
Handling shapefiles in the spatstat package

Adrian Baddeley

11 June 2009
spatstat version 1.15-4

This vignette explains how to read data into the spatstat package from
files in the popular ‘shapefile’ format.

This vignette is part of the documentation included in spatstat version
1.15-4. The information applies to spatstat versions 1.14-10 and above.

1 Shapefiles

A shapefile represents a list of spatial objects — a list of points, a list of
lines, or a list of polygonal regions — and each object in the list may have
additional variables attached to it.

A dataset stored in shapefile format is actually stored in a collection of
text files, for example

mydata.shp
mydata.prj
mydata.sbn
mydata.dbf

which all have the same base name mydata but different file extensions. To
refer to this collection you will always use the filename with the extension
shp, for example mydata.shp.

2 Helper packages

We’ll use two other packages to handle shapefile data.
The maptools package is designed specifically for handling file formats

for spatial data. It contains facilities for reading and writing files in shapefile
format.

1



The sp package supports a standard set of spatial data types in R. These
standard data types can be handled by many other packages, so it is useful
to convert your spatial data into one of the data types supported by sp.

3 How to read shapefiles into spatstat

To read shapefile data into spatstat, you follow two steps:

1. using the facilities of maptools, read the shapefiles and store the data
in one of the standard formats supported by sp.

2. convert the sp data type into one of the data types supported by
spatstat.

3.1 Read shapefiles using maptools

Here’s how to read shapefile data.

1. ensure that the package maptools is installed. You will need version
0.7-16 or later.

2. start R and load the package:

> library(maptools)

3. read the shapefile into an object in the sp package using readShapeSpatial,
for example

> x <- readShapeSpatial("mydata.shp")

4. To find out what kind of spatial objects are represented by the dataset,
inspect its class:

> class(x)

The class may be either SpatialPoints indicating a point pattern,
SpatialLines indicating a list of line segments, or SpatialPolygons
indicating a list of polygons. It may also be SpatialPointsDataFrame,
SpatialLinesDataFrame or SpatialPolygonsDataFrame indicating
that, in addition to the spatial objects, there is a data frame of addi-
tional variables.

Here are some examples, using the example shapefiles supplied in the
maptools package itself.

2



> setwd(system.file("shapes", package = "maptools"))

> baltim <- readShapeSpatial("baltim.shp")

> columbus <- readShapeSpatial("columbus.shp")

> fylk <- readShapeSpatial("fylk-val.shp")

> class(baltim)

[1] "SpatialPointsDataFrame"

> class(columbus)

[1] "SpatialPolygonsDataFrame"

> class(fylk)

[1] "SpatialLinesDataFrame"

3.2 Convert data to spatstat format

To convert the dataset to an object in the spatstat package, the procedure
depends on the type of data, as explained below.

3.2.1 Objects of class SpatialPoints

An object x of class SpatialPoints represents a spatial point pattern.
Use as(x, "ppp") or as.ppp(x) to convert it to a spatial point pattern
in spatstat.

The window for the point pattern will be taken from the bounding box
of the points. You will probably wish to change this window, usually by
taking another dataset to provide the window information. Use [.ppp to
change the window: if X is a point pattern object of class "ppp" and W is a
window object of class "owin", type

> X <- X[W]

3.2.2 Objects of class SpatialPointsDataFrame

An object x of class SpatialPointsDataFrame represents a pattern of points
with additional variables attached to each point. It includes an object of
class SpatialPoints giving the point locations, and a data frame containing
the additional variables attached to the points. The point locations are
extracted by

3



> y <- as(x, "SpatialPoints")

> z <- as(y, "ppp")

The data frame of auxiliary data is extracted by df <- x@data or df <- slot(x, "data").
For example:

> bpoints <- as(as(baltim, "SpatialPoints"), "ppp")

> bdata <- slot(baltim, "data")

3.2.3 Objects of class SpatialLines

In the spatstat package, an object of class psp (“planar segment pattern”)
represents a pattern of line segments, which may or may not be connected
to each other (like matches which have fallen at random on the ground).

In the sp package, an object of class SpatialLines represents a list
of connected curves, each curve consisting of a sequence of straight line
segments that are joined together (like several pieces of a broken bicycle
chain.)

So these two data types do not correspond exactly.
If x is an object of class SpatialLines, there are two things that you

might want to do:

1. collect together all the line segments that make up all the connected
lines, and store them as a single object of class psp.

To do this, use as(x, "psp") or as.psp(x) to convert it to
a spatial line segment pattern.

2. keep each connected curve separate, and convert each connected curve
to an object of class psp.

To do this, type something like the following:

> curves <- slot(x, "lines")

> curves <- lapply(curves, function(x) {

+ SpatialLines(list(x))

+ })

> patterns <- lapply(curves, as.psp)

The result will be a list of objects of class psp. Each one of these
objects represents a connected curve, although the spatstat package
does not know that.

The window for the spatial line segment pattern can be specified as an
argument window to the function as.psp.

