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Abstract

poLCA is a software package for the estimation of latent class and latent class
regression models for polytomous outcome variables, implemented in the R sta-
tistical computing environment. Both models can be called using a single simple
command line. The basic latent class model is a finite mixture model in which
the component distributions are assumed to be multi-way cross-classification
tables with all variables mutually independent. The latent class regression
model further enables the researcher to estimate the effects of covariates on
predicting latent class membership. poLCA uses expectation-maximization
and Newton-Raphson algorithms to find maximum likelihood estimates of the
model parameters. This user’s guide to the poLCA software package draws
extensively from Linzer and Lewis (Forthcoming).
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1 Quick Start

This section is provided for users who wish to skip the technical details and proceed
directly to the estimation of latent class and latent class regression models.

1.1 Installation

Download the current version of the poLCA software package from the poLCA
website or from the Comprehensive R Archive Network (CRAN) by loading R and
selecting Packages > Install package(s)... from the drop-down menu. Select a
nearby CRAN mirror and click OK. Scroll down to the poLCA package and click OK.
The package will automatically download to your computer.

Once the installation process is complete, enter

> library(poLCA)

in R to load the package into memory.

1.2 Data and formula definition

poLCA requires the user to provide a data frame of categorical variables, and a
formula definition for the model to be estimated. The data frame may contain missing
values (NA), but all other entries must be positive integers. Each variable should
contain values that increment from 1 to the maximum number of outcome categories
for that variable.

Suppose a data frame dat contains variables X1, X2, Y1, Y2, Y3, and Y4. To
estimate a latent class model for the outcome variables Y, define model formula f:

> f <- cbind(Y1,Y2,Y3,Y4)~1

To include covariates, modify the formula using the standard R formula expression:

> f <- cbind(Y1,Y2,Y3,Y4)~X1+X2

This will estimate the latent class regression model using X1 and X2 to predict latent
class membership.

1.3 Estimation

To estimate the latent class model with two latent classes (the default), the command
is simply:

> lc <- poLCA(f,dat)

Additional classes can be assumed using the nclass argument, as for example:
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> lc <- poLCA(f,dat,nclass=4)

After estimating the model, poLCA will output selected parameters. Other values of
interest are saved as a list in lc. Further estimation options offered by poLCA are
detailed in Section 5.2.

1.4 Global versus local maxima

It is always advisable to run poLCA more than once to ensure that the global maxi-
mum likelihood of the latent class model has been obtained, rather than only a local
maximum. This is due to the algorithm that poLCA uses to estimate the parameters of
the latent class model. The user may also utilize the nrep argument to automatically
re-estimate the model a specified number of times. For example, the command

> lc <- poLCA(f,dat,nclass=4,nrep=10)

will estimate the four-class model ten times and save the one model of the ten that
corresponds to the greatest likelihood. For more details, see Section 5.5 below.

2 Motivation for poLCA

Latent class analysis is a statistical technique for the analysis of multivariate categor-
ical data. When observed data take the form of a series of categorical responses—as,
for example, in public opinion surveys, individual-level voting data, studies of inter-
rater reliability, or consumer behavior and decision-making—it is often of interest
to investigate sources of confounding between the observed variables, identify and
characterize clusters of similar cases, and approximate the distribution of observa-
tions across the many variables of interest. Latent class models are a useful tool for
accomplishing these goals.

The latent class model seeks to stratify the cross-classification table of observed
(or, “manifest”) variables by an unobserved (“latent”) unordered categorical variable
that eliminates all confounding between the manifest variables. Conditional upon
values of this latent variable, responses to all of the manifest variables are assumed to
be statistically independent; an assumption typically referred to as “conditional” or
“local” independence. The model, in effect, probabilistically groups each observation
into a “latent class,” which in turn produces expectations about how that observation
will respond on each manifest variable. Although the model does not automatically
determine the number of latent classes in a given data set, it does offer a variety of
parsimony and goodness of fit statistics that the researcher may use in order to make
a theoretically and empirically sound assessment.

Because the unobserved latent variable is unordered categorical, the latent class
model is actually a type of finite mixture model. The component distributions in
the mixture are cross-classification tables of equal dimension to the observed table
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of manifest variables, and, following the assumption of conditional independence, the
frequency in each cell of each component table is simply the product of the respective
class-conditional marginal frequencies (the parameters estimated by the latent class
model are the proportion of observations in each latent class, and the probabilities
of observing each response to each manifest variable, conditional on latent class). A
weighted sum of these component tables forms an approximation of the distribution of
cases across the cells of the observed table. Observations with similar sets of responses
on the manifest variables will tend to cluster within the same latent classes. The
model may also be fit to manifest variables that are ordinal, but they will be treated
as nominal. In practice, this does not usually restrict analyses in any meaningful way.

An extension of this basic model permits the inclusion of covariates to predict
latent class membership. Whereas in the basic model, every observation has the
same probability of belonging to each latent class prior to observing the responses
to the manifest variables, in the more general latent class “regression” model, these
prior probabilities vary by individual as a function of some set of independent (or,
“concomitant”) variables.

poLCA is the first R package to enable the user to estimate latent class models
for manifest variables with any number of possible outcomes, and it is the only pack-
age that estimates latent class regression models with covariates (Linzer and Lewis,
2007; R Development Core Team, 2007). The two other R commands that currently
exist to estimate latent class models—the lca command in package e1071, and the
gllm command in package gllm—can only estimate the basic model for dichotomous
outcome variables.

Note that there is occasionally some confusion over the term “latent class re-
gression” (LCR); in practice it can have two meanings. In poLCA, LCR models
refer to latent class models in which the probability of latent class membership is
predicted by one or more covariates. In other contexts, however, LCR is used to
refer to regression models in which the dependent variable is partitioned into latent
classes as part of estimating the regression model. It is a way to simultaneously fit
more than one regression to the data when the latent data partition is unknown.
The regmix command in package fpc will estimate this other type of LCR model, as
will the flexmix command in package flexmix. Because of these terminology issues,
the LCR models estimated using poLCA are sometimes termed “latent class models
with covariates” or “concomitant-variable latent class analysis,” both of which are
accurate descriptions of this model.

3 Latent class models

The basic latent class model is a finite mixture model in which the component dis-
tributions are assumed to be multi-way cross-classification tables with all variables
mutually independent. This model was originally proposed by Lazarsfeld (1950) un-
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der the name “latent structure analysis.” Chapter 13 in Agresti (2002) details the
connection between latent class models and finite mixture models.

3.1 Terminology and model definition

Suppose we observe J polytomous categorical variables (the “manifest” variables),
each of which contains Kj possible outcomes, for individuals i = 1...N . The manifest
variables may have different numbers of outcomes, hence the indexing by j. Denote
as Yijk the observed values of the J manifest variables such that Yijk = 1 if respondent
i gives the kth response to the jth variable, and Yijk = 0 otherwise, where j = 1 . . . J
and k = 1 . . . Kj.

