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1. A first example: the two-dimensional Ornstein-Uhlenbeck process.

To begin with, for simplicity, we will study a discrete-time process. Later we’ll look at a continuous-
time model. The pomp package is designed with continuous-time processes in mind, but the associated
computational effort is typically greater, and the additional complexities are best postponed until the
structure and usage of the package is understood. The unobserved Ornstein-Uhlenbeck (OU) process
Xt ∈ R2 satisfies

Xt = AXt−1 + ξt.

The observation process is
Yt = BXt + εt.

In these equations, A and and B are 2×2 constant matrices; ξt and εt are mutually-independent families
of i.i.d. bivariate normal random variables. We let σσT be the variance-covariance matrix of ξt, where σ
is lower-triangular; likewise, we let ττT be that of εt.

Defining a partially observed Markov process. In order to fully specify this partially-observed
Markov process, we must implement both the process model (i.e., the unobserved process) and the
measurement model (the observation process). That is, we would like to be able to:

(1) simulate from the process model, i.e., make a random draw from Xt+1 |Xt = x for arbitrary x
and t,

(2) compute the probability density function (pdf) of state transitions, i.e., compute f(Xt+1 =
x′ |Xt = x) for arbitrary x, x′, and t,

(3) simulate from the measurement model, i.e., make a random draw from Yt |Xt = x for arbitrary
x and t, and

(4) compute the measurement model pdf, i.e., f(Yt = y |Xt = x) for arbitrary x, y, and t.

For this simple model, all this is easy enough. In general, it will be difficult to do some of these things.
Depending on what we wish to accomplish, however, we may not need all of these capabilities. For
example, to simulate data, all we need is 1 and 3. To run a particle filter (and hence to use iterated
filtering, mif), one needs 1 and 3. To do MCMC, one needs 2 and 4. Nonlinear forecasting (nlf) requires
1 and 3. In pomp, one constructs an object of class pomp by specifying functions to do some or all of 1–4,
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along with data and other information. The package provides algorithms for fitting the models to the
data, for simulating the models, studying deterministic skeletons, and so on. The documentation (?pomp)
spells out the usage of the pomp constructor, including detailed specifications for all its arguments and
a worked example.

Building the pomp object. We build a pomp object by specifying some or all of the four basic elements
mentioned above. We’ll go through this in some detail here, writing each of these functions from scratch.
Later, we’ll look at some shortcuts that the package provides to streamline the process.

First, we write a function that implements the process model simulator. In this function, we assume
that:

(1) xstart will be a matrix, each column of which is a vector of initial values of the state process;
(2) params will be a matrix, the columns of which are parameter vectors;
(3) times will be a vector of times at which realizations of the state process are required. In

particular, times[1] is the initial time (corresponding to xstart).

ou2.rprocess <- function (xstart, times, params, ...) {

## this function simulates two discrete-time OU processes

nreps <- ncol(xstart)

ntimes <- length(times)

x <- array(0,dim=c(2,nreps,ntimes))

rownames(x) <- rownames(xstart)

x[,,1] <- xstart

for (k in 2:ntimes) {

for (j in 1:nreps) {

eps <- rnorm(2,mean=0,sd=1)

x['x1',j,k] <- params['alpha.1',j]*x['x1',j,k-1]+
params['alpha.3',j]*x['x2',j,k-1]+
params['sigma.1',j]*eps[1]

x['x2',j,k] <- params['alpha.2',j]*x['x1',j,k-1]+
params['alpha.4',j]*x['x2',j,k-1]+
params['sigma.2',j]*eps[1]+
params['sigma.3',j]*eps[2]

}

}

x

}

Notice that this function returns a rank-3 array (x), which has the realized values of the state process
at the requested times. Notice too that x has rownames. When this function is called, in the course of
any algorithm that uses it, some basic error checks will be performed.

