
Package rootSolve : roots, gradients and

steady-states in R

Karline Soetaert

Centre for Estuarine and Marine Ecology
Netherlands Institute of Ecology

The Netherlands

Abstract

R package rootSolve (Soetaert 2008) includes

• root-finding algorithms to solve for the n roots of n nonlinear equations, using a
Newton-Raphson method.

• An extension of R function uniroot

• Functions that find the steady-state condition of a set of ordinary differential equa-
tions (ODE). These functions are compatible with the ODE solvers in package deS-
olve , which solve initial value ODEs. Separate solvers for full, banded and generally
sparse problems are included.

• Functions calculate the Jaobian matrix or - more general - the gradient of functions
with respect to independent variables.

Keywords: roots of nonlinear equations, gradient, Jacobian, Hessian, steady-state, boundary
value ODE, R.

The root of a function f(x) is the value of x for which f(x) = 0.

Package rootSolve deals with finding n roots of n nonlinear (or linear) equations.
This is, it finds the values

x∗i (i = 1, n)

for which
fj(x∗) = 0 (j = 1, n)

Package rootSolve serves several purposes:

• it extends the root finding capabilities of R for non-linear functions

• it includes functions for finding steady-state of systems of ordinary differential equations
(ODE) and partial differential equations (PDE)

• it includes functions to numerically solve gradients.

The package was created to solve the steady-state and stability analysis examples in the book
of Soetaert and Herman (2009).

The various functions in rootSolve are given in table (1).

2 Package rootSolve : roots, gradients and steady-states in R

0 2 4 6 8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

fu
n(

x)

●

Figure 1: Root found with uniroot

1. Finding roots of nonlinear equations in R and rootSolve

The root-finding functions in R are:

• uniroot. Finds one root of one equation

• polyroot. Finds the complex roots of a polynomial

1.1. One equation

To find the root of function:
f(x) = cos3(2x)

in the interval [0,8] and plot the curve, we write:

> fun <- function (x) cos(2*x)^3

> curve(fun(x),0,8)

> abline(h=0,lty=3)

> uni <- uniroot(fun,c(0,8))$root

> points(uni,0,pch=16,cex=2)

Although the graph (figure 1) clearly demonstrates the existence of many roots in the interval
[0,8] R function uniroot extracts only one.

rootSolve function uniroot.all is a simple extension of uniroot which extracts many (presum-
ably *all*) roots in the interval.

> curve(fun(x),0,8)

> abline(h=0,lty=3)

> All <- uniroot.all(fun,c(0,8))

> points(All,y=rep(0,length(All)),pch=16,cex=2)

Karline Soetaert 3

0 2 4 6 8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

fu
n(

x)

● ● ● ● ●

Figure 2: Roots found with uniroot.all

uniroot.all does that by first subdividing the interval into small sections and, for all sections
where the function value changes sign, invoking uniroot to locate the root. Note that this
is not a full-proof method: in case subdivision is not fine enough some roots will be missed.
Also, in case the curve does not cross the X-axis, but just ”touches” it, the root will not be
retrieved; (but neither will it be located by uniroot).

1.2. n equations in n unknowns

Except for polynomial root finding, to date R has no functions that retrieve n roots of n
nonlinear equations.

Function multiroot in rootSolve implements the Newton-Raphson method (e.g. Press, Teukol-
sky, Vetterling, and Flannery (1992)) to solve this type of problem. As the Newton-Raphson
method locates the root iteratively, the result will depend on the initial guess of the root.
Also, it is not guaranteed that the root will actually be found (i.e. the method may fail).

The example below finds two different roots of a three-valued function:

f1 = x1 + x2 + x2
3 − 12

f2 = x2
1 − x2 + x3 − 2

f3 = 2 · x1 − x2
2 + x3 − 1

> model <- function(x) {

+ F1=x[1] + x[2] + x[3]^2 -12

+ F2=x[1]^2 -x[2] + x[3] -2

+ F3=2*x[1] -x[2]^2 + x[3] -1

+ c(F1=F1,F2=F2,F3=F3)

+ }

> # first solution

> (ss<-multiroot(f=model,start=c(1,1,1)))