The latent class model approximates the observed joint distribution of the manifest
variables as the weighted sum of a finite number, R, of constituent cross-classification
tables. R is fixed prior to estimation on the basis of either theoretical reasons or model
fit; this issue is addressed in greater detail in Section 3.4 below. Let πjrk denote the
class-conditional probability that an observation in class r = 1 . . . R produces the kth
outcome on the jth variable. Within each class, for each manifest variable, therefore,∑Kj

k=1 πjrk = 1. Further denote as pr the R mixing proportions that provide the
weights in the weighted sum of the component tables, with

∑
r pr = 1.

The probability that an individual i in class r produces a particular set of J
outcomes on the manifest variables, assuming local independence, is the product

f(Yi; πr) =
J∏

j=1

Kj∏

k=1

(πjrk)
Yijk . (1)

The probability density function across all classes is the weighted sum

Pr(Yi|π, p) =
R∑

r=1

pr

J∏
j=1

Kj∏

k=1

(πjrk)
Yijk . (2)

The parameters estimated by the latent class model are pr and πjrk.
Given estimates p̂r and π̂jrk of pr and πjrk, respectively, the posterior probability

that each individual belongs to each class, conditional on the observed values of the
manifest variables, can be calculated using Bayes’ formula:

P̂r(r|Yi) =
p̂rf(Yi; π̂r)∑R
q=1 p̂qf(Yi; π̂q)

. (3)

Recall that the π̂jrk are estimates of outcome probabilities conditional on class r.
It is important to remain aware that the number of independent parameters es-

timated by the latent class model increases rapidly with R, J , and Kj. Given these
values, the number of parameters is R

∑
j(Kj − 1) + (R− 1). If this number exceeds

either the total number of observations, or one fewer than the total number of cells
in the cross-classification table of the manifest variables, then the latent class model
will be unidentified.
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3.2 Parameter estimation

poLCA estimates the latent class model by maximizing the log-likelihood function

ln L =
N∑

i=1

ln
R∑

r=1

pr

J∏
j=1

Kj∏

k=1

(πjrk)
Yijk (4)

with respect to pr and πjrk, using the expectation-maximization (EM) algorithm
(Dempster, Laird and Rubin, 1977). This log-likelihood function is identical in form
to the standard finite mixture model log-likelihood. As with any finite mixture
model, the EM algorithm is applicable because each individual’s class membership
is unknown and may be treated as missing data (McLachlan and Krishnan, 1997;
McLachlan and Peel, 2000).

The EM algorithm proceeds iteratively. Begin with arbitrary initial values of
p̂r and π̂jrk, and label them p̂old

r and π̂old
jrk. In the expectation step, calculate the

“missing” class membership probabilities using Eq. 3, substituting in p̂old
r and π̂old

jrk.
In the maximization step, update the parameter estimates by maximizing the log-
likelihood function given these posterior P̂r(r|Yi), with

p̂new
r =

1

N

N∑
i=1

P̂r(r|Yi) (5)

as the new prior probabilities and

π̂new
jr =

∑N
i=1 YijP̂r(r|Yi)∑N

i=1 P̂r(r|Yi)
(6)

as the new class-conditional outcome probabilities (see Everitt and Hand (1981);
Everitt (1984)). In Eq. 6, π̂new

jr is the vector of length Kj of class-r conditional
outcome probabilities for the jth manifest variable; and Yij is the N ×Kj matrix of
observed outcomes Yijk on that variable. The algorithm repeats these steps, assigning
the new to the old, until the overall log-likelihood reaches a maximum and ceases to
increment beyond some arbitrarily small value.

poLCA takes advantage of the iterative nature of the EM algorithm to make
it possible to estimate the latent class model even when some of the observations
on the manifest variables are missing. Although poLCA does offer the option to
listwise delete observations with missing values before estimating the model, it is not
necessary to do so. Instead, when determining the product in Eq. 1 and the sum in
the numerator of Eq. 6, poLCA simply excludes from the calculation any manifest
variables with missing observations. The priors are updated in Eq. 3 using as many
or as few manifest variables as are observed for each individual.

Depending on the initial values chosen for p̂old
r and π̂old

jrk, and the complexity of the
latent class model being estimated, the EM algorithm may only find a local maximum
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of the log-likelihood function, rather than the desired global maximum. For this
reason, it is best to re-estimate a particular model a couple of times when using
poLCA, in an attempt to find the global maximizer to be taken as the maximum
likelihood solution.

3.3 Standard error estimation

poLCA estimates standard errors of the estimated class-conditional response prob-
abilities π̂jrk and the mixing parameters p̂r using the empirical observed information
matrix (Meilijson, 1989), which, following McLachlan and Peel (2000, 66), equals

Ie(Ψ̂; Y ) =
N∑

i=1

s(Yi; Ψ̂)sT (Yi; Ψ̂), (7)

where s(Yi; Ψ̂) is the score function with respect to the vector of parameters Ψ for
the ith observation, evaluated at the maximum likelihood estimate Ψ̂;

s(Yi; Ψ) =
R∑

r=1

θir∂{ln pr +
J∑

j=1

Kj∑

k=1

Yijk ln πjrk}/∂Ψ (8)

where θir = P̂r(r|Yi) is the posterior probability that observation i belongs to class r
(Eq. 3). The covariance matrix of the parameter estimates is then approximated by
the inverse of Ie(Ψ̂; Y ).

Because of the sum-to-one constraint on the πjrk across each manifest variable, it is
useful to reparameterize the score function in terms of log-ratios φjrk = ln(πjrk/πjr1)
for given outcome variable j and class r. Then, for the lth response on the hth item
in the qth class,

s(Yi; φhql) = θiq(Yihl − πhql). (9)

Likewise, denoting ωr = ln(pr/p1), then for the log-ratio corresponding to the qth
mixing parameter,

s(Yi; ωq) = θiq − pq. (10)

To transform the covariance matrix of these log-ratios back to the original units
of π and p, we apply the delta method. For the response probabilities, let g(φjrk) =

πjrk = eφjrk/
∑

l e
φjrl . Taking as Var(φ̂) the submatrix of the inverse of Ie(Ψ̂; Y )

corresponding to the φ parameters, then

Var(g(φ̂)) = g′(φ)Var(φ̂)g′(φ)T

where g′(φ) is the Jacobian consisting of elements

∂g(φjrk)

∂φhql

=





0 if q 6= r

0 if q = r but h 6= j

−πjrkπjrl if q = r and h = j but l 6= k

πjrk(1− πjrk) if q = r and h = j and l = k.
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For the mixing parameters, similarly let h(ωr) = pr = epr/
∑

q epq . Taking as Var(ω̂)

the submatrix of the inverse of Ie(Ψ̂; Y ) corresponding to the ω parameters, then

Var(h(ω̂)) = h′(ω)Var(ω̂)h′(ω)T

where h′(ω) is the Jacobian consisting of elements

∂h(ωr)

∂ωq

=

{
−prpq if q 6= r

pr(1− pr) if q = r.