Next, we write a function that computes the likelihoods of a set of process model state transitions. Criti-
cally, in writing this function, we are allowed to assume that the transition from x[,j,k] to x[,j,k+1] is
elementary, i.e., that no transition has occurred between times times[k] and times[k+1]. If we weren’t
allowed to make this assumption, it would be very difficult indeed to write the transition probabilities.
Indeed, were we able to do so, we’d have no need for pomp!

ou2.dprocess <- function (x, times, params, log, ...) {

## this function simulates two discrete-time OU processes

nreps <- ncol(x)

ntimes <- length(times)

eps <- numeric(2)
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f <- array(0,dim=c(nreps,ntimes-1))

for (k in 2:ntimes) {

for (j in 1:nreps) {

eps[1] <- x['x1',j,k]-params['alpha.1',j]*x['x1',j,k-1]-
params['alpha.3',j]*x['x2',j,k-1]

eps[2] <- x['x2',j,k]-params['alpha.2',j]*x['x1',j,k-1]-
params['alpha.4',j]*x['x2',j,k-1]-
params['sigma.2',j]/params['sigma.1',j]*eps[1]

f[j,k-1] <- sum(

dnorm(

x=eps,

mean=0,

sd=params[c("sigma.1","sigma.3"),j],

log=TRUE

),

na.rm=T

)

}

}

if (log) f else exp(f)

}

In this function, times and params are as before, and x is a rank-3 array. Notice that dprocess returns
a rank-2 array (f) with dimensions ncol(params)times(length(times)-1). Each row of f corresponds
to a different parameter point; each column corresponds to a different transition. You can think of x as
an array that might have been generated by a call to the rprocess function above.

Third, we write a measurement model simulator. In this function, x, t, and params are states, time, and
parameters, but they have a different form from those above. In particular, x and params are vectors.
Notice that we give the returned vector, y, names to match the names of the data.

bvnorm.rmeasure <- function (x, t, params, ...) {

## noisy observations of the two walks with common noise SD 'tau'
c(

y1=rnorm(n=1,mean=x['x1'],sd=params['tau']),
y2=rnorm(n=1,mean=x['x2'],sd=params['tau'])
)

}

Finally, we specify how to evaluate the likelihood of an observation given the underlying state. Again,
the arguments x, y, and params are vectors.

bvnorm.dmeasure <- function (y, t, x, params, log, ...) {

f <- sum(

dnorm(

x=y[c("y1","y2")],

mean=x[c("x1","x2")],

sd=params["tau"],

log=TRUE

),

na.rm=TRUE

)

if (log) f else exp(f)

}
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With these four functions in hand, we construct the pomp object:

ou2 <- pomp(

times=seq(1,100),

data=rbind(

y1=rep(0,100),

y2=rep(0,100)

),

t0=0,

rprocess = ou2.rprocess,

dprocess = ou2.dprocess,

rmeasure = bvnorm.rmeasure,

dmeasure = bvnorm.dmeasure

)

In the above, times are the times at which the observations (given by data) were observed. The scalar t0
is the time at which the process model is initialized: t0 should not be any later than the first observation
time times[1]. In the present case, it was easy to specify all four of the basic functions. That won’t
always be the case and it’s not necessary to specify all of them to construct a pomp object. If any
statistical method using the pomp object wants access to a function that hasn’t been provided, however,
an error will be generated.

We’ll now specify some “true” parameters and initial states in the form of a named numeric vector:

true.p <- c(

alpha.1=0.9,alpha.2=0,alpha.3=0,alpha.4=0.99,

sigma.1=1,sigma.2=0,sigma.3=2,

tau=1,x1.0=50,x2.0=-50

)

Note that the initial states are specified by parameters that have names ending in ‘.0’. This is important,
since this identifies them as initial-value parameters. By default, the unobserved (state) process will be
initialized with these values, and the names of the state variables will be obtained by dropping the ‘.0’.
In applications, one will frequently want more flexibility in parameterizing the initial state. This is
available: one can optionally specify an alternative initializer. See ?pomp for details.

The pomp object ou2 we just constructed has no data. If we simulate the model, we’ll obtain another
pomp object just like ou2, but with the data slot filled with simulated data:

ou2 <- simulate(ou2,params=true.p,nsim=1000,seed=800733088)

ou2 <- ou2[[1]]

Here, we actually ran 1000 simulations: the default behavior of simulate is to return a list of pomp
objects.

