
Introduction to the tm Package

Text Mining in R

Ingo Feinerer

May 4, 2009

Introduction

This vignette gives a short introduction to text mining in R utilizing the text mining framework provided by
the tm package. We present methods for data import, corpus handling, preprocessing, meta data management,
and creation of term-document matrices. Our focus is on the main aspects of getting started with text mining
in R—an in-depth description of the text mining infrastructure offered by tm was published in the Journal of
Statistical Software (Feinerer et al., 2008). An introductory article on text mining in R was published in R
News (Feinerer, 2008).

Data Import

The main structure for managing documents in tm is a so-called Corpus, representing a collection of text
documents. A corpus can be created via its constructor Corpus(object, readerControl, dbControl).

object must be a Source object which abstracts the input location. Available sources provided by tm are
DirSource, VectorSource, DataframeSource, GmaneSource and ReutersSource which handle a directory, a vector
interpreting each component as document, Csv files, a Rss feed as delivered by the Gmane mailing list archive
service, and a Reuters file containing several documents, respectively. Except DirSource, which is designed solely
for directories on a file system, and VectorSource, which only accepts (character) vectors, all other implemented
sources can take connections as input (a character string is interpreted as file path). getSources() lists available
sources, and the user can create his own sources.

readerControl has to be a list with the named components reader, language, and load. The first com-
ponent reader constructs a text document from elements delivered by a source. The tm package ships with
several readers (readPlain() (default), readRCV1(), readReut21578XML(), readGmane(), readNewsgroup(),
readPDF(), readDOC() and readHTML()). See getReaders() for an up-to-date list of available readers. Each
source has a default reader which can be overridden. E.g., for DirSource the default just reads in the input
files and interprets their content as text. The second component language sets the texts’ language, the third
component load can activate lazy document loading, i.e., whether documents should be immediately loaded
into memory or not.

Finally dbControl has to be a list with the named components useDb indicating that database support
should be activated, dbName giving the filename holding the sourced out objects (i.e., the database), and dbType
holding a valid database type as supported by package filehash. Activated database support reduces the memory
demand, however, access gets slower since each operation is limited by the hard disk’s read and write capabilities.

So e.g., plain text files in the directory txt containing Latin (la) texts by the Roman poet Ovid can be read
in with following code:

> txt <- system.file("texts", "txt", package = "tm")

> (ovid <- Corpus(DirSource(txt),

+ readerControl = list(reader = readPlain,

+ language = "la")))

A corpus with 5 text documents

Another example could be mails from newsgroups (as found in the Uci Kdd newsgroup data set):

> newsgroup <- system.file("texts", "newsgroup", package = "tm")

> Corpus(DirSource(newsgroup),

+ readerControl = list(reader = readNewsgroup,

+ language = "en_US"))

1

A corpus with 6 text documents

For simple examples VectorSource is quite useful, as it can create a corpus from simple character vectors,
e.g.:

> docs <- c("This is a text.", "This another one.")

> Corpus(VectorSource(docs))

A corpus with 2 text documents

Finally we create a corpus for some Reuters documents as example for later use:

> reut21578 <- system.file("texts", "reut21578", package = "tm")

> reuters <- Corpus(DirSource(reut21578),

+ readerControl = list(reader = readReut21578XML))

Data Export

For the case you have created a text collection via manipulating other objects in R, thus do not have the texts
already stored on a hard disk, and want to save the text documents to disk, you can simply use standard R
routines for writing out plain text documents. E.g.,

> lapply(ovid,

+ function(x) writeLines(x, paste(ID(x), ".txt", sep = "")))

Alternatively there is the function writeCorpus() which encapsulates this functionality.

Inspecting Corpora

Custom show() and summary() methods are available, which hide the raw amount of information (consider a
collection could consist of several thousand documents, like a database). summary() gives more details on meta
data than show(), whereas the full content of text documents is displayed with inspect() on a collection.

> inspect(ovid[1:2])

A corpus with 2 text documents

The metadata consists of 2 tag-value pairs and a data frame
Available tags are:
create_date creator

Available variables in the data frame are:
MetaID

[[1]]
[1] Si quis in hoc artem populo non novit amandi,
[2] hoc legat et lecto carmine doctus amet.
[3] arte citae veloque rates remoque moventur,
[4] arte leves currus: arte regendus amor.
[5]
[6] curribus Automedon lentisque erat aptus habenis,
[7] Tiphys in Haemonia puppe magister erat:
[8] me Venus artificem tenero praefecit Amori;
[9] Tiphys et Automedon dicar Amoris ego.
[10] ille quidem ferus est et qui mihi saepe repugnet:
[11]
[12] sed puer est, aetas mollis et apta regi.
[13] Phillyrides puerum cithara perfecit Achillem,
[14] atque animos placida contudit arte feros.
[15] qui totiens socios, totiens exterruit hostes,
[16] creditur annosum pertimuisse senem.