Standard errors of each parameter estimate are equal to the square root of the values
along the main diagonal of covariance matrices Var(π) and Var(p).

3.4 Model selection and goodness of fit criteria

One of the benefits of latent class analysis, in contrast to other statistical techniques
for clustered data, is the variety of tools available for assessing model fit and de-
termining an appropriate number of latent classes R for a given data set. In some
applications, the number of latent classes will be selected for primarily theoretical
reasons. In other cases, however, the analysis may be of a more exploratory nature,
with the objective being to locate the best fitting or most parsimonious model. The
researcher may then begin by fitting a complete “independence” model with R = 1,
and then iteratively increasing the number of latent classes by one until a suitable fit
has been achieved.

Adding an additional class to a latent class model will increase the fit of the
model, but at the risk of fitting to noise, and at the expense of estimating a further
1+

∑
j(Kj−1) model parameters. Parsimony criteria seek to strike a balance between

over- and under-fitting the model to the data by penalizing the log-likelihood by a
function of the number of parameters being estimated. The two most widely used
parsimony measures are the Bayesian information criterion, or BIC (Schwartz, 1978)
and Akaike information criterion, or AIC (Akaike, 1973). Preferred models are those
that minimize values of the BIC and/or AIC. Let Λ represent the maximum log-
likelihood of the model and Φ represent the total number of estimated parameters.
Then,

AIC = −2Λ + 2Φ

and
BIC = −2Λ + Φ ln N.

poLCA calculates these parameters automatically when estimating the latent class
model. The BIC will usually be more appropriate for basic latent class models because
of their relative simplicity (Lin and Dayton, 1997; Forster, 2000).

Calculating Pearson’s χ2 goodness of fit and likelihood ratio chi-square (G2) statis-
tics for the observed versus predicted cell counts is another method to determine how

8



well a particular model fits the data (Goodman, 1970). Let qc denote the observed
number of cases in each of the C =

∏
Kj cells of the cross-classification table of the

manifest variables. Let Q̂c denote the expected number of cases in each cell under a
given model. The cth cell (where c = 1 . . . C) corresponds to one particular sequence
of J outcomes on the manifest variables. Taking the π̂jrk corresponding only to those
outcomes,

Q̂c = N

R∑
r=1

p̂r

J∏
j=1

π̂jrk.

The two test statistics are then calculated as

χ2 =
∑

c

(qc − Q̂c)
2/Q̂c

and
G2 = 2

∑
c

qc log(qc/Q̂c).

Generally, the goal is to select models that minimize χ2 or G2 without estimating
excessive numbers of parameters. Note, however, that the distributional assumptions
for these statistics are not met if many cells of the observed cross-classification table
contain very few observations. Indeed, common practice holds that no fewer than
10-20% of the cells should contain fewer than five observations if either chi-square
test is to be used.

4 Latent class regression models

The latent class regression model generalizes the basic latent class model by per-
mitting the inclusion of covariates to predict individuals’ latent class membership
(Dayton and Macready, 1988; Hagenaars and McCutcheon, 2002). This is a so-called
“one-step” technique for estimating the effects of covariates, because the coefficients
on the covariates are estimated simultaneously as part of the latent class model.
An alternate estimation procedure that is sometimes used is called the “three-step”
model: estimate the basic latent class model, calculate the predicted posterior class
membership probabilities using Eq. 3, and then use these values as the dependent vari-
able(s) in a regression model with the desired covariates. However, as demonstrated
by Bolck, Croon and Hagenaars (2004), the three-step procedure produces biased co-
efficient estimates. It is preferable to estimate the entire latent class regression model
all at once.

Covariates are included in the latent class regression model through their effects on
the priors pr. In the basic latent class model, it is assumed that every individual has
the same prior probabilities of latent class membership. The latent class regression
model, in contrast, allows individuals’ priors to vary depending upon their observed
covariates.
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4.1 Terminology and model definition

Denote the mixing proportions in the latent class regression model as pri to reflect
the fact that these priors are now free to vary by individual. It is still the case that∑

r pri = 1 for each individual. To accommodate this constraint, poLCA employs a
generalized (multinomial) logit link function for the effects of the covariates on the
priors (Agresti, 2002).

Let Xi represent the observed covariates for individual i. poLCA arbitrarily
selects the first latent class as a “reference” class and assumes that the log-odds of
the latent class membership priors with respect to that class are linear functions of
the covariates. Let βr denote the vector of coefficients corresponding to the rth latent
class. With S covariates, the βr have length S + 1; this is one coefficient on each of
the covariates plus a constant. Because the first class is used as the reference, β1 = 0
is fixed by definition. Then,

ln(p2i/p1i) = Xiβ2

ln(p3i/p1i) = Xiβ3

...

ln(pRi/p1i) = XiβR

Following some simple algebra, this produces the general result that

pri = pr(Xi; β) =
eXiβr

∑R
q=1 eXiβq

. (11)

The parameters estimated by the latent class regression model are the R−1 vectors
of coefficients βr and, as in the basic latent class model, the class-conditional outcome
probabilities πjrk. Given estimates β̂r and π̂jrk of these parameters, the posterior
class membership probabilities in the latent class regression model are obtained by
replacing the pr in Eq. 3 with the function pr(Xi; β) in Eq. 11:

P̂r(r|Xi; Yi) =
pr(Xi; β̂)f(Yi; π̂r)∑R
q=1 pq(Xi; β̂)f(Yi; π̂q)

. (12)

The number of parameters estimated by the latent class regression model is equal to
R

∑
j(Kj− 1)+ (S +1)(R− 1). The same considerations mentioned earlier regarding

model identifiability also apply here.

4.2 Parameter estimation

The latent class regression model log-likelihood function is identical to Eq. 4 except
that the function pr(Xi; β) (Eq. 11) takes the place of pr:

ln L =
N∑

i=1

ln
R∑

r=1

pr(Xi; β)
J∏

j=1

Kj∏

k=1

(πjrk)
Yijk . (13)
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To find the values of β̂r and π̂jrk that maximize this function, poLCA uses a
modified EM algorithm with a Newton-Raphson step, as set forth by Bandeen-Roche

et al. (1997). This estimation process begins with initial values of β̂
old

r and π̂old
jrk that

are used to calculate posterior probabilities P̂r(r|Xi; Yi) (Eq. 12). The coefficients on
the concomitant variables are updated according to the formula

β̂
new

r = β̂
old

r + (−D2
β log L)−1Dβ log L (14)

where Dβ is the gradient and D2
β the Hessian matrix with respect to β. The π̂new

jrk

are updated as

π̂new
jr =

∑N
i=1 YijP̂r(r|Xi; Yi)∑N

i=1 P̂r(r|Xi; Yi)
. (15)

These steps are repeated until convergence, assigning the new parameter estimates
to the old in each iteration. The formulas for the gradient and Hessian matrix are
provided in Bandeen-Roche et al. (1997).

