a
representative sample of the market containing N = 7 individual companies.

Note that when the Fed adjusts the Fed funds rate, it affects market expectations and, hence,
the interest on 3-month Treasury bills (Tb3), the key short-run interest rate in the economy.
Our simple model of monetary policy regresses the stock price (P) on the natural log of

Hrishikesh D. Vinod, Javier López-de-Lacalle 13

market capitalization (LMV , as a control variable for the size of the firm) and the Tb3 . We
write:

Pit = β1 + β2 LMV it + β3 Tb3 it + εit , (3)

where the subscript it refers to i-th individual (company) at time t and where εit are assumed
to be iid. The Fed effect is present, if the coefficient of the variable Tb3 in equation (3) is
statistically significant.

We use the R package plm (Croissant and Millo 2008) for basic estimation of panel data
models before any bootstrap. It expects that the data be in the form of a data.frame object.
Accordingly, the package meboot provides the data for this example as a data.frame object
called ullwan. Let us replace the third column containing the ‘market value of the firm’ by its
logarithms denoted by LMV within the data frame object. Since the data setup is critical, it
is perhaps useful to illustrate our (slightly revised) data frame ullwan by displaying the initial
and ending observations. Note that the first column entitled Subj contains the identification
numbers 1 to 7, for the 7 ticker symbols included in the data set. Note that all time series for
the first ticker symbol ABT are placed together at the beginning of the data set. These are
viewed by using the command: head(ullwan). Trailing data for observation numbers 464 to
469 for the last ticker symbol AXP are viewed by using the command: tail(ullwan) in the
following code.

R> rm(list = ls())

R> library("plm")

R> data("ullwan")

R> attach(ullwan)

R> LMV <- log(MktVal)

R> ullwan[,3] <- LMV

R> names(ullwan)[3] <- "LMV"

R> head(ullwan)

Subj Tim LMV Price Pupdn Tb3
1 1 1993 10.099 14.81 0 3.08
2 1 1993 10.095 14.75 1 3.02
3 1 1994 10.029 13.81 0 3.21
4 1 1994 9.987 13.31 0 3.52
5 1 1994 10.051 14.19 1 3.74
6 1 1994 10.102 14.94 0 4.19

R> tail(ullwan)

Subj Tim LMV Price Pupdn Tb3
464 7 1998 10.74 102.9 0 4.34
465 7 1998 10.80 108.5 0 4.45
466 7 1999 10.88 117.8 0 4.48
467 7 1999 10.98 130.7 0 4.28
468 7 1999 10.91 121.1 1 4.51
469 7 1999 10.98 130.1 1 4.59

14 meboot: Maximum Entropy Bootstrap for Time Series

Pooled effects

Pooled regression means combining the cross-sectional data and time series data into one large
set of T × N(= 67 × 7 = 469 here) observations. We note below that Student’s t value and
the corresponding p value from the pooled model suggest a highly significant Tb3 regressor
implying that the Fed announcement does have a statistically significant effect on the level
of stock prices. The multiple R2 is 0.497, which becomes 0.495 when adjusted for degrees of
freedom.

R> summary(lm(Price ~ LMV + Tb3))

Call:
lm(formula = Price ~ LMV + Tb3)

Residuals:
Min 1Q Median 3Q Max

-35.41 -11.47 -2.92 4.82 70.91

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -125.596 11.209 -11.21 <2e-16 ***
LMV 18.848 0.886 21.26 <2e-16 ***
Tb3 -4.805 1.479 -3.25 0.0012 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19 on 466 degrees of freedom
Multiple R-squared: 0.497, Adjusted R-squared: 0.495
F-statistic: 230 on 2 and 466 DF, p-value: <2e-16

The t value for the coefficient of Tb3 from the pooled model suggests that the Fed does have
a statistically significant effect on the level of stock prices in a pooled regression.

The default use of the function meboot is illustrated in the earlier subsection in bstar.consu
and bstar.cobbd, where the argument x represents a single vector of numbers (usually time
series). In this subsection we require meboot to create J replicates over time, separately for
all N individuals to suit the panel data. Since the plm package expects the panel data in the
form of a data.frame object, our function meboot is designed to expect similarly organized
data. For example, since the identifier for individual (company ticker) called Subj is located
in the first column of the ullwan data frame, the meboot would expect colsubj=1 as the
argument. It is necessary to call the meboot function separately for each relevant column
of the data frame identified by its column number denoted as the argument coldata. For
example, we set coldata = 3 for LMV since third column has data on LMV. Mere presence
of non-null values for colsubj and coldata in the call to meboot triggers it to implement its
panel data version.