Methods of the pomp class. There are a number of methods that perform operations on pomp objects.
One can read the documentation on all of these by doing class?pomp and methods?pomp. For example,
one can coerce a pomp object to a data frame:

as(ou2,'data.frame')

and if we print a pomp object, the resulting data frame is what is shown. One can access the data and
the observation times using
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Figure 1. One can plot a pomp object. This shows the result of plot(ou2).

data.array(ou2)

time(ou2)

time(ou2,t0=TRUE)

One can read and change parameters associated with the pomp object using

coef(ou2)

coef(ou2,c("sigma.1","sigma.2")) <- c(1,0)

One can also plot a pomp object (Fig. 1).

Building the pomp object using plugins. A fair amount of the difficulty in putting together the
process model components above had to do with mundane bookkeeping: constructing arrays of the
appropriate dimensions, filling them in the right order, making sure that the names lined up. The
package provides some plug-in facilities that allow the user to bypass these tedious and error-prone
aspects. At the moment, there are plug-ins to facilitate implementation of discrete-time dynamical
systems and continuous-time systems via an Euler-type algorithm. Let’s see how we can implement the
Ornstein-Uhlenbeck example using the discrete-time plugin.
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ou2 <- pomp(

times=seq(1,100),

data=rbind(

y1=rep(0,100),

y2=rep(0,100)

),

t0=0,

rprocess = onestep.simulate,

dprocess = onestep.density,

step.fun = function(x, t, params, delta.t, ...) {

eps <- rnorm(n=2)

with(

as.list(c(x,params)),

c(

x1=alpha.1*x1+alpha.3*x2+sigma.1*eps[1],

x2=alpha.2*x1+alpha.4*x2+sigma.2*eps[1]+sigma.3*eps[2]

)

)

},

dens.fun = function (x1, t1, x2, t2, params, ...) {

eps.1 <- x2['x1']-params['alpha.1']*x1['x1']-
params['alpha.3']*x1['x2']

eps.2 <- x2['x2']-params['alpha.2']*x1['x1']-
params['alpha.4']*x1['x2']-
params['sigma.2']/params['sigma.1']*eps.1

sum(

dnorm(

c(eps.1,eps.2),

mean=0,

sd=params[c('sigma.1','sigma.3')],
log=T

),

na.rm=T

)

},

rmeasure = bvnorm.rmeasure,

dmeasure = bvnorm.dmeasure

)

The rprocess portion of the model is provided by the onestep.simulate plug-in. One specifies
rprocess=onestep.simulate and provides an additional argument step.fun that simulates one step
of the process model given one state and one set of parameters. The dprocess portion is specified using
the onestep.density plug-in. In this bit, one specifies dprocess=onestep.density and provides an
additional argument dens.fun that computes the log pdf of a transition from (x1,t1) to (x2,t2) given
the parameter vector params. Critically, in writing this function, one is allowed to assume that the
transition from x1 to x2 is elementary, i.e., that no transition has occurred between times t1 and t2.
See the help page (?onestep.simulate) for complete documentation.

2. Particle filtering.

We can run a particle filter as follows:



INTRODUCTION TO POMP 7

fit1 <- pfilter(ou2,params=true.p,Np=1000,filter.mean=T,pred.mean=T,pred.var=T)

Since ou2 already contained the parameters p, it wasn’t necessary to specify them; we could have done

fit1 <- pfilter(ou2,Np=1000)

with much the same result, for example.

We can compare the results against those of the Kalman filter, which is exact in the case of a linear,
Gaussian model such as the one implemented in ou2. First, we need to implement the Kalman filter.

kalman.filter <- function (y, x0, a, b, sigma, tau) {

n <- nrow(y)

ntimes <- ncol(y)

sigma.sq <- sigma%*%t(sigma)

tau.sq <- tau%*%t(tau)

inv.tau.sq <- solve(tau.sq)

cond.dev <- numeric(ntimes)

filter.mean <- matrix(0,n,ntimes)

pred.mean <- matrix(0,n,ntimes)

pred.var <- array(0,dim=c(n,n,ntimes))

dev <- 0

m <- x0

v <- diag(0,n)

for (k in seq(length=ntimes)) {

pred.mean[,k] <- M <- a%*%m

pred.var[,,k] <- V <- a%*%v%*%t(a)+sigma.sq

q <- b%*%V%*%t(b)+tau.sq

r <- y[,k]-b%*%M

cond.dev[k] <- n*log(2*pi)+log(det(q))+t(r)%*%solve(q,r)

dev <- dev+cond.dev[k]

q <- t(b)%*%inv.tau.sq%*%b+solve(V)

v <- solve(q)

filter.mean[,k] <- m <- v%*%(t(b)%*%inv.tau.sq%*%y[,k]+solve(V,M))