Because all of the concomitant variables must be observed in order to calculate
pri (Eq. 11), poLCA listwise deletes cases with missing values on the Xi before
estimating the latent class regression model. However, missing values on the manifest
variables Yi can be accommodated in the latent class regression model, just as they
were in the basic latent class model.

Note that when employing this estimation algorithm, different initial parameter
values may lead to different local maxima of the log-likelihood function. To be more
certain that the global maximum likelihood solution has been found, the poLCA func-
tion call should always be repeated a handful of times.

4.3 Standard error estimation

For latent class models with covariates, standard errors are obtained just as for models
without covariates: using the empirical observed information matrix (Eq. 7). First,
we generalize the score function (Eq. 8) so that

s(Xi, Yi; Ψ) =
R∑

r=1

θir∂{ln pr(Xi; β) +
J∑

j=1

Kj∑

k=1

Yijk ln πjrk}/∂Ψ. (16)

As before, θir denote posterior probabilities. Since this function is no different than
Eq. 8 in terms of the π parameters, the score function s(Xi, Yi; φhql) = s(Yi; φhql)
(Eq. 9), and the covariance matrix Var(π) may be calculated in precisely the same
way as for models without covariates.

Now, however, the priors pri are free to vary by individual as a function of some
set of coefficients β, as given in Eq. 11. Letting q index classes and s index covariates,

s(Xi, Yi; βqs) = Xis(θiq − piq). (17)
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The standard errors of the coefficients β are equal to the square root of the values
along the main diagonal of the submatrix of the inverse of the empirical observed
information matrix corresponding to the β parameters. (Note that when the model
has no covariates, Xi = 1 and piq = pq (that is, the priors do not vary by individual),
so Eq. 17 reduces to Eq. 10 as expected.)

To obtain the covariance matrix of the mixing parameters pr, which are the average
value across all observations of the priors pir, we apply the delta method. Let

h(βr) = pr =
1

N

∑
i

(
eXiβr

∑R
q=1 eXiβq

)
.

Then
Var(h(β̂)) = h′(β)Var(β̂)h′(β)T

where h′(β) is a Jacobian with elements

∂h(βr)

∂βqs

=

{
1
N

∑
i Xis(−pirpiq) if q 6= r

1
N

∑
i Xis(pir(1− pir)) if q = r.

Although poLCA does not automatically compute p-values for the regression coeffi-
cients, these may be calculated by the user, from the coefficients and standard errors,
in the usual manner.

5 Using poLCA

The poLCA package makes it possible to estimate a wide range of latent class models
in R using a single command line, poLCA. Also included in the package is the command
poLCA.simdata, which enables the user to create simulated data sets that match the
data-generating process assumed by either the basic latent class model or the latent
class regression model. This functionality is useful for testing the poLCA estimator
and for performing Monte Carlo-style analyses of latent class models.

Begin by loading the poLCA package into memory in R by entering

> library(poLCA)

The internal documentation for the poLCA command may be viewed at any time by
entering

> ? poLCA

12



5.1 Data input and sample data sets

Data are input to the poLCA function as a data frame containing all manifest and
concomitant variables (if needed). The manifest variables must be coded as integer
values starting at one for the first outcome category, and increasing to the maximum
number of outcomes for each variable. If any of the manifest variables contain zeros,
negative values, or decimals, poLCA will produce an error message and terminate
without estimating the model. The input data frame may contain missing values.

poLCA also comes pre-installed with five sample data sets that are useful for
exploring different aspects of latent class and latent class regression models.

carcinoma: Dichotomous ratings by seven pathologists of 118 slides for the presence
or absence of carcinoma in the uterine cervix. Source: Agresti (2002, 542).

cheating: Dichotomous responses by 319 undergraduates to questions about cheat-
ing behavior. Also each student’s GPA, which is useful as a concomitant vari-
able. Source: Dayton (1998, 33 and 85).

election: Two sets of six questions with four responses each, asking respondents’
opinions of how well various traits describe presidential candidates Al Gore and
George W. Bush. Also potential covariates vote choice, age, education, gender,
and party ID. Source: The National Election Studies (2000).

gss82: Attitudes towards survey taking across two dichotomous and two trichoto-
mous items among 1202 white respondents to the 1982 General Social Survey.
Source: McCutcheon (1987, 30).

values: Dichotomous measures of 216 survey respondents’ tendencies towards “uni-
versalistic” or “particularistic” values on four questions. Source: Goodman
(1974).

These data sets may be accessed using the data(name ) command. Examples of mod-
els and analyses using the sample data sets are included in the internal documentation
for each.

5.2 poLCA command line options

To specify a latent class model, poLCA uses the standard, symbolic R model formula
expression. The response variables are the manifest variables of the model. Because
latent class models have multiple manifest variables, these variables must be “bound”
as cbind(Y1,Y2,Y3,...) in the model formula. For the basic latent class model with
no covariates, the formula definition takes the form

> f <- cbind(Y1,Y2,Y3)~1
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The ~1 instructs poLCA to estimate the basic latent class model. For the latent
class regression model, replace the ~1 with the desired function of covariates, as, for
example:

> f <- cbind(Y1,Y2,Y3)~X1+X2*X3

Further assistance on formula specification in R can be obtained by entering ? formula

at the command prompt.
To estimate the specified latent class model, the default poLCA command is:

> poLCA(formula, data, nclass=2, maxiter=1000, graphs=FALSE,

tol=1e-10, na.rm=TRUE, probs.start=NULL, nrep=1, verbose=TRUE)

At minimum, it is necessary to enter a formula (as just described) and a data frame
(as described in the previous subsection). The remaining options are:

nclass: The number of latent classes to assume in the model; R in the above nota-
tion. Setting nclass=1 results in poLCA estimating the loglinear independence
model (Goodman, 1970). The default is two.

maxiter: The maximum number of iterations through which the estimation algo-
rithm will cycle. If convergence is not achieved before reaching this number of
iterations, poLCA terminates and reports an error message. The default is 1000,
but this will be insufficient for certain models.

graphs: Logical, for whether poLCA should graphically display the parameter esti-
mates at each stage of the updating algorithm. The default is FALSE, as setting
this option to TRUE slows down the estimation process.

tol: A tolerance value for judging when convergence has been reached. When the
one-iteration change in the estimated log-likelihood is less than tol, the esti-
mation algorithm stops updating and considers the maximum log-likelihood to
have been found. The default is 1×10−10 which is a standard value; this option
will rarely need to be invoked.

na.rm: Logical, for how poLCA handles cases with missing values on the manifest
variables. If TRUE, those cases are removed (listwise deleted) before estimating
the model. If FALSE, cases with missing values are retained. (As discussed
above, cases with missing covariates are always removed.) The default is TRUE.

probs.start: A list of matrices of class-conditional response probabilities, πjrk, to
be used as the starting values for the EM estimation algorithm. Each matrix in
the list corresponds to one manifest variable, with one row for each latent class,
and one column for each possible outcome. The default is NULL, meaning that
starting values are generated randomly. Note that if nrep > 1, then any user-
specified probs.start values are only used in the first of the nrep attempts.
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nrep: Number of times to estimate the model, using different values of probs.start.
The default is one. Setting nrep > 1 automates the search for the global—rather
than just a local—maximum of the log-likelihood function. poLCA returns only
the parameter estimates corresponding to the model producing the greatest
log-likelihood.

verbose: Logical, indicating whether poLCA should output to the screen the results
of the model. If FALSE, no output is produced. The default is TRUE.