4



3.2.4 Objects of class SpatialLinesDataFrame

An object x of class SpatialLinesDataFrame represents a list of continuous
piecewise-linear curves, with additional variables attached to each curve. It
includes an object of class SpatialLines giving the curves, and a data frame
containing the additional variables attached to the curves. The curves are
extracted by

> y <- as(x, "SpatialLines")

and you then proceed as above to convert the curves to spatstat format.
The data frame of auxiliary data is extracted by df <- x@data or df <- slot(x, "data").
For example:

> fdata <- slot(fylk, "data")

> fl <- as(fylk, "SpatialLines")

> fcurves <- slot(fl, "lines")

> fcurves <- lapply(fcurves, function(x) {

+ SpatialLines(list(x))

+ })

> fpatterns <- lapply(fcurves, as.psp)

3.2.5 Objects of class SpatialPolygons

First, so that we don’t go completely crazy, let’s introduce some terminology.
A polygon is a closed curve that is composed of straight line segments. You
can draw a polygon without lifting your pen from the paper.

polygon

A polygonal region is a region in space whose boundary is composed of
straight line segments. A polygonal region may consist of several uncon-
nected pieces, and each piece may have holes. The boundary of a polygonal

5



region consists of one or more polygons. To draw the boundary of a polyg-
onal region, you may need to lift and drop the pen several times.

polygonal region

An object of class owin in spatstat represents a polygonal region. It is
a region of space that is delimited by boundaries made of lines.

An object x of class SpatialPolygons represents a list of polygonal
regions. For example, a single object of class SpatialPolygons could store
information about every State in the United States of America (or the United
States of Malaysia). Each State would be a separate polygonal region (and
it might contain holes such as lakes).

There are two things that you might want to do with an object of class
SpatialPolygons:

1. combine all the polygonal regions together into a single polygonal re-
gion, and convert this to a single object of class owin.

For example, you could combine all the States of the USA
together and obtain a single object that represents the ter-
ritory of the USA.
To do this, use as(x, "owin") or as.owin(x). The result
is a single window (object of class "owin") in the spatstat
package.

2. keep the different polygonal regions separate; convert each one of the
polygonal regions to an object of class owin.

For example, you could keep the States of the USA separate,
and convert each State to an object of class owin.

To do this, type the following:

6



> regions <- slot(x, "polygons")

> regions <- lapply(regions, function(x) {

+ SpatialPolygons(list(x))

+ })

> windows <- lapply(regions, as.owin)

The result is a list of objects of class owin. Often it would make sense
to convert this to a tessellation object, by typing

> te <- tess(tiles = windows)

The conversion process may generate an error message, saying that
some of the polygons intersect each other, or are self-intersecting, or vio-
late other geometrical conditions. This happens because an object of class
SpatialPolygons is just a list of lists of polygons, possibly self-intersecting
or mutually intersecting, but an object of class "owin" is intended to specify
a well-defined region of space.

If you chose option 1, the conversion process will check whether any of
the polygons in x intersect each other. This often generates an error with
a shapefile representing a division of space into states or counties or ad-
ministrative regions, like the Départements of France, because two adjacent
regions have boundaries that intersect (even though the intersection has zero
area). If you chose option 2, the conversion process will only check whether,
for each polygonal region in x, the component polygons intersect each other.
This will usually avoid the checking problem.

If an error occurs, the error message will usually specify which component
polygons fail the test. The best strategy is usually just to plot the object x
(using the plot facilities in sp) to identify the problem.

It is possible to suppress the stringent checking of polygons in spatstat
during the conversion:

> spatstat.options(checkpolygons = FALSE)

> y <- as(x, "owin")

> spatstat.options(checkpolygons = TRUE)

The resulting object y should be inspected carefully and used circumspectly;
it has not passed the stringent tests required for many algorithms in spatstat.

3.2.6 Objects of class SpatialPolygonsDataFrame

What a mouthful!

7



An object x of class SpatialPolygonsDataFrame represents a list of
polygonal regions, with additional variables attached to each region. It
includes an object of class SpatialPolygons giving the spatial regions, and
a data frame containing the additional variables attached to the regions.
The regions are extracted by

> y <- as(x, "SpatialPolygons")

and you then proceed as above to convert the curves to spatstat format.
The data frame of auxiliary data is extracted by df <- x@data or df <- slot(x, "data").
For example:

> cdata <- slot(columbus, "data")

> cp <- as(columbus, "SpatialPolygons")

> cregions <- slot(cp, "polygons")

> cregions <- lapply(cregions, function(x) {

+ SpatialPolygons(list(x))

+ })

> cwindows <- lapply(cregions, as.owin)

8


	Shapefiles
	Helper packages
	How to read shapefiles into spatstat
	Read shapefiles using maptools
	Convert data to spatstat format
	Objects of class SpatialPoints
	Objects of class SpatialPointsDataFrame 
	Objects of class SpatialLines
	Objects of class SpatialLinesDataFrame
	Objects of class SpatialPolygons
	Objects of class SpatialPolygonsDataFrame