4 Package rootSolve : roots, gradients and steady-states in R

$root
[1] 1 2 3

$f.root
F1 F2 F3

3.087877e-10 4.794444e-09 -8.678146e-09

$iter
[1] 6

$estim.precis
[1] 4.593792e-09

> # second solution; use different start values

> (ss2<-multiroot(model,c(0,0,0)))$root

[1] -0.2337207 1.3531901 3.2985649

> model(ss2$root) # the function value at the root

F1 F2 F3
1.092413e-08 1.920978e-07 -4.850423e-08

As another example, we seek the 5x5 matrix X for which

X ·X ·X =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 15

> f2<-function(x)

+ {

+ X<-matrix(nr=5,x)

+ X %*% X %*% X -matrix(nr=5,data=1:25,byrow=TRUE)

+ }

> print(system.time(

+ x<-multiroot(f2, start=1:25)$root

+))

user system elapsed
0.030 0.000 0.024

> (X<-matrix(nr=5,x))

Karline Soetaert 5

[,1] [,2] [,3] [,4] [,5]
[1,] -0.67506260 -0.3454778 -0.01800918 0.3123057 0.6404343
[2,] -0.03483809 0.1686488 0.37530821 0.5735846 0.7797107
[3,] 0.60668343 0.6835080 0.76025826 0.8442125 0.9159760
[4,] 1.24815964 1.1997437 1.15042418 1.1004603 1.0600742
[5,] 1.88640623 1.7145706 1.54265669 1.3697198 1.1937326

> X%*%X%*%X

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10
[3,] 11 12 13 14 15
[4,] 16 17 18 19 20
[5,] 21 22 23 24 25

2. Steady-state analysis

Ordinary differential equations are a special case of nonlinear equations, where x are called
the state variables and the functions f(x) specify the derivatives of x with respect to some
independent variable. This is:

f(x, t) =
dx
dt

If ”t”, the independent variable is ”time”, then the root of the ODE system

dx
dt

= 0

is often referred to as the ”steady-state” condition.

Within R , package deSolve (Soetaert, Petzoldt, and Setzer 2008) is designed to solve so-called
initial value problems (IVP) of ODEs and PDEs - partial differential equations by integration.
deSolve includes integrators that deal efficiently with sparse and banded Jacobians or that
are especially designed to solve initial value problems resulting from 1-Dimensional and 2-
Dimensional partial differential equations. The latter are first written as ODEs using the
method-of-lines approach.

To ensure compatibility, rootSolve offers the same functionalities as deSolve , and requires
the ode’s to be similarly specified.

The function specifying the ordinary differential equations should be defined as

deriv = function(x,t,parms,...)

where parms are the ODE parameters, x the state variables, t the independent variable and ...
are any other arguments passed to the function (optional). The return value of the function
should be a list, whose first element is a vector containing the derivatives of x with respect
to time.

Two different approaches are used to solve for the steady-state condition of ode’s:

6 Package rootSolve : roots, gradients and steady-states in R

• by dynamically running to steady-state

• by solving for the root of the ODE using the Newton-Raphson method

2.1. Running dynamically to steady-state

Function runsteady finds the steady-state condition by dynamically running (integrating) the
ODE until the derivatives stop changing. This solves a particular case of an IVP, where
the time instance for which the value of the state variable is sought equals infinity. The
implementation is based on deSolve solver function lsode (Hindmarsh (1983)).
Consider the following simple sediment biogeochemical model:

dOM

dt
= Flux− r ·OM · O2

O2 + ks
− r ·OM · (1− O2

O2 + ks
) · SO4

SO4 + ks2
dO2

dt
= −r ·OM · O2

O2 + ks
− 2rox ·HS · O2

O2 + ks
+ D · (BO2−O2)

dSO4

dt
= −0.5 · r ·OM · (1− O2

O2 + ks
) · SO4

SO4 + ks2
+ rox ·HS · O2

O2 + ks
+ D · (BSO4− SO4)

dHS

dt
= 0.5 · r ·OM · (1− O2

O2 + ks
) · SO4

SO4 + ks2
− rox ·HS · O2

O2 + ks
+ D · (BHS −HS)

In R this model is defined as:

> model<-function(t,y,pars)

+ {

+ with (as.list(c(y,pars)),{

+

+ oxicmin = r*OM*(O2/(O2+ks))

+ anoxicmin = r*OM*(1-O2/(O2+ks))* SO4/(SO4+ks2)

+

+ dOM = Flux - oxicmin - anoxicmin

+ dO2 = -oxicmin -2*rox*HS*(O2/(O2+ks)) + D*(BO2-O2)

+ dSO4 = -0.5*anoxicmin +rox*HS*(O2/(O2+ks)) + D*(BSO4-SO4)