5.3 poLCA output

The poLCA function returns an object of class poLCA; a list containing the following
elements.

y: A data frame of the manifest variables.

x: A data frame of the covariates, if specified.

N: Number of cases used in the model.

Nobs: Number of fully observed cases (less than or equal to N).

probs: A list of matrices containing the estimated class-conditional outcome prob-
abilities π̂jrk. Each item in the list represents one manifest variable; columns
correspond to possible outcomes on each variable, and rows correspond to the
latent classes.

probs.se: Standard errors of the estimated class-conditional response probabilities,
in the same format as probs.

P: The respective size of each latent class; equal to the estimated mixing proportions
p̂r in the basic latent class model, or the mean of the priors in the latent class
regression model.

P.se: The standard errors of P.

posterior: An N ×R matrix containing each observation’s posterior class member-
ship probabilities.

predclass: A vector of length N of predicted class memberships, by modal assign-
ment.

predcell: A table of observed versus predicted cell counts for cases with no missing
values.

llik: The maximum value of the estimated model log-likelihood.
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numiter: The number of iterations required by the estimation algorithm to achieve
convergence.

maxiter: The maximum number of iterations through which the estimation algo-
rithm was set to run.

coeff: An (S + 1) × (R − 1) matrix of estimated multinomial logit coefficients β̂r,
for the latent class regression model. Rows correspond to concomitant variables
X. Columns correspond to the second through Rth latent classes; see Eq. 11.

coeff.se: Standard errors of the coefficient estimates, in the same format as coeff.

coeff.V: Covariance matrix of the coefficient estimates.

aic: Akaike Information Criterion.

bic: Bayesian Information Criterion.

Gsq: Likelihood ratio/deviance statistic.

Chisq: Pearson Chi-square goodness of fit statistic.

time: Length of time it took to estimate the model.

npar: The number of degrees of freedom used by the model (that is, the number of
estimated parameters).

resid.df: The number of residual degrees of freedom, equal to the lesser of N and
(
∏

j Kj)− 1, minus npar.

attempts: A vector containing the maximum log-likelihood values found in each of
the nrep attempts to fit the model.

eflag: Logical, error flag. TRUE if estimation algorithm needed to automatically
restart with new initial parameters, otherwise FALSE. A restart is caused in the
event of computational/rounding errors that result in nonsensical parameter
estimates. If an error occurs, poLCA outputs an error message to alert the user.

probs.start: A list of matrices containing the class-conditional response probabil-
ities used as starting values in the EM estimation algorithm. If the algorithm
needed to restart (see eflag), this contains the starting values used for the final,
successful, run of the estimation algorithm.

probs.start.ok: Logical. FALSE if probs.start was incorrectly specified by the
user, otherwise TRUE.

If verbose=TRUE, selected items from this list are displayed automatically once the
latent class model has been estimated.
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5.4 Reordering the latent classes

Because the latent classes are unordered categories, the numerical order of the esti-
mated latent classes in the model output is arbitrary, and is determined solely by the
start values of the EM algorithm. If probs.start is set to NULL (the default) when
calling poLCA, then the function generates the starting values randomly in each run.
This means that repeated runs of poLCA will typically produce results containing the
same parameter estimates (corresponding to the same maximum log-likelihood), but
with reordered latent class labels.

To change the order of the latent classes, it is convenient to use the included
function poLCA.reorder. Suppose you have estimated a three-class model and wish
to reverse the second and third class labels in the output. After an initial call to
poLCA, extract the outputted list of probs.start.

> lc <- poLCA(f,dat,nclass=3)

> probs.start <- lc$probs.start

The poLCA.reorder function takes as its first argument the list of starting values
probs.start, and as its second argument a vector describing the desired reordering
of the latent classes. In this example, the vector c(1,3,2) instructs poLCA.reorder
to keep the first class in its current position, but move the third class to the second,
and the second class to the third.

> new.probs.start <- poLCA.reorder(probs.start,c(1,3,2))

Then run poLCA once more, this time using the reordered starting values in the
function call.

> lc <- poLCA(f,dat,nclass=3,probs.start=new.probs.start)

The outputted class labels will now match the desired ordering.

5.5 Recognizing and avoiding local maxima

A well-known drawback of the EM algorithm is that depending upon the initial pa-
rameter values chosen in the first iteration, the algorithm may only find a local, rather
than the global, maximum of the log-likelihood function (McLachlan and Krishnan,
1997). To avoid these local maxima, a user should always either 1) call poLCA at least
a couple of times; or 2) utilize the nrep argument to attempt to locate the parameter
values that globally maximize the log-likelihood function.

We demonstrate this using a basic three-class latent class model to analyze the
four survey variables in the gss82 data set included in the poLCA package.

> data(gss82)

> f <- cbind(PURPOSE,ACCURACY,UNDERSTA,COOPERAT)~1
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Maximum Number of Respondent Type
log-likelihood occurrences Ideal Skeptics Believers

-2754.545 258 0.621 0.172 0.207
-2755.617 14 0.782 0.150 0.067
-2755.739 57 0.796 0.162 0.043
-2762.005 70 0.508 0.392 0.099
-2762.231 101 0.297 0.533 0.170

Table 1: Results of 500 poLCA function calls for three-class model using gss82 data
set. Five local maxima of the log-likelihood function were found. Estimated latent
class proportions p̂r are reported for each respondent type at each local maximum.

We estimate this model 500 times, and after each function call, we record the max-
imum log-likelihood and the estimated population sizes of the three types of survey
respondent. Following McCutcheon (1987), from whom these data were obtained,
we label the three types ideal, skeptics, and believers. Among other characteristics,
the ideal type is the most likely to have a good understanding of surveys, while the
believer type is the least likely.

> mlmat <- matrix(NA,nrow=500,ncol=4)

> for (i in 1:500) {

> gss.lc <- poLCA(f,gss82,nclass=3,maxiter=3000,tol=1e-7,verbose=F)

> mlmat[i,1] <- gss.lc$llik

> o <- order(gss.lc$probs$UNDERSTA[,1],decreasing=T)

> mlmat[i,-1] <- gss.lc$P[o]

> }

Results of this simulation are reported in Table 1. Of the five local maxima of the
log-likelihood function that were found, the global maximum was obtained in only
approximately one-half of the trials. At the global maximum, the ideal type is esti-
mated to represent 62.1% of the population, with another 17.2% skeptics and 20.7%
believers. In contrast, the second-most frequent local maximum was also the lowest of
the local maxima, and the parameter estimates corresponding to that “solution” are
substantially different: 29.7% ideal types, 53.3% skeptics, and 17.0% believers. This
is why it is essential to run poLCA multiple times until you can be reasonably cer-
tain that you have found the parameter estimates that produce the global maximum
likelihood solution.