The following code creates J = 999 ensembles for the T = 67 time series points for the N = 7
stocks separately for the three variables in our regression (P , LMV and Tb3). Each call

Hrishikesh D. Vinod, Javier López-de-Lacalle 15

yields an ensemble of 1000 sets of 67× 7 = 469 data points, upon including the original data
as the first column and 999 additional columns of similarly evolving time series.

R> jboot <- 999

R> set.seed(567)

R> LMV.ens <- meboot(x = ullwan, reps = jboot, colsubj = 1, coldata = 3)

R> Price.ens <- meboot(x = ullwan, reps = jboot, colsubj = 1, coldata = 4)

R> Tb3.ens <- meboot(x = ullwan, reps = jboot, colsubj = 1, coldata = 6)

The purpose of the ME bootstrap here is to assess whether the effect of the Fed announcement
continues to be significant for the pooled and other models described below. The slope
coefficients based on the ME bootstrap ensembles (created above) can be computed as follows.

R> slopeTb3 <- slopeLMV <- rep(0, jboot)

R> for(j in 1:jboot) {

+ frm <- data.frame(Subj = ullwan[,1], Time = ullwan[,2],

+ Price = Price.ens[,j], Tb3 = Tb3.ens[,j], LMV = LMV.ens[,j])

+ frm <- plm.data(frm, 7)

+ gip <- coef(plm(Price ~ LMV + Tb3, model = "pooling", data = frm))

+ slopeTb3[j] <- gip[3]

+ slopeLMV[j] <- gip[2]

+ }

R> Percentile.Tb3 <- quantile(slopeTb3, c(0.025, 0.975), type = 8)

R> Refined.Tb3 <- null.ci(slopeTb3)

R> Percentile.LMV <- quantile(slopeLMV, c(0.025, 0.975), type = 8)

R> Refined.LMV <- null.ci(slopeLMV)

R> rbind(Percentile.Tb3, Refined.Tb3, Percentile.LMV, Refined.LMV)

2.5% 97.5%
Percentile.Tb3 -6.036 -3.046
Refined.Tb3 -5.814 -2.146
Percentile.LMV 17.269 20.968
Refined.LMV 16.392 20.655

The 95% ME bootstrap confidence intervals for the control variable LMV has all estimated
slopes positive and the lower limit of of the asymmetric (refined) 95% interval is simply the
smallest slope. It suggests that β2 in (3) for the pooled model is statistically significantly
positive. That is, it is worthwhile to include the control variable in the model.

The 95% ME bootstrap percentile confidence interval for the slope coefficient of Tb3 is shown
above. Since all estimated slopes by the ME bootstrap are negative with the null value zero,
the upper limit of the asymmetric (refined) 95% interval is simply the largest slope. It is
interesting to also report additional advanced confidence intervals from the package boot by
using the function boot.ci with some preliminary code to conform with its protocol.

R> thetp <- plm(Price ~ LMV + Tb3, model = "pooling", data = ullwan)

R> varTb3 <- thetp$vcov[3,3]

R> plm1 <- coef(thetp)

16 meboot: Maximum Entropy Bootstrap for Time Series

R> t0Tb3 <- plm1[3]

R> t0LMV <- plm1[2]

R> out2 <- list(t = as.matrix(slopeTb3), t0 = t0Tb3,

+ var.t0 = varTb3, R = 999)

R> class(out2) <- "boot"

R> boot.percentile <- boot.ci(out2, type = "perc")$percent[4:5]

R> boot.norm <- boot.ci(out2, type = "norm")$normal[2:3]

R> boot.basic <- boot.ci(out2, type = "basic")$basic[4:5]

R> rbind(Percentile.Tb3, boot.percentile, boot.norm, boot.basic)

2.5% 97.5%
Percentile.Tb3 -6.036 -3.046
boot.percentile -6.040 -3.041
boot.norm -6.599 -3.511
boot.basic -6.568 -3.569

These results clearly suggests that for the pooled model β3 in (3) is statistically significantly
negative.

R> znp <- pvcm(Price ~ LMV + Tb3, data = ullwan, model = "within")

R> zplm <- plm(Price ~ LMV + Tb3, data = ullwan)

R> pooltest(zplm, znp)

F statistic

data: Price ~ LMV + Tb3
F = 63.4, df1 = 12, df2 = 448, p-value < 2.2e-16
alternative hypothesis: unstability

The function pvcm refers to panel variable coefficients models. If pooling is appropriate the
coefficients for individual units do not significantly differ from one another. The high value of
the F statistic in the output of the pooltest suggests that pooling may not be appropriate.
Hence we need to consider a ‘random effects’ model next.