+ dHS = 0.5*anoxicmin -rox*HS*(O2/(O2+ks)) + D*(BHS-HS)

+

+ list(c(dOM,dO2,dSO4,dHS),SumS=SO4+HS)

+ })

+ }

After defining the value of the parameters (pars) and the initial values (y), the model can be
run to steady-state (runsteady). We specify the maximal length of time the simulation can
take (1e5)

> pars <- c(D=1,Flux=100,r=0.1,rox =1,

+ ks=1,ks2=1,BO2=100,BSO4=10000,BHS = 0)

> y<-c(OM=1,O2=1,SO4=1,HS=1)

> print(system.time(

+ runsteady(y=y,fun=model,parms=pars,times=c(0,1e5))$y

+))

Karline Soetaert 7

user system elapsed
0.090 0.000 0.162

2.2. Using the Newton-Raphson method

Functions stode, stodes, steady, steady.1D, steady.2D, and steady.band find the steady-state
by the iterative Newton-Raphson method (e.g. Press et al. (1992).

The same model as above can also be solved using stode. This is faster than running dy-
namically to steady-state, but not all models can be solved this way

> stode(y=y,fun=model,parms=pars,pos=TRUE)

$y
OM O2 SO4 HS

1000.012783 6.825178 9996.587411 3.412589

$SumS
[1] 10000

attr(,"precis")
[1] 2.549712e+03 5.753884e+01 2.039705e+01 8.527476e+00 2.168616e+00
[6] 1.515096e-01 7.266703e-04 1.664189e-08
attr(,"steady")
[1] TRUE

Note that we set pos=TRUE to ensure that only positive values are found. Thus the outcome
will be biologically realistic (negative concentrations do not exist).

2.3. Steady-state of 1-D models

Two special-purpose functions solve for the steady-state of 1-D models.

• Function steady.band efficiently estimates the steady-state condition for 1-D models
that comprise one species only.

• Function steady-1D finds the steady-state for multi-species 1-D problems

1-D models of 1 species

Consider the following 2nd order differential equation whose steady-state should be estimated:

∂y

∂t
= 0 =

∂2y

∂dx2
+

1
x

∂y

∂x
+ (1− 1

4 · x2
) · y −

√
(x) · cos(x)

over the interval [1,6] with boundary conditions:

y(1) = 1 and y(6) = −0.5

8 Package rootSolve : roots, gradients and steady-states in R

The spatial derivatives are approximated using centred differences:

∂2y

∂x2
≈ yi+1 − 2 · yi + yi−1

∆x2

and
∂y

∂x
≈ yi+1 − yi−1

2 ·∆x

First the model function is defined:

> derivs <- function(t,y,parms, x,dx,N,y1,y6)

+ {

+

+ d2y <- (c(y[-1],y6) -2*y + c(y1,y[-N])) /dx/dx

+ dy <- (c(y[-1],y6) - c(y1,y[-N])) /2/dx

+

+ res <- d2y+dy/x+(1-1/(4*x*x))*y-sqrt(x)*cos(x)

+ return(list(res))

+ }

Then the interval [1,6] is subdivided in 5001 boxes (x) and the steady-state condition esti-
mated, using steady.band; we specify that there is only one species (nspec=1).

> dx <- 0.001

> x <- seq(1,6,by=dx)

> N <- length(x)

> print(system.time(

+ y <- steady.band(y=rep(1,N),time=0,func=derivs,x=x,dx=dx,

+ N=N,y1=1,y6=-0.5,nspec=1)$y

+))

user system elapsed
0.050 0.000 0.056

The steady-state of this system of 5001 nonlinear equations is retrieved in about 0.03 seconds
1.

The analytical solution of this equation is known; after plotting the numerical approximation,
it is added to the figure (figure 3):

> plot(x,y,type="l",main="5001 nonlinear equations - banded Jacobian")

> curve(0.0588713*cos(x)/sqrt(x)+1/4*sqrt(x)*cos(x)+

+ 0.740071*sin(x)/sqrt(x)+1/4*x^(3/2)*sin(x),add=TRUE,type="p")

> legend("topright",pch=c(NA,1),lty=c(1,NA),c("numeric","analytic"))

1on my computer that dates from 2008

Karline Soetaert 9

1 2 3 4 5 6

−
3

−
2

−
1

0
1

5001 nonlinear equations − banded Jacobian

x

y

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

numeric
analytic

Figure 3: Solution of the 2nd order differential equation - see text for explanation