To automate this search using the nrep argument, specify the model as

> gss.lc <- poLCA(f,gss82,nclass=3,maxiter=3000,nrep=10)

The latent class model will be estimated ten times using different initial parameter
values, and will assign to gss.lc the results corresponding to the model with the
greatest value of the log-likelihood function. Sample output will appear as follows.
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Model 1: llik = -2762.231 ... best llik = -2762.231

Model 2: llik = -2755.739 ... best llik = -2755.739

Model 3: llik = -2754.545 ... best llik = -2754.545

Model 4: llik = -2754.545 ... best llik = -2754.545

Model 5: llik = -2754.545 ... best llik = -2754.545

Model 6: llik = -2762.005 ... best llik = -2754.545

Model 7: llik = -2755.739 ... best llik = -2754.545

Model 8: llik = -2754.545 ... best llik = -2754.545

Model 9: llik = -2754.545 ... best llik = -2754.545

Model 10: llik = -2754.545 ... best llik = -2754.545

In this example, the global maximum log-likelihood, -2754.545, is found in the third
attempt at fitting the model.

5.6 Creating simulated data sets

The command poLCA.simdata will generate simulated data sets that can be used to
examine properties of the latent class and latent class regression model estimators.
The properties of the simulated data set are fully customizable, but poLCA.simdata
uses the following default arguments in the function call.

> poLCA.simdata(N=5000, probs=NULL, nclass=2, ndv=4, nresp=NULL, x=NULL,

niv=0, b=NULL, classdist=NULL, missval=FALSE, pctmiss=NULL)

These input arguments control the following parameters:

N: Total number of observations, N .

probs: A list of matrices of dimension nclass × nresp, containing, by row, the class-
conditional outcome probabilities πjrk (which must sum to 1) for the manifest
variables. Each matrix represents one manifest variable. If probs is NULL

(default) then the outcome probabilities are generated randomly.

nclass: The number of latent classes, R. If probs is specified, then nclass is set
equal to the number of rows in each matrix in that list. If classdist is specified,
then nclass is set equal to the length of that vector. Otherwise, the default is
two.

ndv: The number of manifest variables, J . If probs is specified, then ndv is set equal
to the number of matrices in that list. If nresp is specified, then ndv is set
equal to the length of that vector. Otherwise, the default is four.

nresp: The number of possible outcomes for each manifest variable, Kj, entered as a
vector of length ndv. If probs is specified, then ndv is set equal to the number of
columns in each matrix in that list. If both probs and nresp are NULL (default),
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then the manifest variables are assigned a random number of outcomes between
two and five.

x: A matrix of concomitant variables, of dimension N × niv. If niv > 0 but x is
NULL (default) then the concomitant variable(s) will be generated randomly. If
both x and niv are entered, then then the number of columns in x overrides the
value of niv.

niv: The number of concomitant variables, S. Setting niv = 0 (default) creates a
data set assuming no covariates. If nclass=1 then niv is automatically set
equal to 0. Unless x is specified, all covariates consist of random draws from a
standard normal distribution and are mutually independent.

b: When using covariates, an niv+1 × nclass−1 matrix of (multinomial) logit co-
efficients, βr. If b is NULL (default), then coefficients are generated as random
integers between -2 and 2.

classdist: A vector of mixing proportions of length nclass, corresponding to pr.
classdist must sum to 1. Disregarded if niv>1 because then classdist is, in
part, a function of the concomitant variables. If classdist is NULL (default),
then the pr are generated randomly.

missval: Logical. If TRUE then a fraction pctmiss of the observations on the manifest
variables are randomly dropped as missing values. Default is FALSE.

pctmiss: The percentage of values to be dropped as missing, if missval=TRUE. If
pctmiss is NULL (default), then a value between 5% and 40% is chosen randomly.

Note that in many instances, specifying values for certain arguments will override
other specified arguments. Be sure when calling poLCA.simdata that all arguments
are in logical agreement, or else the function may produce unexpected results.

Specifying the list of matrices probs can be tricky; we recommend a command
structure such as this for, for example, five manifest variables, three latent classes,
and Kj = (3, 2, 3, 4, 3).

> probs <- list(
matrix(c(0.6,0.1,0.3, 0.6,0.3,0.1, 0.3,0.1,0.6 ),ncol=3,byrow=T),
matrix(c(0.2,0.8, 0.7,0.3, 0.3,0.7 ),ncol=2,byrow=T),
matrix(c(0.3,0.6,0.1, 0.1,0.3,0.6, 0.3,0.6,0.1 ),ncol=3,byrow=T),
matrix(c(0.1,0.1,0.5,0.3, 0.5,0.3,0.1,0.1, 0.3,0.1,0.1,0.5),ncol=4,byrow=T),
matrix(c(0.1,0.1,0.8, 0.1,0.8,0.1, 0.8,0.1,0.1 ),ncol=3,byrow=T))

The object returned by poLCA.simdata is a list containing both the simulated
data set and all of the parameters used to generate that data set. The elements listed
here have the same characteristics and meanings as just described.
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dat: A data frame containing the simulated variables X and Y . Variable names for
manifest variables are Y1, Y2, . . ., YJ . Variable names for concomitant variables
are X1, X2, . . ., XS .

probs: A list of matrices of dimension nclass× nresp containing the class-conditional
outcome probabilities.

nresp: A vector containing the number of possible outcomes for each manifest vari-
able.

b: A matrix containing the coefficients on the covariates, if used.

classdist: The mixing proportions corresponding to each latent class.

pctmiss: The percent of observations missing.

trueclass: A vector of length N containing the “true” class membership for each
individual.

Examples of possible uses of poLCA.simdata are included in the poLCA inter-
nal documentation and may be accessed by entering ? poLCA.simdata in R. One
example demonstrates that even when the “true” data generating process involves
a series of covariates—so that each observation has a different prior probability of
belonging to each class—the posterior probabilities of latent class membership can
still be recovered with high accuracy using a basic model specified without covariates.
A second example confirms that in data sets with missing values, the poLCA function
produces consistent estimates of the class-conditional response probabilities πjrk re-
gardless of whether the researcher elects to include or listwise delete the observations
with missing values.

6 Two examples

To illustrate the usage of the poLCA package, we present two examples: a basic
latent class model and a latent class regression model, using sample data sets included
in the package.

6.1 Basic latent class modeling with the carcinoma data

The carcinoma data from Agresti (2002, 542) consist of seven dichotomous variables
that represent the ratings by seven pathologists of 118 slides on the presence or
absence of carcinoma. The purpose of studying these data is to model “interobserver
agreement” by examining how subjects might be divided into groups depending upon
the consistency of their diagnoses.