Random effects

The random effects model results are obtained by setting model = "random" in the arguments
of the function plm.

R> gir <- plm(Price ~ LMV + Tb3, data = ullwan, model = "random")

R> coef(gir)

(intercept) LMV Tb3
-184.92 25.00 -4.96

Using the ensembles created above for all data variables in equation (3) we implement the
ME bootstrap for the random effects model and print various confidence intervals as follows.

Hrishikesh D. Vinod, Javier López-de-Lacalle 17

R> slopeTb3 <- slopeLMV <- rep(0, jboot)

R> for(j in 1:jboot) {

+ frm <- data.frame(Subj = ullwan[,1], Tim = ullwan[,2],

+ Price = Price.ens[,j], Tb3 = Tb3.ens[,j], LMV = LMV.ens[,j])

+ frm <- plm.data(frm, 7)

+ gip <- coef(plm(Price ~ LMV + Tb3, model = "random", data = frm))

+ slopeTb3[j] <- gip[3]

+ slopeLMV[j] <- gip[2]

+ }

R> Percentile.Tb3 <- quantile(slopeTb3, c(0.025, 0.975), type = 8)

R> Refined.Tb3 <- null.ci(slopeTb3)

R> Percentile.LMV <- quantile(slopeLMV, c(0.025, 0.975), type = 8)

R> Refined.LMV <- null.ci(slopeLMV)

R> rbind(Percentile.Tb3, Refined.Tb3, Percentile.LMV, Refined.LMV)

2.5% 97.5%
Percentile.Tb3 -6.168 -3.095
Refined.Tb3 -5.974 -2.303
Percentile.LMV 21.528 28.449
Refined.LMV 19.415 27.906

Now we use the function boot.ci after some preliminary code to conform with its protocol
to obtain additional ‘random effects’ confidence intervals for the coefficient of Tb3.

R> thetr <- plm(Price ~ LMV + Tb3, model = "random", data = ullwan)

R> varTb3 <- thetr$vcov[3,3]

R> plm1 <- coef(thetr)

R> t0Tb3 <- plm1[3]

R> out3 <- list(t = as.matrix(slopeTb3), t0 = t0Tb3, var.t0 = varTb3, R = 999)

R> class(out3) <- "boot"

R> boot.percentile <- boot.ci(out3, type = "perc")$percent[4:5]

R> boot.norm <- boot.ci(out3, type = "norm")$normal[2:3]

R> boot.basic <- boot.ci(out3, type = "basic")$basic[4:5]

R> rbind(boot.percentile, boot.norm, boot.basic)

[,1] [,2]
boot.percentile -6.170 -3.084
boot.norm -6.855 -3.684
boot.basic -6.836 -3.750

The random effects 95% ME bootstrap confidence intervals using the 999 replicates of data
are essentially similar to the pooled data results, allowing us to conclude that both β2 and
β3 in (3) are significantly different from zero. Since the 95% confidence intervals for β3 do
not cover the zero, we can conclude that the ‘Fed effect’ is significant for the random effects
panel data model.

18 meboot: Maximum Entropy Bootstrap for Time Series

4. Concluding remarks

This paper illustrates the performance and usage of Vinod’s maximum entropy bootstrap for
dependent data by using econometric examples, including one involving panel (longitudinal)
data. Besides econometrics, at least some time series in biology, engineering and social sciences
are similarly state-dependent and subject to structural changes and discontinuities. All such
series cannot be transformed into stationary series without impairing our understanding of
underlying relations among them. The meboot R package not only fills a gap in the bootstrap
toolkit, but is particularly useful as it permits simpler model specifications (allowing a direct
use of one or more such time series without first making them stationary) and convenient
statistical inference (avoiding non-standard Dickey-Fuller type sampling distributions).

Acknowledgments

We thank the referee, Achim Zeileis and Johanna Francis for helpful comments.

References

Canty A, Ripley BD (2009). boot: Bootstrap R (S-PLUS) Functions. R package version 1.2-35,
URL http://CRAN.R-project.org/package=boot.

Croissant Y, Millo G (2008). “Panel Data Econometrics in R: The plm Package.” Journal of
Statistical Software, 27(2), 1–43. URL http://www.jstatsoft.org/v27/i02/.