1-D models of many species

In the following model, dynamics of BOD (biochemical oxygen demand) and oxygen is mod-
eled in a river. Both are transported downstream (velocity v)

∂BOD

∂t
= 0 = − · ∂v ·BOD

∂x
− r ·BOD · O2

O2 + ks
∂O2

∂t
= 0 = − · ∂v ·O2

∂x
− r ·BOD · O2

O2 + ks
+ p · (O2sat−O2)

subject to the boundary conditions BOD(x = 0) = BOD0 and O2(x = 0) = O20

First the advective fluxes (transport with velocity v) are calculated, taking into account the
upstream concentrations (FluxBOD, FluxO2); then the rate of change is written as the sum of
-Flux gradient and consumption and production rate

> O2BOD <- function(t,state,pars)

+ {

+ BOD <- state[1:N]

+ O2 <- state[(N+1):(2*N)]

+

+ FluxBOD <- v*c(BOD_0,BOD) # fluxes due to water transport

+ FluxO2 <- v*c(O2_0,O2)

+

+ BODrate <- r*BOD*O2/(O2+10) # 1-st order consumption, Monod in oxygen

+

+ #rate of change = -flux gradient - consumption + reaeration (O2)

+ dBOD <- -diff(FluxBOD)/dx - BODrate

+ dO2 <- -diff(FluxO2)/dx - BODrate + p*(O2sat-O2)

+

+ return(list(c(dBOD=dBOD,dO2=dO2),BODrate=BODrate))

+ }

10 Package rootSolve : roots, gradients and steady-states in R

After assigning values to the parameters, and setting up the computational grid (x), steady-
state is estimated with function steady-1D; there are 2 species (BOD, O2) (nspec=2); we
force the result to be positive (pos=TRUE).

> dx <- 10 # grid size, meters

> v <- 1e2 # velocity, m/day

> r <- 0.1 # /day, first-order decay of BOD

> p <- 0.1 # /day, air-sea exchange rate

> O2sat <- 300 # mmol/m3 saturated oxygen conc

> O2_0 <- 50 # mmol/m3 riverine oxygen conc

> BOD_0 <- 1500 # mmol/m3 riverine BOD concentration

> x <- seq(dx/2,10000,by=dx) # m, distance from river

> N <- length(x)

> state <- c(rep(200,N),rep(200,N)) # initial guess of state variables:

> print(system.time(

+ out <- steady.1D (y=state,func=O2BOD,parms=NULL, nspec=2,pos=TRUE)

+))

user system elapsed
0.100 0.000 0.104

Although this model consists of 2000 nonlinear equations, it takes only 0.09 seconds to solve
it 2.

Finally the results are plotted (figure 4):

> mf <- par(mfrow=c(2,2))

> plot(x,out$y[(N+1):(2*N)],xlab= "Distance from river",

+ ylab="mmol/m3",main="Oxygen",type="l")

> plot(x,out$y[1:N],xlab= "Distance from river",

+ ylab="mmol/m3",main="BOD",type="l")

> plot(x,out$BODrate,xlab= "Distance from river",

+ ylab="mmol/m3/d",main="BOD decay rate",type="l")

> par(mfrow=mf)

Note: 1-D problems can also be run dynamically to steady-state. For some models this is the
only way. See the help file of steady.1D for an example.

2.4. Steady-state solution of 2-D PDEs

Function steady.2D efficiently finds the steady-state of 2-dimensional problems.

In the following model

∂C

∂t
= Dx ·

∂2C

∂x2
+ Dy ·

∂2C

∂y2
− r · C2 + pxy

a substance C is consumed at a quadratic rate (r ·C2), while dispersing in X- and Y-direction.
At certain positions (x,y) the substance is produced (rate p).

2on my computer that dates from 2008

Karline Soetaert 11

0 2000 6000 10000

0
50

15
0

25
0

Oxygen

Distance from river

m
m

ol
/m

3

0 2000 6000 10000

0
50

0
10

00
15

00

BOD

Distance from river

m
m

ol
/m

3

0 2000 6000 10000

0
40

80
12

0

BOD decay rate

Distance from river

m
m

ol
/m

3/
d

Figure 4: Steady-state solution of the BOD-O2 model. See text for explanation

12 Package rootSolve : roots, gradients and steady-states in R

The model is solved on a square (100*100) grid. There are zero-flux boundary conditions at
the 4 boundaries.
The term Dx · ∂2C

∂x2 is in fact shorthand for −∂F lux
∂x where Flux = −Dx · ∂C

∂x i.e. it is the
negative of the flux gradient, where the flux is due to diffusion.
In the numerical approximation fo the flux, the concentration gradient is approximated as the
subtraction of two matrices, with the columns or rows shifted (e.g. Conc[2:n,]-Conc[1:(n-1),]).
The flux gradient is then also approximated by subtracting entire matrices (e.g. Flux[2:(n+1),]-Flux[1:(n),]).
This is very fast. The zero-flux at the boundaries is imposed by binding a column or row with
0-s.