It is straightforward to replicate Agresti’s published results (Agresti, 2002, 543)
using the series of commands:
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 iteration 35 : log−lik = −293.704978780797

Figure 1: Estimation of the three-class basic latent class model using the carcinoma

data; obtained by setting graphs=TRUE in the poLCA function call. Each group of red
bars represents the conditional probabilities, by latent class, of being rated positively
by each of the seven pathologists (labeled A through G). Taller bars correspond to
conditional probabilities closer to 1 of a positive rating.

> data(carcinoma)

> f <- cbind(A,B,C,D,E,F,G)~1

> lc2 <- poLCA(f,carcinoma,nclass=2)

> lc3 <- poLCA(f,carcinoma,nclass=3)

> lc4 <- poLCA(f,carcinoma,nclass=4,maxiter=5000)

The four-class model will typically require a larger number of iterations to achieve
convergence.

Figure 1 shows a screen capture of the estimation of model lc3 with the graphs

option set to TRUE. In this case, the model has converged after 35 iterations. As
Agresti describes, the three estimated latent classes clearly correspond to a pair of
classes that are consistently rated negative (37%) or positive (44%), plus a third
“problematic” class representing 18% of the population. In that class, pathologists
B, E, and G tend to diagnose positive; C, D, and F tend to diagnose negative; and A
is about 50/50.

The full output from the estimation of model lc3 is given below. First, the es-
timated class-conditional response probabilities π̂jrk are reported for pathologists A
through G, with each row corresponding to a latent class, and each column corre-
sponding to a diagnosis; negative in the first column, and positive in the second.
Thus, for example, a slide belonging to the first (“negative”) class has a 94% chance
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of being rated free from carcinoma by rater A, an 86% chance of the same from rater
B, an 100% chance from rater C, and so forth.

Next, the output provides the estimated mixing proportions p̂r corresponding to
the share of observations belonging to each latent class. These are the same values
that appear in Figure 1. An alternate method for determining the size of the latent
classes is to assign each observation to a latent class on an individual basis according
to its modal posterior class membership probability. Values using this technique are
reported directly below the estimated mixing proportions. Congruence between these
two sets of population shares often indicates a good fit of the model to the data.

The next set of results simply reports the number of observations, the number of
fully observed cases (for data sets with missing values and na.rm=FALSE), the number
of estimated parameters, residual degrees of freedom, and maximum log-likelihood.
It is always worth checking to ensure that the number of residual degrees of freedom
is non-negative; poLCA will output a warning message if this is the case.

Finally, poLCA outputs a number of goodness of fit statistics as described in Sec-
tion 3.4. For the carcinoma data, the minimum AIC and BIC criteria both indicate
that the three-class model is most parsimonious: with two classes, the AIC is 664.5
and the BIC is 706.1; with three classes, the AIC decreases to 633.4 and the BIC
decreases to 697.1; and with four classes, the AIC increases again to 641.6 and the
BIC increases to 727.5.

Conditional item response (column) probabilities,

by outcome variable, for each class (row)

$A

Pr(1) Pr(2)

class 1: 0.9427 0.0573

class 2: 0.4872 0.5128

class 3: 0.0000 1.0000

$B

Pr(1) Pr(2)

class 1: 0.8621 0.1379

class 2: 0.0000 1.0000

class 3: 0.0191 0.9809

$C

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 1.0000 0.0000

class 3: 0.1425 0.8575
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$D

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 0.9424 0.0576

class 3: 0.4138 0.5862

$E

Pr(1) Pr(2)

class 1: 0.9449 0.0551

class 2: 0.2494 0.7506

class 3: 0.0000 1.0000

$F

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 1.0000 0.0000

class 3: 0.5236 0.4764

$G

Pr(1) Pr(2)

class 1: 1.0000 0.0000

class 2: 0.3693 0.6307

class 3: 0.0000 1.0000

Estimated class population shares

0.3736 0.1817 0.4447

Predicted class memberships (by modal posterior prob.)

0.3729 0.1949 0.4322

=========================================================

Fit for 3 latent classes:

=========================================================

number of observations: 118

number of estimated parameters: 23

residual degrees of freedom: 95

maximum log-likelihood: -293.705

AIC(3): 633.41

BIC(3): 697.1357

G^2(3): 15.26171 (Likelihood ratio/deviance statistic)

X^2(3): 20.50336 (Chi-square goodness of fit)
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6.2 Latent class regression modeling with the election data

In the election data set, respondents to the 2000 American National Election Study
public opinion poll were asked to evaluate how well a series of traits—moral, caring,
knowledgable, good leader, dishonest, and intelligent—described presidential can-
didates Al Gore and George W. Bush. Each question had four possible choices:
(1) extremely well; (2) quite well; (3) not too well; and (4) not well at all.

6.2.1 Models with one covariate

A reasonable theoretical approach might suppose that there are three latent classes
of survey respondents: Gore supporters, Bush supporters, and those who are more or
less neutral. Gore supporters will tend to respond favorably towards Gore and un-
favorably towards Bush, with the reverse being the case for Bush supporters. Those
in the neutral group will not have strong opinions about either candidate. We might
further expect that falling into one of these three groups is a function of each indi-
vidual’s party identification, with committed Democrats more likely to favor Gore,
committed Republicans more likely to favor Bush, and less intense partisans tending
to be indifferent. We can investigate this hypothesis using a latent class regression
model.

Begin by loading the election data into memory, and specifying a model with 12
manifest variables and PARTY as the lone concomitant variable. The PARTY variable is
coded across seven categories, from strong Democrat at 1 to strong Republican at 7.
People who primarily consider themselves Independents are at 3-4-5 on the scale.
Next, estimate the latent class regression model and assign those results to object
nes.party. A call to the poLCA.reorder command, with a subsequent re-estimation
of the model, ensures that the three latent classes are assigned the same category
labels in each run.

> data(election)

> f.party <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG,

MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY

> nes.party <- poLCA(f.party,election,nclass=3,verbose=F)

> probs.start <- poLCA.reorder(nes.party$probs.start,

order(nes.party$P,decreasing=T))

> nes.party <- poLCA(f.party,election,nclass=3,probs.start=probs.start)

By examining the estimated class-conditional response probabilities, we confirm that
the model finds that the three groups indeed separate as expected, with 27% in the
favor-Gore group, 34% in the favor-Bush group, and 39% in the neutral group.

This example also illustrates a shortcoming of the χ2 goodness of fit statistic,
which is calculated to be over 34.5 billion. With only 1300 observations but nearly 17
million cells in the observed cross-classification table (that is, four responses to each
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Figure 2: Predicted prior probabilities of latent class membership at varying levels
of partisan self-identification. Results are from a three-class latent class regression
model.

of 12 questions, or 412 cells), the vast majority of the cells will contain zero cases. For
models such as this, using the χ2 statistic to assess model fit is not advised.