}

list(

pred.mean=pred.mean,

pred.var=pred.var,

filter.mean=filter.mean,

cond.loglik=-0.5*cond.dev,

loglik=-0.5*dev

)

}

Now we can run it on the example data we generated above.

y <- data.array(ou2)

a <- matrix(true.p[c('alpha.1','alpha.2','alpha.3','alpha.4')],2,2)
b <- diag(1,2)

sigma <- matrix(c(true.p['sigma.1'],true.p['sigma.2'],0,true.p['sigma.3']),2,2)
tau <- diag(true.p['tau'],2,2)
fit2 <- kalman.filter(y,x0,a,b,sigma,tau)
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In this case, the Kalman filter gives us a log likelihood of fit2$loglik=-411.99, while the particle filter
gives us fit1$loglik=-411.99.

3. Iterated filtering: the MIF algorithm

The MIF algorithm works by modifying the model slightly. It replaces the model we are interested in
fitting — which has time-invariant parameters — with a model that is just the same except that its
parameters take a random walk in time. As the intensity of this random walk approaches zero, the
modified model approaches the fixed-parameter model. MIF works by iterating a particle filter on this
model. The extra variability in the parameters combats the particle depletion that typically plagues
simple particle filters.

At the beginning of each iteration, MIF must create an initial distribution of particles in the state-
parameter space. For this purpose, MIF uses a function, particles, which can be optionally specified
by the user. By default, MIF uses a multivariate normal particle distribution. The particles function
takes an argument, sd, that scales the width of the distribution of particles in each of the directions of
the state-parameter space. In particular, this distribution must be such that, when sd=0, all the particles
are identical. In this vignette, we’ll use the default (multivariate normal) particle distribution.

Let’s jump right in and run MIF to maximize the likelihood over two of the parameters and both initial
conditions. We’ll use 1000 particles, an exponential cooling factor of 0.95, and a fixed-lag smoother with
lag 10 for the initial conditions. Just to make it interesting, we’ll start far from the true parameter
values.

start.p <- true.p

start.p[c('x1.0','x2.0','alpha.1','alpha.4')] <- c(45,-60,0.8,0.9)

fit <- mif(ou2,Nmif=1,start=start.p,

pars=c('alpha.1','alpha.4'),ivps=c('x1.0','x2.0'),
rw.sd=c(

x1.0=5,x2.0=5,

alpha.1=0.1,alpha.4=0.1

),

Np=1000,

var.factor=1,

ic.lag=10,

cooling.factor=0.95,

max.fail=100

)

fit <- continue(fit,Nmif=79,max.fail=100)

fitted.pars <- c("alpha.1","alpha.4","x1.0","x2.0")

cbind(

start=start.p[fitted.pars],

mle=signif(coef(fit,fitted.pars),3),

truth=true.p[fitted.pars]

)

start mle truth
alpha.1 0.8 0.898 0.90
alpha.4 0.9 0.989 0.99
x1.0 45.0 51.100 50.00
x2.0 -60.0 -49.500 -50.00

One can plot various diagnostics for the fitted mif object using
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Figure 2. Convergence plots can be used to help diagnose convergence of the MIF algorithm.

plot(fit)

Here, we’ll just plot the convergence records for the log likelihood and the two α parameters (Fig. 2). In
applications, a good strategy is to start several MIFs from different starting points. A good diagnostic
for convergence is obtained by plotting the convergence records (see the documentation for conv.rec)
and verifying that all the MIF iterations converge to the same parameters. One plots these—and other—
diagnostics using compare.mif applied to a list of mif objects.

The log likelihood of the random-parameter model at the end of the mif iterations—which should be
a rough approximation of that of the fixed-parameter model—is logLik(fit)=-410.9. To get the log
likelihood of the fixed-parameter model (up to Monte Carlo error) we can use pfilter:

round(pfilter(fit)$loglik,1)

[1] -411.6

Like pomp objects, one can simulate from a fitted mif object (Fig. 3). In this case, the pomp is simulated
at the MLE.
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Figure 3. mif objects can be simulated.

4. Nonlinear forecasting
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