Davison AC, Hinkley DV (1997). Bootstrap Methods and Their Applications. Cambridge
University Press, Cambridge.

Fox J (2002). An R and S-PLUS Companion to Applied Regression. Sage Publications,
Thousand Oaks, CA.

Henderson JM, Quandt RE (1980). Microeconomic Theory: A Mathematical Approach. 3rd
edition. McGraw Hill, New York.

Hyndman RJ (1996). “Computing and Graphing Highest Density Regions.” The American
Statistician, 50, 120–126.

Hyndman RJ (2008). hdrcde: Highest Density Regions and Conditional Density Estimation.
R package version 2.09, URL http://CRAN.R-project.org/package=hdrcde.

Hyndman RJ, Fan Y (1996). “Sample Quantiles in Statistical Packages.” The American
Statistician, 50, 361–365.

Khintchine AI (1934). “Korrelationstheorie der stationären stochastischen Prozesse.” Mathe-
matische Annalen, 109, 604–615.

Kolmogorov AN (1931). “Über die analytischen Methoden in der Wahrscheinlichkeitsrech-
nung.” Mathematische Annalen, 104, 415–458.

Lahiri SN (2003). Resampling Methods for Dependent Data. Springer-Verlag, New York.

http://CRAN.R-project.org/package=boot
http://www.jstatsoft.org/v27/i02/
http://CRAN.R-project.org/package=hdrcde

Hrishikesh D. Vinod, Javier López-de-Lacalle 19

Murray MP (2006). Econometrics: A Modern Introduction. Addison-Wesley, New York.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Singh K (1981). “On the Asymptotic Accuracy of Efron’s Bootstrap.” The Annals of Statistics,
9, 1187–1195.

Vinod HD (2002). “Econometric Applications of Generalized Estimating Equations for Panel
Data and Extensions to Inference.” In A Ullah, ATK Wan, A Chaturvedi (eds.), “Handbook
of Applied Econometrics,” chapter 26, pp. 553–574. Marcel Dekker, New York.

Vinod HD (2004). “Ranking Mutual Funds Using Unconventional Utility Theory and Stochas-
tic Dominance.” Journal of Empirical Finance, 11(3), 353–377.

Vinod HD (2006). “Maximum Entropy Ensembles for Time Series Inference in Economics.”
Journal of Asian Economics, 17(6), 955–978.

Vinod HD (2008). Hands-On Intermediate Econometrics Using R: Templates for Extending
Dozens of Practical Examples. World Scientific, New Jersey.

Vinod HD, López-de-Lacalle J (2009). “Maximum Entropy Bootstrap for Time Series:
The meboot R Package.” Journal of Statistical Software, 29(5), 1–19. URL http:
//www.jstatsoft.org/v29/i05/.

Wiener N (1930). “Generalized Harmonic Analysis.” Acta Mathematica, 55, 117–258.

Zeileis A (2008). dynlm: Dynamic Linear Regression. R package version 0.2-0, URL http:
//CRAN.R-project.org/package=dynlm.

Zeileis A, Hothorn T (2002). “Diagnostic Checking in Regression Relationships.” R News,
2(3), 7–10. URL http://CRAN.R-project.org/doc/Rnews/.

Affiliation:

Hrishikesh D. Vinod
Fordham University
Department of Economics, Institute of Ethics and Economic Policy
Bronx, NY 10458, United States of America
E-mail: Vinod@fordham.edu
URL: http://www.fordham.edu/economics/vinod/

Javier López-de-Lacalle
Universidad del Páıs Vasco
Facultad de Ciencias Económicas y Empresariales
48015 Bilbao, Spain
E-mail: javlacalle@yahoo.es
URL: http://www.bl.ehu.es/~jedlobej/

http://www.R-project.org/
http://www.R-project.org/
http://www.jstatsoft.org/v29/i05/
http://www.jstatsoft.org/v29/i05/
http://CRAN.R-project.org/package=dynlm
http://CRAN.R-project.org/package=dynlm
http://CRAN.R-project.org/doc/Rnews/
mailto:Vinod@fordham.edu
http://www.fordham.edu/economics/vinod/
mailto:javlacalle@yahoo.es
http://www.bl.ehu.es/~jedlobej/

	Introduction
	Maximum entropy bootstrap
	The algorithm
	A toy example
	Contrast with traditional iid bootstrap
	Shape retention
	Example: AirPassengers time series

	Applications
	Consumption function
	Assessment of the Fed effect on stock prices using panel data
	Pooled effects
	Random effects

	Concluding remarks