[[2]]

2

[1] quas Hector sensurus erat, poscente magistro
[2] verberibus iussas praebuit ille manus.
[3] Aeacidae Chiron, ego sum praeceptor Amoris:
[4] saevus uterque puer, natus uterque dea.
[5] sed tamen et tauri cervix oneratur aratro,
[6]
[7] frenaque magnanimi dente teruntur equi;
[8] et mihi cedet Amor, quamvis mea vulneret arcu
[9] pectora, iactatas excutiatque faces.
[10] quo me fixit Amor, quo me violentius ussit,
[11] hoc melior facti vulneris ultor ero:
[12]
[13] non ego, Phoebe, datas a te mihi mentiar artes,
[14] nec nos aëriae voce monemur avis,
[15] nec mihi sunt visae Clio Cliusque sorores
[16] servanti pecudes vallibus, Ascra, tuis:
[17] usus opus movet hoc: vati parete perito;

Transformations

Once we have a text document collection we typically want to modify the documents in it, e.g., stemming,
stopword removal, et cetera. In tm, all this functionality is subsumed into the concept of transformations.
Transformations are done via the tmMap function which applies a function to all elements of the collection.
Basically, all transformations work on single text documents and tmMap just applies them to all documents in
a document collection.

Converting to Plain Text Documents

The text document collection reuters contains documents in Xml format. We have no further use for the Xml
interna and just want to work with the text content. This can be done by converting the documents to plain
text documents. It is done by the generic asPlain().

> reuters <- tmMap(reuters, asPlain)

Eliminating Extra Whitespace

Extra whitespace is eliminated by:

> reuters <- tmMap(reuters, stripWhitespace)

Convert to Lower Case

Conversion to lower case by:

> reuters <- tmMap(reuters, tmTolower)

Remove Stopwords

Removal of stopwords by:

> reuters <- tmMap(reuters, removeWords, stopwords("english"))

Stemming

Stemming is done by:

> tmMap(reuters, stemDoc)

A corpus with 10 text documents

3

Filters

Often it is of special interest to filter out documents satisfying given properties. For this purpose the function
tmFilter is designed. It is possible to write custom filter functions, but for most cases sFilter does its job: it
integrates a minimal query language to filter meta data. Statements in this query language are statements as
used for subsetting data frames. E.g., the following statement filters out those documents having an ID equal
to 10 and the string “COMPUTER TERMINAL SYSTEMS <CPML> COMPLETES SALE” as their heading (both are meta
data slot variables of the text document).

> query <- "identifier == '10' & heading == 'COMPUTER TERMINAL SYSTEMS <CPML> COMPLETES SALE'"
> tmFilter(reuters, FUN = sFilter, query)

A corpus with 1 text document

There is also a full text search filter available (which is default when no explicit filter function FUN is specified)
accepting regular expressions:

> tmFilter(reuters, pattern = "partnership")

A corpus with 1 text document

Meta Data Management

Meta data is used to annotate text documents or whole corpora with additional information. The easiest way to
accomplish this with tm is to use the meta() function. A text document has a few predefined slots like Author,
but can be extended with an arbitrary number of local meta data tags. Alternatively to meta() the function
DublinCore() provides a full mapping between Simple Dublin Core meta data and tm meta data structures
and can be similarly used to get and set meta data information for text documents, e.g.:

> DublinCore(crude[[1]], "Creator") <- "Ano Nymous"

> meta(crude[[1]])

Available meta data pairs are:
Author : Ano Nymous
Cached : TRUE
DateTimeStamp: 1987-02-26 17:00:56
Description :
Heading : DIAMOND SHAMROCK (DIA) CUTS CRUDE PRICES
ID : 127
Language : en_US
Origin : Reuters-21578 XML
URI :

User-defined local meta data pairs are:
$Topics
[1] "crude"

For corpora the story is a bit more difficult. Text document collections in tm have two types of meta data:
one is the meta data on the document collection level (corpus level), the other is the meta data related to the
individual documents (indexed level) in form of a data frame. The latter is often done for performance reasons
(hence the named indexed for indexing) or because the meta data has an own entity but still relates directly to
individual text documents, e.g., a classification result; the classifications directly relate to the documents, but
the set of classification levels forms an own entity. Both cases can be handled with meta():

> meta(crude, tag = "test", type = "corpus") <- "test meta"

> meta(crude, type = "corpus")

An object of class "MetaDataNode"
Slot "NodeID":
[1] 0

Slot "MetaData":
$create_date
[1] "2008-01-24 15:26:16 CET"

4

$creator
LOGNAME

"feinerer"

$test
[1] "test meta"

Slot "children":
list()

> meta(crude, "foo") <- letters[1:20]

> meta(crude)

MetaID foo
1 0 a
2 0 b
3 0 c
4 0 d
5 0 e
6 0 f
7 0 g
8 0 h
9 0 i
10 0 j
11 0 k
12 0 l
13 0 m
14 0 n
15 0 o
16 0 p
17 0 q
18 0 r
19 0 s
20 0 t

Standard Operators and Functions

Many standard operators and functions ([, [<-, [[, [[<-, c(), length(), lapply(), sapply()) are available for
text document collections with semantics similar to standard R routines. E.g., c() concatenates two (or more)
text document collections. Applied to several text documents it returns a text document collection. The meta
data is automatically updated, if text document collections are concatenated (i.e., merged).