In addition to the information outputted for the basic model, the poLCA output
now also includes the estimated coefficients β̂r on the covariates, and their standard
errors.

=========================================================

Fit for 3 latent classes:

=========================================================

2 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) -3.81813 0.31109 -12.274 0

PARTY 0.79327 0.06232 12.728 0

=========================================================

3 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) 1.16155 0.17989 6.457 0

PARTY -0.57436 0.06401 -8.973 0

=========================================================
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Here, the neutral group is the first latent class, the favor-Bush group is the second
latent class, and the favor-Gore group is the third latent class. Following the termi-
nology in Section 4.1, the log-ratio prior probability that a respondent will belong to
the favor-Bush group with respect to the neutral group is ln(p2i/p1i) = −3.82+0.79×
PARTY. Likewise, the log-ratio prior probability that a respondent will belong to the
favor-Gore group with respect to the neutral group is ln(p3i/p1i) = 1.16−0.57×PARTY.
Eq. 11 provides the formula for converting these log-ratios into predicted prior prob-
abilities for each latent class.

To interpret the estimated generalized logit coefficients, we calculate and plot
predicted values of pri, the prior probability of class membership, at varying levels of
party ID. The R commands to do this are as follows, producing the graph in Figure 2.

> pidmat <- cbind(1,c(1:7))

> exb <- exp(pidmat %*% nes.party$coeff)

> matplot(c(1:7),(cbind(1,exb)/(1+rowSums(exb))),

main="Party ID as a predictor of candidate affinity class",

xlab="Party ID: strong Democratic (1) to strong Republican (7)",

ylab="Probability of latent class membership",

ylim=c(0,1),type="l",lwd=3,col=1)

> text(5.9,0.35,"Other")

> text(5.4,0.7,"Bush affinity")

> text(1.8,0.6,"Gore affinity")

Strong Democrats have over a 60% prior probability of belonging to the Gore affin-
ity group, while strong Republicans have over an 80% prior probability of belonging to
the Bush affinity group. The prior probability of belonging to the indifferent category,
labeled “Other”, is greatest for self-identified Independents (4) and Independents who
lean Democratic (3).

6.2.2 Models with more than one covariate

It is straightforward to similarly investigate models with more than one covariate.
Suppose we are interested in whether the effect of age modifies the effect of partisan-
ship on candidate affinity. We specify the interaction model with three covariates:

> f.3cov <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG,

MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY*AGE

> nes.3cov <- poLCA(f.3cov,election,nclass=3,verbose=F)

> probs.start <- poLCA.reorder(nes.3cov$probs.start,

order(nes.3cov$P,decreasing=T))

> nes.3cov <- poLCA(f.3cov,election,nclass=3,probs.start=probs.start)
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This produces the following coefficient estimates, again with the neutral group as the
first latent class, the favor-Bush group as the second latent class, and the favor-Gore
group as the third latent class.

=========================================================

Fit for 3 latent classes:

=========================================================

2 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) -4.39452 0.85423 -5.144 0.000

PARTY 0.80682 0.17614 4.581 0.000

AGE 0.01314 0.01772 0.741 0.459

PARTY:AGE -0.00020 0.00363 -0.054 0.957

=========================================================

3 / 1

Coefficient Std. error t value Pr(>|t|)

(Intercept) -0.31445 0.56324 -0.558 0.577

PARTY -0.39923 0.19990 -1.997 0.046

AGE 0.02967 0.01121 2.648 0.008

PARTY:AGE -0.00310 0.00398 -0.778 0.437

=========================================================

To see the effects of age on the candidate affinity of strong partisans, we first
specify a matrix of hypothetical values of the covariates: strdems for Democrats and
strreps for Republicans. We then calculate and plot the predicted prior probabilities
of latent class membership corresponding to each of these chosen hypothetical values
(Figure 3).

> strdems <- cbind(1,1,c(18:80),(c(18:80)*1))

> exb.strdems <- exp(strdems %*% nes.3cov$coeff)

> matplot(c(18:80),(cbind(1,exb.strdems)/(1+rowSums(exb.strdems))),

main="Age and candidate affinity for strong Democrats",

xlab="Age",ylab="Probability of latent class membership",

ylim=c(0,1),type="l",col=1,lwd=3)

> strreps <- cbind(1,7,c(18:80),(c(18:80)*7))

> exb.strreps <- exp(strreps %*% nes.3cov$coeff)

> matplot(c(18:80),(cbind(1,exb.strreps)/(1+rowSums(exb.strreps))),

main="Age and candidate affinity for strong Republicans",

xlab="Age",ylab="Probability of latent class membership",

ylim=c(0,1),type="l",col=1,lwd=3)
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Figure 3: Predicted prior probabilities of latent class membership for strong
Democrats (left) and strong Republicans (right) at ages 18-80.

As expected, regardless of age, strong Democrats are very unlikely to belong to the
Bush-affinity group, and strong Republicans are very unlikely to belong to the Gore-
affinity group. However, it is interesting to observe that while strong Republicans
in 2000 had extremely high levels of affinity for Bush at all ages, strong Democrats
below the age of 30 tended to be just as (or more) likely to belong to the neutral
group as to the Gore-affinity group.

7 License, Contact, Versioning, Development

poLCA is provided free of charge, subject to version 2 of the GPL or any later
version. Users of poLCA are requested to cite Linzer and Lewis (2007) and Linzer
and Lewis (Forthcoming).

Please direct all inquiries, comments, and reports of bugs to dlinzer@emory.edu.

7.1 Version history

1.1: Adds additional user control over ordering of latent classes and printing of model
results. New functionality to automatically estimate the latent class model
multiple times to locate the global maximum likelihood solution. Maintains
package compatibility with R version 2.6.0 patched. (November 1, 2007)

1.0: Provides standard errors for all model parameters, and covariance matrix for re-
gression model coefficients. Also allows users to specify the starting parameters

29



for the estimation algorithm, to aid in convergence and increase control over
model output. (April 4, 2007)

0.9: First public release. (June 1, 2006)

7.2 Planned developments

poLCA is still undergoing active development. Planned extensions include:

• Incorporation of sampling weights.

• Flexibility to relax the assumption of local independence among selected man-
ifest variables.

• Accommodation of user-specified constraints on selected parameters πjrk, as a
way to simplify models, achieve model identifiability, test substantive hypothe-
ses, and analyze model fit. Such constraints might, for example, require selected
response probabilities to be set equal to one another across different classes,
across manifest variables within classes, or equal to fixed constant values, as in
Goodman (1974). This extension would also permit the estimation of so-called
“simultaneous” latent class models across multiple groups where the groups are
already known (or theorized) to exist in the data (Clogg and Goodman, 1986).

• More aggressive error checking on input data, to ensure that manifest variables
are entered properly as integers from one to the maximum number of outcomes
for each variable, with no zeros or negative numbers.
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