> diffusion2D <- function(t,conc,par)

+ {

+ Conc <- matrix(nr=n,nc=n,data=conc) # vector to 2-D matrix

+ dConc <- -r*Conc*Conc # consumption

+ BND <- rep(1,n) # boundary concentration

+

+ # constant production in certain cells

+ dConc[ii]<- dConc[ii]+ p

+

+ #diffusion in X-direction; boundaries=imposed concentration

+

+ Flux <- -Dx * rbind(rep(0,n),(Conc[2:n,]-Conc[1:(n-1),]),rep(0,n))/dx

+ dConc <- dConc - (Flux[2:(n+1),]-Flux[1:n,])/dx

+

+ #diffusion in Y-direction

+ Flux <- -Dy * cbind(rep(0,n),(Conc[,2:n]-Conc[,1:(n-1)]),rep(0,n))/dy

+ dConc <- dConc - (Flux[,2:(n+1)]-Flux[,1:n])/dy

+

+ return(list(as.vector(dConc)))

+ }

After specifying the values of the parameters, 10 cells on the 2-D grid where there will be
substance produced are randomly selected (ii).

> # parameters

> dy <- dx <- 1 # grid size

> Dy <- Dx <- 1.5 # diffusion coeff, X- and Y-direction

> r <- 0.01 # 2-nd-order consumption rate (/time)

> p <- 20 # 0-th order production rate (CONC/t)

> n <- 100

> # 10 random cells where substance is produced at rate p

> ii <- trunc(cbind(runif(10)*n+1,runif(10)*n+1))

The steady-state is found using function steady.2D. It takes as arguments a.o. the dimen-
sionality of the problem (dimens); lrw=1000000, the length of the work array needed by the
solver. If this value is set too small, the solver will return with the size needed.
It takes about 0.5 second to solve this 10000 state variable model.

Karline Soetaert 13

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Steady-state solution of the nonlinear 2-Dimensional model

> Conc0 <- matrix(nr=n,nc=n,10.)

> print(system.time(

+

+ ST3 <- steady.2D(Conc0,func=diffusion2D,parms=NULL,pos=TRUE,dimens=c(n,n),

+ lrw=1000000,atol=1e-10,rtol=1e-10,ctol=1e-10)

+))

user system elapsed
1.110 0.070 1.172

> Conc <- matrix(nr=n,nc=n,data=ST3$y)

> filled.contour(Conc,color.palette=terrain.colors)

3. Gradients, Jacobians and Hessians

3.1. Gradient and Hessian matrices

Function gradient returns a forward difference approximation for the derivative of the func-
tion f(y,...) evaluated at the point specified by x.

Function hessian returns a forward difference approximation of the hessian matrix.

In the example below, the root of the ”banana function” is first estimated (using R-function
nlm), after which the gradient and the hessian at this point are taken.

All this can also be achieved using function nlm.

Note that, as hessian returns a (forward or centered) difference approximation of the gradi-
ent, which itself is also estimated by differencing, it is not very precise.

14 Package rootSolve : roots, gradients and steady-states in R

> # the banana function

> fun <- function(x) 100*(x[2] - x[1]^2)^2 + (1 - x[1])^2

> # the minimum

> mm <-nlm(fun, p=c(0,0))$estimate

> # the Hessian

> (Hes <- hessian(fun,mm))

[,1] [,2]
[1,] 801.9968 -399.9992
[2,] -399.9992 200.0000

> # the gradient

> (grad <- gradient(fun,mm,centered=TRUE))

[,1] [,2]
[1,] -4.73282e-06 3.605687e-07

> # Hessian and gradient can also be estimated by nlm:

> nlm(fun, p=c(0,0), hessian=TRUE)

$minimum
[1] 4.023726e-12

$estimate
[1] 0.999998 0.999996

$gradient
[1] -7.328277e-07 3.605687e-07

$hessian
[,1] [,2]

[1,] 802.2368 -400.0192
[2,] -400.0192 200.0000

$code
[1] 1

$iterations
[1] 26

The inverse of the Hessian gives an estimate of parameter uncertainty

> solve(Hes)

[,1] [,2]
[1,] 0.4999936 0.9999853
[2,] 0.9999853 2.0049665

Karline Soetaert 15

3.2. Jacobian matrices

Function jacobian.full and jacobian.band returns a forward difference approximation of
the jacobian (the gradient matrix, where the function f is the derivative) for full and banded
problems

> mod <- function (t=0,y, parms=NULL,...)

