
ADVANCED TOPICS IN POMP

AARON A. KING

Contents

1. The low-level interface 1

2. Acceleration using native codes. 2

3. A more complex example: a seasonal SIR model 5

This document serves to introduce the low-level interface to pomp objects and to give some examples of
the use of native (C or FORTRAN) codes in pomp.

1. The low-level interface

There is a low-level interface to pomp objects, primarily designed for package developers. Ordinary users
should have little reason to use this interface. In this section, each of the methods that make up this
interface will be introduced.

The init.state method is called to initialize the state (unobserved) process. It takes a vector or matrix
of parameters and returns a matrix of initial states.

data(ou2)

true.p <- coef(ou2)

x0 <- init.state(ou2)

x0

[,1]
x1 50
x2 -50

new.p <- cbind(true.p,true.p,true.p)

new.p["x1.0",] <- 1:3

init.state(ou2,params=new.p)

[,1] [,2] [,3]
x1 1 2 3
x2 -50 -50 -50

The rprocess method gives access to the process model simulator. It takes initial conditions (which
need not correspond to the zero-time t0 specified when the pomp object was constructed), a set of times,
and a set of parameters. The initial states and parameters must be matrices, and they are checked for
commensurability. The method returns a rank-3 array containing simulated state trajectories, sampled
at the times specified.

1

2 A. A. KING

x <- rprocess(ou2,xstart=x0,times=time(ou2,t0=T),params=as.matrix(true.p))

dim(x)

[1] 2 1 101

x[,,1:5]

[,1] [,2] [,3] [,4] [,5]
x1 50 44.30555 39.77838 37.21832 33.96139
x2 -50 -47.31719 -47.78786 -42.91187 -46.40403

Note that the dimensions of x are nvars x nreps x ntimes, where nvars is the number of state vari-
ables, nreps is the number of simulated trajectories (which is the number of columns in the params and
xstart matrices), and ntimes is the length of the times argument. Note also that x[,,1] is identical
to xstart.

The rmeasure method gives access to the measurement model simulator:

x <- x[,,-1,drop=F]

y <- rmeasure(ou2,x=x,times=time(ou2),params=as.matrix(true.p))

dim(y)

[1] 2 1 100

y[,,1:5]

[,1] [,2] [,3] [,4] [,5]
y1 46.04027 39.85474 37.20344 34.09994 31.55727
y2 -46.63870 -46.11194 -41.49220 -47.41769 -45.55778

The dmeasure and dprocess methods give access to the measurement and process model densities,
respectively.

fp <- dprocess(ou2,x=x,times=time(ou2),params=as.matrix(true.p))

dim(fp)

[1] 1 99

fp[,36:40]

[1] 0.01907030 0.02469285 0.03349765 0.05539911 0.04743258

fm <- dmeasure(ou2,y=y[,1,],x=x,times=time(ou2),params=as.matrix(true.p))

dim(fm)

[1] 1 100

fm[,36:40]

[1] 0.118826706 0.065905743 0.016613495 0.118275252
[5] 0.008519114

All of these are to be preferred to direct access to the slots of the pomp object, because they do sanity
checks on the inputs and outputs.

ADVANCED TOPICS 3

2. Acceleration using native codes.

Since many of the methods we will use require us to simulate the process and/or measurement models
many times, it is a good idea to use native (compiled) codes for the computational heavy lifting. This
can result in many-fold speedup. The pomp package includes some examples that use C codes. Here,
we’ll have a look at how the discrete-time 2-D Ornstein-Uhlenbeck process with normal measurement
error is implemented.

Recall that the unobserved Ornstein-Uhlenbeck (OU) process Xt ∈ R2 satisfies

Xt = AXt−1 + ξt.

The observation process is
Yt = BXt + εt.

In these equations, A and and B are 2×2 constant matrices; ξt and εt are mutually-independent families
of i.i.d. bivariate normal random variables. We let σσT be the variance-covariance matrix of ξt, where
σ is lower-triangular; likewise, we let ττT be that of εt.

You can load a pomp object for this model with the command

data(ou2)

Here we’ll examine how this object is put together.

The process model simulator and density functions are as follows:

ou2.rprocess <- function (xstart, times, params, paramnames, ...) {

nvar <- nrow(xstart)

npar <- nrow(params)

nrep <- ncol(xstart)

ntimes <- length(times)

get indices of the various parameters in the 'params' matrix

C uses zero-based indexing!

parindex <- match(paramnames,rownames(params))-1

array(

.C("ou2_adv",

X = double(nvar*nrep*ntimes),

xstart = as.double(xstart),

par = as.double(params),

times = as.double(times),

n = as.integer(c(nvar,npar,nrep,ntimes)),

parindex = as.integer(parindex),

DUP = FALSE,

NAOK = TRUE,

PACKAGE = "pomp"

)$X,

dim=c(nvar,nrep,ntimes),

dimnames=list(rownames(xstart),NULL,NULL)