There is also a custom element-of operator—it checks whether a text document is already in a text document
collection (meta data is not checked, only the corpus):

> reuters[[1]] %IN% reuters

[1] TRUE

> crude[[1]] %IN% reuters

[1] FALSE

Creating Term-Document Matrices

A common approach in text mining is to create a term-document matrix from a corpus. In the tm package
the classes TermDocumentMatrix and DocumentTermMatrix (depending on whether you want terms as rows and
documents as columns, or vice versa) handle sparse matrices for text document collections.

> dtm <- DocumentTermMatrix(reuters)

> inspect(dtm[1:5, 150:155])

5

A document-term matrix (5 documents, 6 terms)

Non-/sparse entries: 4/26
Sparsity : 87%
Maximal term length: 12
Weighting : term frequency (tf)

exclusive exercisable expect expected expects experiencing
1 0 0 0 1 0 1
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 1 1 0 0
5 0 0 0 0 0 0

Operations on Term-Document Matrices

Besides the fact that on this matrix a huge amount of R functions (like clustering, classifications, etc.) can be
applied, this package brings some shortcuts. Imagine we want to find those terms that occur at least five times,
then we can use the findFreqTerms() function:

> findFreqTerms(dtm, 5)

[1] "bags" "cocoa" "comissaria" "crop" "dec"
[6] "dlrs" "july" "mln" "sales" "sept"
[11] "smith" "times" "york" "analysts" "bankamerica"
[16] "debt" "stock" "level" "price" "apr"
[21] "feb" "mar" "nil" "prev" "total"
[26] "computer" "terminal"

Or we want to find associations (i.e., terms which correlate) with at least 0.97 correlation for the term crop,
then we use findAssocs() (we only display ten arbitrary associations found):

> findAssocs(dtm, "crop", 0.97)[31:40]

drought dry end estimated estimates experiencing
0.98 0.98 0.98 0.98 0.98 0.98

exporters farmers final fit
0.98 0.98 0.98 0.98

The function also accepts a matrix as first argument (which does not inherit from a term-document matrix). This
matrix is then interpreted as a correlation matrix and directly used. With this approach different correlation
measures can be employed.

Term-document matrices tend to get very big already for normal sized data sets. Therefore we provide a
method to remove sparse terms, i.e., terms occurring only in very few documents. Normally, this reduces the
matrix dramatically without losing significant relations inherent to the matrix:

> inspect(removeSparseTerms(dtm, 0.4))

A document-term matrix (10 documents, 2 terms)

Non-/sparse entries: 17/3
Sparsity : 15%
Maximal term length: 6
Weighting : term frequency (tf)

dlrs reuter
1 14 1
2 0 1
3 2 1
4 3 1
5 2 1
6 0 1

6

7 1 1
8 2 1
9 0 1
10 4 1

This function call removes those terms which have at least a 40 percentage of sparse (i.e., terms occurring 0
times in a document) elements.

Dictionary

A dictionary is a (multi-)set of strings. It is often used to represent relevant terms in text mining. We provide
a class Dictionary implementing such a dictionary concept. It can be created via the Dictionary() constructor,
e.g.,

> (d <- Dictionary(c("dlrs", "crude", "oil")))

An object of class "Dictionary"
[1] "dlrs" "crude" "oil"

and may be passed over to the DocumentTermMatrix() constructor. Then the created matrix is tabulated
against the dictionary, i.e., only terms from the dictionary appear in the matrix (terms not occurring in the
document are skipped for performance reasons). This allows to restrict the dimension of the matrix a priori
and to focus on specific terms for distinct text mining contexts, e.g.,

> inspect(DocumentTermMatrix(reuters, list(dictionary = d)))

A document-term matrix (10 documents, 2 terms)

Non-/sparse entries: 10/10
Sparsity : 50%
Maximal term length: 4
Weighting : term frequency (tf)

Terms
Docs dlrs oil
1 14 0
2 0 3
3 2 0
4 3 0
5 2 0
6 0 2
7 1 0
8 2 1
9 0 0
10 4 0

References

I. Feinerer. An introduction to text mining in R. R News, 8(2):19–22, Oct. 2008. URL http://CRAN.R-project.
org/doc/Rnews/.

I. Feinerer, K. Hornik, and D. Meyer. Text mining infrastructure in R. Journal of Statistical Software, 25(5):
1–54, March 2008. ISSN 1548-7660. URL http://www.jstatsoft.org/v25/i05.

7