+ {

+ dy1<- y[1] + 2*y[2]

+ dy2<-3*y[1] + 4*y[2] + 5*y[3]

+ dy3<- 6*y[2] + 7*y[3] + 8*y[4]

+ dy4<- 9*y[3] +10*y[4]

+ return(as.list(c(dy1,dy2,dy3,dy4)))

+ }

> jacobian.full(y=c(1,2,3,4),func=mod)

[,1] [,2] [,3] [,4]
[1,] 1 2 0 0
[2,] 3 4 5 0
[3,] 0 6 7 8
[4,] 0 0 9 10

> jacobian.band(y=c(1,2,3,4),func=mod)

[,1] [,2] [,3] [,4]
[1,] 0 2 5 8
[2,] 1 4 7 10
[3,] 3 6 9 0

16 Package rootSolve : roots, gradients and steady-states in R

Table 1: Summary of the functions in package rootSolve ; values in bold are vectors

Function Description

f(x) = 0,

a < x < b
uniroot.all Finds many (all) roots of one (nonlinear) equation in an interval

f(x) = 0 multiroot unconstrained root of one nonlinear equation

f(x) = 0 multiroot Solves for n roots of n (nonlinear) equations
dx1..n

dt = 0 stode Iterative steady-state solver for ordinary differential equations (ODE),
assuming a full or banded Jacobian

stodes Iterative steady-state solver for ordinary differential equations (ODE),
assuming an arbitrary sparse Jacobian

runsteady Steady-state solver for ODEs by dynamically running, assumes a full
or banded Jacobian

steady General steady-state solver for ODEs; wrapper around stode, stodes
and runsteady

steady.1D General steady-state solver for ODEs resulting from multicomponent
1-dimensional reaction-transport problems

steady.band General steady-state solver for ODEs resulting from unicomponent
1-dimensional reaction-transport problems

steady.2D General steady-state solver for ODEs resulting from 2-dimensional
reaction-transport problems

df(x)
dx gradient Estimates the gradient matrix of a function with respect to one or

more x-values
∂

∂(x)
∂t

∂x jacobian Estimates the jacobian matrix for a function f(x)
∂2(fx)
∂xi∂xj

hessian Estimates the hessian matrix for a function f(x)

References

Hindmarsh AC (1983). “ODEPACK, a Systematized Collection of ODE Solvers.” In R Steple-
man (ed.),“Scientific Computing, Vol. 1 of IMACS Transactions on Scientific Computation,”
pp. 55–64. IMACS / North-Holland, Amsterdam.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992). Numerical Recipes in FOR-
TRAN. The Art of Scientific Computing. Cambridge University Press, 2nd edition.

Soetaert K (2008). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of
ordinary differential equations. R package version 1.2.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

Soetaert K, Petzoldt T, Setzer RW (2008). deSolve: General solvers for ordinary differential
equations (ODE) and for differential algebraic equations (DAE). R package version 1.2.

Karline Soetaert 17

Affiliation:

Karline Soetaert
Centre for Estuarine and Marine Ecology (CEME)
Netherlands Institute of Ecology (NIOO)
4401 NT Yerseke, Netherlands E-mail: k.soetaert@nioo.knaw.nl
URL: http://www.nioo.knaw.nl/ppages/ksoetaert

mailto:k.soetaert@nioo.knaw.nl
http://www.nioo.knaw.nl/ppages/ksoetaert

	Finding roots of nonlinear equations in R and rootSolve
	One equation
	n equations in n unknowns

	Steady-state analysis
	Running dynamically to steady-state
	Using the Newton-Raphson method
	Steady-state of 1-D models
	1-D models of 1 species
	1-D models of many species

	Steady-state solution of 2-D PDEs

	Gradients, Jacobians and Hessians
	Gradient and Hessian matrices
	Jacobian matrices