)

}

ou2.dprocess <- function (x, times, params, log, paramnames, ...) {

nvar <- nrow(x)

npar <- nrow(params)

nrep <- ncol(x)

ntimes <- length(times)

4 A. A. KING

parindex <- match(paramnames,rownames(params))-1

array(

.C("ou2_pdf",

d = double(nrep*(ntimes-1)),

X = as.double(x),

par = as.double(params),

times = as.double(times),

n = as.integer(c(nvar,npar,nrep,ntimes)),

parindex = as.integer(parindex),

give_log=as.integer(log),

DUP = FALSE,

NAOK = TRUE,

PACKAGE = "pomp"

)$d,

dim=c(nrep,ntimes-1)

)

}

The call that constructs the pomp object is:

ou2 <- pomp(

times=seq(1,100),

data=rbind(

y1=rep(0,100),

y2=rep(0,100)

),

t0=0,

rprocess = ou2.rprocess,

dprocess = ou2.dprocess,

dmeasure = "normal_dmeasure",

rmeasure = "normal_rmeasure",

paramnames=c(

"alpha.1","alpha.2","alpha.3","alpha.4",

"sigma.1","sigma.2","sigma.3",

"tau"

),

statenames = c("x1","x2"),

PACKAGE="pomp"

)

Notice that the process model is implemented using using .C, while the measurement model is specified
by giving the names of native C routines. Read the source (file ‘ou2.c’) to see the definitions of these
functions.

We’ll specify some parameters:

p <- c(

alpha.1=0.9,alpha.2=0,alpha.3=0,alpha.4=0.99,

sigma.1=1,sigma.2=0,sigma.3=2,

tau=1,x1.0=50,x2.0=-50

)

tic <- Sys.time()

x <- simulate(ou2,params=p,nsim=500,seed=800733088)

ADVANCED TOPICS 5

toc <- Sys.time()

print(toc-tic)

Time difference of 1.188093 secs

In this example, we’ve written our simulators and density functions “from scratch”. pomp provides “plug-
in” facilities to make it easier to define certain kinds of models. These plug-ins can be used with native
codes as well, as we’ll see in the next example.

3. A more complex example: a seasonal SIR model

The SIR model is a mainstay of theoretical epidemiology. It has the deterministic skeleton
dS

dt
= µ (N − S) + β(t)

I

N
S

dI

dt
= β(t)

I

N
S − γ I − µ I

dR

dt
= γ I − µR

Here N = S + I + R is the (constant) population size and β is a time-dependent contact rate. We’ll
assume that the contact rate is periodic and implement it as a covariate. We’ll implement a stochastic
version of this model using an Euler-multinomial approximation to the continuous-time Markov process.
As an additonal wrinkle, we’ll assume that the rate of the infection process β I/N is perturbed by white
noise.

euler.sir <- pomp(

times=seq(1/52,4,by=1/52),

data=rbind(measles=numeric(52*4)),

t0=0,

tcovar=seq(0,25,by=1/52),

covar=matrix(

periodic.bspline.basis(seq(0,25,by=1/52),nbasis=3,period=1,degree=3),

ncol=3,

dimnames=list(NULL,paste("seas",1:3,sep=''))
),

delta.t=1/52/20,

statenames=c("S","I","R","cases","W","B","dW"),

paramnames=c("gamma","mu","iota","beta1","beta.sd","pop","rho"),

covarnames=c("seas1"),

zeronames=c("cases"),

comp.names=c("S","I","R"),

rprocess=euler.simulate,

step.fun="sir_euler_simulator",

dprocess=onestep.density,

dens.fun="sir_euler_density",

skeleton.vectorfield="sir_ODE",

rmeasure="binom_rmeasure",

dmeasure="binom_dmeasure",

PACKAGE="pomp",

initializer=function(params, t0, comp.names, ...){

p <- exp(params)

snames <- c(

"S","I","R","cases","W","B",

6 A. A. KING

"SI","SD","IR","ID","RD","dW"

)

fracs <- p[paste(comp.names,"0",sep=".")]

x0 <- numeric(length(snames))

names(x0) <- snames

x0[comp.names] <- round(p['pop']*fracs/sum(fracs))
x0

}

)

coef(euler.sir) <- log(

c(

gamma=26,mu=0.02,iota=0.01,

beta1=1200,beta2=1800,beta3=600,

beta.sd=1e-3,

pop=2.1e6,

rho=0.6,

S.0=26/1200,I.0=0.001,R.0=1-0.001-26/1200

)

)

euler.sir <- simulate(euler.sir,nsim=1,seed=329348545L)

This example can be loaded via

data(euler.sir)

A. A. King, Departments of Ecology & Evolutionary Biology and Mathematics, University of Michigan, Ann

Arbor, Michigan 48109-1048 USA

E-mail address: kingaa at umich dot edu

URL: http://www.umich.edu/~kingaa

